Разбираемся как работает КАН-шина на примере учебной системы CANBASIC. CAN-шина – как работает электроника в современных автомобилях? Кан линия

Современный автомобиль оснащен электронными блоками управления различных систем: двигателя, антиблокировочной системы тормозов, кузова и другими. По-существу, эти блоки представляют собой микрокомпьютеры.

Для того, чтобы понять что такое CAN-шина в автомобиле, представьте что в машине организована локальная сеть, к которой подключены эти микрокомпьютеры — чтобы они работали в комплексе.

Это подобно тому, как в сеть объединяются офисные компьютеры, для того чтобы сотрудники могли без проблем брать информацию друг от друга, а начальник имел возможность оперативно контролировать работу офисных сотрудников.

В качестве начальника в автомобиле выступает бортовой компьютер и система диагностики.

История разработки и унификации Controller Area Network

Компания BOSCH, производя исследования в области автоматизации в 80-х годах прошлого века, предложила стандарт микроконтроллерной связи, который можно было применять и в автомобилестроении.

Стандарт CAN применяется не только в автомобилях. В настоящее время его используют в концепции «умный дом», промышленной автоматике и т.д.

Применительно к автомобильной технике стандарт CAN (Controller Area Network) адаптирован к шине с физическим уровнем. Она организована при помощи витой пары проводников, по которым идут пакеты сигналов разной полярности.

Такой стандарт получил международную классификацию ISO 11898. Кадр (пакет) включает 11-битный информационный сигнал (либо 29-битный в расширенном режиме).

В общем, CAN-шина не обязательно может быть реализована при помощи витой пары проводников. Это может быть и оптоволокно, и радиоканал.

Можно предположить, что с введением беспилотных транспортных средств CAN-шина трансформируется в мобильный интерфейс передачи информации одного, а возможно, и комплекса автомобилей.

CAN-шина автомобиля: что это такое и её принцип работы

Шина представляет собой локальную сеть, при помощи которой производится обмен информацией между блоками управления различными системами автомобиля. Таким образом, блок управления, например, двигателя автомобиля, помимо основного микроконтроллера, обслуживающего двигатель, предполагает наличие CAN-контроллера, который формирует посылки импульсов по двум шинам: CAN-высокий и CAN-низкий (Н и L).

Эти сигналы передаются по проводникам (витой паре) трансивером. Трансиверы, или приемо-передатчики, предназначены для:

  • усиления сигналов,
  • обеспечения помехозащищенности передаваемых импульсов;
  • регулировки скорости передачи цифрового потока;
  • защиты линии в случае повреждения CAN-шины.

Сейчас в автомобильной технике применяют следующие виды приемо-передатчиков — High Speed и Fault Toleran. High Speed трансмиттер обеспечивает относительно высокую скорость передачи информации – до 1 мегабит в секунду. Второй тип трансмиттера обладает меньшей скоростью передачи информации – до 120 килобит в секунду. Зато он менее чувствителен (толерантен к ошибкам) к качеству CAN-шины, допускает отклонение ее параметров.

Схема организации обмена данными

Структурно схему подключения различных блоков автомобиля к CAN-шине можно изобразить в таком виде:

Для согласования всех устройств, то есть организации оптимальных условий и скорости приемо — передачи, выходные сопротивления трансмиттеров должны быть приблизительно одинаковы.

В случае отключения или повреждения каких-либо из блоков управления систем автомобиля, сопротивление шины изменяется, нарушается согласование по сопротивлению, которое приводит к значительному уменьшению скорости передачи информации по шине. Такие нарушения могут привести к полной потере связи по CAN-шине.

На некоторых автомобилях для устранения проблем с синхронизацией CAN-информации применяется отдельный модуль межсетевого интерфейса.

Каждое сообщение, передаваемое по CAN-шине, имеет собственный идентификатор, например «температура охлаждающей жидкости» и код, соответствующий ее значению, типа «98,7 градусов Цельсия». Не обязательно это будут абсолютные значения, в большинстве случаев это относительные двоичные единицы, которые далее преобразуются в сигналы управления и контроля.

Эти же данные используют средства диагностики для контроля и обработки информации об основных системах автомобиля.

Основные режимы работы CAN-шины:

  • активный (зажигание включено);
  • спящий (при выключенном зажигании);
  • пробуждение и засыпание (при включении и выключении зажигания).

Во время спящего режима ток потребления шины минимальный. Однако при этом по шине (с меньшей частотой) передаются сигналы о состоянии открытия дверей и окон, других систем, связанных с охранными функциями автомобиля.

В большинстве современных диагностических устройств предусмотрен режим диагностирования ошибок по CAN-шине. Технически это организовано непосредственным подключением проводников к диагностическому разъему.

Преимущества и недостатки применения КАН-шины в автомобиле

Начать следует с того, что, если бы в 80-х годах прошлого века не был предложен стандарт CAN, его место обязательно занял другой вид взаимодействия систем автомобиля.

Можно, конечно, разместить все блоки управления системами автомобиля в едином суперблоке, в котором программно обеспечить взаимодействие разных систем. Такие попытки были у французских производителей. Однако, с увеличением функциональности и производительности значительно увеличивается вероятность отказов. Сбои, например, дворников, могут привести к отказу запуска двигателя.

Основные преимущества применения CAN-шины:

  • возможность проведения оперативного контроля и ;
  • объединение потоков информации в едином помехозащищенном канале;
  • универсальность, способствующая унификации процессов диагностирования;
  • возможность подключения охранных систем по CAN-шине (нет необходимости тянуть проводку к каждому элементу контроля).

Недостатки CAN-шины:

  • невысокая надежность;
  • повреждение одного из блоков управления может привести к полной неработоспособности CAN-соединения.

Устранение неисправностей

На приборной панели автомобиля отсутствует индикаторная лампа неисправности CAN. Судить о том, что работоспособность CAN-шины нарушается, можно по косвенным показателям:

  • на приборной панели одновременно загорелись несколько индикаторных ламп неисправностей;
  • пропали показатели температуры охлаждающей жидкости, уровни топлива;

Прежде всего, следует выполнить диагностику. Если она покажет на неисправность CAN-шины, следует приступить к устранению проблемы.

Последовательность работ:

  1. Найти проводники витой пары шины. Часто они имеют черный (высокий уровень) и оранжево-коричневый (низкий) цвета.
  2. Проверить при включенном зажигании с помощью мультиметра напряжения на проводниках. Уровни не должны быть равны 0 или более 11 Вольт (обычно около 4,5 Вольта).
  3. Выключить зажигание, снять клемму аккумуляторной батареи. Измерить сопротивление между проводниками. Если оно будет стремиться к нулю, значит, в шине присутствует короткое замыкание, если к бесконечности – обрыв.
  4. Приступить к поиску обрыва или короткого замыкания.
  5. Если есть подозрение на то, что замыкание шины происходит по причине отказа какого-либо блока управления, можно последовательно отключать блоки управления и контролировать сопротивление и работоспособность шины.

Неисправность CAN-шины относится к сложным неисправностям электрооборудования автомобиля. Если у автовладельца нет необходимых навыков ремонта электрики, то лучше воспользоваться услугами специалиста.

В современных машинах используются электронные блоки управления (ЭБУ, ECU - Electronic Control Unit) для контроля и управления различными системами машины, такими как гидравликой, коробкой передач и двигателем.
Аналогично тому, как компьютеры могут быть соединены в одну сеть, блоки управления в машине тоже можно объединить.

Преимущества сетевого соединения:

  • Более чувствительная система управления
  • Получение более полных и надежных данных
  • Обнаружение неисправностей и управление настройками производится средствами программного обеспечения.

Например, ЭБУ двигателя может обмениваться с другими ЭБУ машины по системе сети CAN .

Система CAN :Controller Area Network - сеть контроллеров. CAN разработан компанией Robert Bosch GmbH в середине 1980-х и в настоящее время получил широкое применение в автомобильной, авиационной, тракторостроительной и других видах промышленности.

Электронная система связи CAN, которая объединяет все блоки управления машиной в сеть с общим кабелем(шиной) и состоящая из одной пары проводов, называется шиной CAN. Закодированные данные посылаются от блоков управления на шину CAN.

Рисунок - CAN шина из 4-х блоков управления.

Выше показана шина CAN, состоящая из 4-х блоков управления. На концах общего кабеля (шины) устанавливается согласующие сопротивления (терминаторы, резисторы) Обычно сопротивление каждого резистора составляет 120 Ом. Применение согласующих резисторов на концах системы позволяет избежать отражение сигнала в конце линии тем самым обеспечивая нормальную работу всей CAN сети.

Передача сигналов в шине CAN осуществляется посредством двух скрученных между собой проводов (витая пара, Twisted Pair) Применение витой пары проводов, обусловлено дифференциальной передачей данных и высокой защитой такого решения от внешних помех.

В нашем случае блок №2 отправляет один сигнал по двум витым проводам в шину CAN, причем у этого сигнала будет различное напряжение на каждом проводе витой пары. Другие блоки в сети читают сигнал и определяют какому блоку оно предназначено и какую команду нужно выполнить (Блоки №1 и №4)

Передача одного и того же сигнала на два провода (CAN High и CAN low) с разным напряжением происходит методом "дифференциальной передачи данных". В состоянии покоя напряжение на проводе CAN High и CAN low составляет 2,5 В. Такое состояние называется "рецессивное" и упрощенно соответствует значению бита "0" При переходе в активное "доминантное" состояние (такое состояние может создать любой элемент сети) напряжение на проводе CAN High будет повышаться не меньше чем на 1 В до 3,5 В, а CAN low понижаться - тоже на 1 В до 1,5В. Чтобы "понимать" разницу напряжений между CAN High и CAN low, каждый блок управления подключается к шине CAN через трансивер, где происходит преобразование разности напряжений U CAN Hi и U CAN Lo в итоговое напряжение U DIFF . Разница между CAN High и CAN low будет 2В и будет восприниматься принимающими блоками управления как значение бита, равное "1". Такая "дифференциальная передача" сигнала, исключает влияние базового напряжения 2,5 В и другие скачки напряжений из-за различных помех на работу блоков управления. Например, происходит просадка напряжения в бортовой сети на 1,5 В из-за включения мощного потребителя в сеть: U CAN Hi и U CAN Lo в состоянии покоя 2,5 -1,5 = 1 В (U DIFF = 1 - 1 = 0 - Значение бита "0") Разница, при переходе в доминантное состояние U CAN Hi = 2,5 +1 -1,5 = 2 В; U CAN Lo =2,5 -1 -1,5 = 0 В. Итого U DIFF = 2 - 0 = 2 В (Значение бита "1"), даже такая нереальная просадка не повлияла на работу.

Рисунок - Принцип линии CAN

Так происходит передача сигналов по шине CAN. Сами эти сигналы представляют собой "кадры" (сообщения), которые принимаются всеми элементами сети CAN. Полезная информация в кадре состоит из идентификационного поля (идентификатора) длиной 11 бит (стандартный формат) или 29 бит (расширенный формат, надмножество предыдущего) и поля данных длиной от 0 до 8 байт. Идентификационное поле говрит о содержимом пакета и служит для определения приоритета при попытке одновременной передачи несколькими сетевыми узлами. Также в кадре (сообщении) помимо полезной информации содержится служебная информация. Она представлена полями проверки, полем отзыва и другим полями. В конце кадра содержится "поле конец сообщения"

В шине CAN сообщения от блоков управления должны передаваться в общую шину, то для исключения конфликтов между блоками, каждый узел перед отправкой кадра проверяет сеть на передачу доминантного бита. Устройство передающее доминантный бит считается приоритетным. Таким образом устройство будет дожидаться освобождения линии CAN. С одной стороны такой алгоритм работы повышает быстродействие, но с другой при неправильной работе одного из блоков управления возможна полная "загрузка" CAN шины и невозможность отправки сообщении другими блоками, элементами сети CAN (Линия для них будет всегда занята).

Рисунок -Структура сообщения

Напоследок пример работы:

Переключением кнопки инициируем команду блока управления №1 передачу сообщений в шину CAN. Блок №2 получает сообщение и расшифровав в сообщении что кадр пришел для него с командой включить свет. Подается бортовое напряжение на потребитель.

Рисунок - Принцип коммуникации через CAN

Вот такой принцип работы шины CAN без конкретных углублений. Также стоит отметить, что шина CAN может иметь свои особенности, зависящее от области применения и фирмы производителя. В статье я рассказал о наиболее часто встречающейся шине CAN, которую можно встретить в современных грузовых и легковых автомобилях, тракторах и разнообразной спец технике.

Сегодня я хочу познакомить вас с интересной микроконтроллерной платформой CANNY . Это обзорная статья в которой вы узнаете о технологии, а в последующих статьях я расскажу вам о работе с сообщениями CAN, интеграции CANNY c Arduino Mega Server и о тех возможностях, которые предоставляет эта связка.

Почему CANNY? От названия шины CAN, которая широко используется на транспорте и, в частности, во всех современных автомобилях в качестве бортовой сети. Итак, что же можно сделать, имея специализированный контроллер, подключённый к CAN шине вашего автомобиля?

Шина CAN

Образно говоря, шина CAN это нервная система вашего автомобиля. По ней передаётся вся информация о состоянии блоков и систем, а также управляющие команды, которые во многом определяют поведение автомобиля. Зажигание фар, открывание и закрывание дверей, управление проигрыванием музыки в салоне машины, срабатывание сигнализации и т. д. - всё это работает и управляется по этой шине.

Физически, шина CAN представляет собой два перевитых провода и очень проста в монтаже и подключении. Несмотря на свою простоту, она, благодаря своей дифференциальной природе, хорошо защищена от различных наводок и помех. Высокая надежность и большая допустимая длина сети, до 1000 метров, помогла CAN завоевать широкую популярность у производителей различного, не только автомобильного оборудования.

Контроллеры CANNY

Это целое семейство специализированных контроллеров, имеющих встроенную «родную» поддержку работы с шиной CAN. Это касается как «железной» части, так и поддержки на уровне «софта».

Флагманом линейки является контроллер CANNY 7, наиболее мощный и имеющий максимум возможностей. Большое количество памяти, мощные выходы, позволяющие напрямую управлять реле автомобиля, интеллектуальная система защиты от коротких замыканий, защита от бросков тока и напряжения в бортовой сети автомобиля - всё это делает этот контроллер отличным решением для воплощения любых ваших идей и проектов.

Кроме CANNY 7 в линейке контроллеров присутствует ещё несколько моделей, мы будем проводить свои эксперименты с более простой встраиваемой моделью CANNY 5 Nano. Она также поддерживает работу с CAN шиной, но при этом похожа на уже знакомую нам Arduino Nano.

Визуальное программирование

Развитая поддержка шины CAN это не единственная особенность этих контроллеров, кроме этого CANNY имеют свою собственную среду программирования, CannyLab, но не «обычную», а визуальную, где весь процесс написания программ сводится к манипулированию готовыми структурными блоками, заданию их параметров и соединению входов и выходов этих блоков в определённой последовательности, в соответствии с алгоритмом решаемой задачи.

Ни одной строчки кода!

Хорошо это или плохо? На мой взгляд, это дело привычки. Мне, как человеку привыкшему к «традиционному» программированию, было непривычно манипулировать блоками, вместо написания строк кода. С другой стороны, существует множество приверженцев именно такого подхода к составлению алгоритмов и считается, что для инженеров и «не программистов» это наиболее простой и доступный метод программирования микроконтроллеров.

Мне, как минимум, было «прикольно» составлять программы таким образом и через некоторое время мне это стало даже нравиться. Возможно, что если продолжить этим заниматься, то через некоторое время уже написание кода покажется неудобным.

CannyLab является бесплатной средой разработки и вы можете свободно скачать её с сайта разработчиков, она также не требует специальной процедуры инсталляции - достаточно распаковать файл с архивом - и вы можете начинать работу.

Подключение

Подключение CANNY 5 Nano к компьютеру мало чем отличается от подключения контроллеров Arduino. При наличии в системе драйвера Silicon Labs CP210x, либо после его установки из скаченного дистрибутива CannyLab, Windows создаёт виртуальный COM порт и CANNY готов к работе. В моём случае понадобилось ещё перезагрузить компьютер, но возможно это особенность моей системы.

Практические примеры

Давайте на простых примерах разберём, как в CannyLab выполнять действия, привычные нам в Arduino IDE. Начнём с традиционного мигания светодиодом.

В контроллере CANNY 5 на выводе С4 (Channel 4) присутствует тестовый светодиод (аналог светодиода, находящегося на 13 выводе в Arduino). И его тоже можно использовать для индикации и экспериментов, чем мы и воспользуемся.

Что же нужно, чтобы помигать светодиодом в контроллере CANNY? Нужно сделать всего две вещи - сконфигурировать пин четвертого канала как выход и подать на этот выход сигнал с ШИМ генератора. Все эти действия мы уже не раз проделывали в Arduino IDE, посмотрим как это выглядит в CannyLab.

Итак, конфигурируем пин четвертого канала как выход

Настраиваем генератор ШИМ. Задаём период 500 миллисекунд, заполнение - 250 миллисекунд (то есть 50 %) и 1 (true) на входе генератора «Старт» и… всё! Больше ничего делать не нужно - программа готова, осталось только залить её в контроллер.

Режим симуляции

Тут нужно сказать пару слов о процессе симуляции на компьютере работы контроллера и заливке разработанной программы в память «железного» контроллера.

Среда разработки CannyLab позволяет запускать и отлаживать программу, не записывая её в память контроллера. В режиме симуляции вы можете видеть результат работы программы прямо в реальном времени и даже вмешиваться в её работу.

Заливка в контроллер

Для работы контроллеров CANNY, перед заливкой программы (в терминологии разработчиков «диаграммы») нужно сначала залить операционную систему «Устройство/Системное ПО/Записать». Это нужно сделать только один раз, для этого нужно выбрать соответствующий вашему контроллеру файл с расширением .ccx .

После того, как программа написана и отлажена, её можно загрузить в ваш контроллер. Это делается просто - в меню выбираете пункт «Устройство/Диаграмма/Записать» и через несколько секунд программа оказывается записанной в контроллер.

Аналоговые входы

Для того, чтобы лучше понять принцип программирования контроллеров CANNY в среде разработке CannyLab, давайте ещё разберём пример работы с аналоговым входом в этой системе.

Мы будем отслеживать уровень напряжения на 10 пине контроллера и если он находится в диапазоне 2,5 В ± 20%, будем зажигать встроенный в плату светодиод.

Как и в предыдущем примере, конфигурируем 4-й пин как выход для того, чтобы иметь возможность управлять работой светодиода.

Включаем АЦП на 10-м канале.

Блок «Логическое И» довершает работу и со своего выхода управляет работой светодиода на плате.

Вот и всё. То, что мы привычно делали на Arduino, мы легко сделали в CannyLab. Осталось только освоиться в этой среде программирования и вы сможете легко и непринуждённо создавать свои проекты на этой платформе.

Эти простые примеры составления программ даны для того, чтобы вы могли понять принцип визуального программирования микроконтроллеров CANNY. В дальнейшей работе вам поможет отличная справочная документация и поддержка разработчиков на сайте и форуме системы.

CAN шина является одним из устройств, обеспечивающих возможность более упрощенной установки противоугонной системы в автомобиле. Зная особенности монтажа КАН модуля, произвести его можно самостоятельно.

[ Скрыть ]

Что такое CAN шина и принцип работы

Автомобильный электронный КАН модуль представляет собой сеть контроллеров, предназначенных для объединения всех управляющих блоков машины в одну сеть. Основная особенность заключается в том, что объединение элементов происходит с использованием одного проводника. Сам цифровой интерфейс на авто включает в себя пару кабелей, именуемых CAN. Информация, которая поступает по каналам от одного блока к другому, передается в зашифрованном виде.

Где находится устройство

Место установки CAN шины зависит от конкретной модели автомобиля, этот момент надо уточнять в сервисном руководстве к машине. Он может располагаться в моторном отсеке или в салоне, под панелью приборов. Подробно на фото показаны примеры расположения КАН интерфейсов.

Кан модуль в одном из жгутов со штатной проводкой Расположение шины в багажном отсеке Шина КАН под приборной панелью автомобиля

Обычно блок управления сигнализацией ставится под контрольным щитком либо за «приборкой» в салоне машины.

Функции

Функции, выполняющиеся интерфейсом КАН:

  • возможность подключать к электросети транспортного средства и настраивать любые устройства, в том числе автосигнализации;
  • более упрощенный алгоритм подключения и работы дополнительного оборудования и систем, установленных в автомобиле;
  • возможность одновременной передачи и получения цифровой информации и ее анализа от различных источников;
  • снижение величины воздействия внешних помех на работу основных и дополнительных систем;
  • более быстрое подключение функции автозапуска противоугонной системы;
  • ускорение процесса передачи данных к конкретным устройствам и механизмам машины.

Режимы

Цифровая система может функционировать в нескольких режимах:

  1. Автономный или фоновый. При его активации все системы выключены, но на КАН интерфейс подается питание. Значение напряжения достаточно низкое, поэтому такой режим работы не позволит разрядить АКБ.
  2. Режим пуска. Он работает, когда водитель устанавливает ключ в замок и прокручивает его в положение зажигания либо кликает по . Производится включение функции стабилизации питания. Напряжение начинает поступать на датчики и регуляторы.
  3. Активный режим функционирования. При его включении обмен информации начинает происходить между всеми датчиками и регуляторами. Когда активирован активный режим, значение потребления энергии может возрасти до 85 мА.
  4. Режим отключения либо засыпания. При остановке мотора все датчики и системы, подключенные к интерфейсу КАН, перестают работать. Производится их отключение от электросети машины.

Характеристики

Отдельно следует сказать об основных характеристиках скорости работы интерфейса:

  • общая величина скорости передачи данных с информацией составляет 1 мб/с;
  • при отправке информации между микропроцессорными устройствами этот показатель составит 500 кб/с;
  • скорость получения данных к автомобильной системе «Комфорт» составляет 100 кб/с.

Разновидности и устройство

По устройству КАН шина представляет собой разъем, к которому могут подключаться блоки:

  • сигналки (с функцией автоматического запуска либо без нее);
  • управления силовым агрегатом;
  • работой антиблокировочной системы;
  • подушек безопасности;
  • управления автоматической трансмиссией;
  • панели приборов и т. д.

По типу использующихся идентификаторов КАН модули разделяются на два класса:

  1. CAN2, 0A. Это маркировка интерфейсов, поддерживающих одиннадцатибитный формат обмена информацией. Данный класс устройств не позволяет определить ошибки на сигналы от 29-битных модулей.
  2. CAN2, 0B. Таким образом маркируются устройства, работающие в одиннадцатибитном формате. Но их основная особенность заключается в возможности передачи информации об ошибке на микропроцессорный модуль при выявлении 29-битного идентификатора.

По разновидностям цифровые интерфейсы делятся на несколько категорий:

  1. Для мотора машины. При подключении интерфейса обеспечивается быстрая связь по каналу передачи информации. Назначение устройства состоит в синхронизации работы микропроцессорного блока к другим системам. К примеру, мотору и трансмиссии.
  2. Системы Комфорт. Предназначение данного типа устройств состоит в соединении всех систем, которые относятся к этой категории.
  3. Информационно-командные шины. Скорость передачи особо не отличается. Предназначение интерфейса состоит в обеспечении связи между системами, предназначенными для обслуживания. Например, между микропроцессорным модулем и навигационным устройством или мобильным гаджетом.

Подробно о способах передачи информации между устройствами по КАН модулю сказано в ролике канала «Электротехника и электроника для программистов».

Преимущества сигнализации с CAN шиной

Достоинства, характерные для КАН интерфейсов:

  1. Легкость монтажа дополнительного оборудования, к примеру, противоугонного комплекса на авто. Благодаря КАН шине автовладельцу надо просто соединить несколько разъемов, а не подключать провода к каждой отдельной системе.
  2. Быстродействие интерфейса. Устройство позволяет обеспечить оперативный обмен данными между узлами и блоками.
  3. Высокая устойчивость по отношению к воздействию внешних помех.
  4. Все интерфейсы характеризуются многоуровневой системой мониторинга и контроля. Ее наличие позволяет обеспечить защиту от возникновения ошибок, которые появляются в ходе приема и передачи информации.
  5. Во время работы КАН интерфейс автоматически раскидывает скорость по различным каналам. Благодаря этому обеспечивается эффективная работа основных узлов и систем, подключенных к нему.
  6. Повышенная безопасность системы. При необходимости интерфейс сможет заблокировать незаконный доступ, который попытаются получить злоумышленники к противоугонному комплексу авто.
  7. Большой выбор КАН модулей. Потребитель может подобрать устройство для любой модели транспортного средства, даже для Запорожца.

Подробно о преимуществах использования CAN модулей можно узнать из ролика, снятого каналом DIYorDIE.

Недостатки сигнализации с CAN шиной

Минусы, характерные для этих устройств:

  1. Наличие ограничений в плане объема передающейся информации. Современные транспортные средства оснащены множеством электронных приборов и устройств. В результате роста их числа увеличивается нагрузка канала, по которому передаются данные. Это приводит к росту времени отклика.
  2. Большинство информации, которая передается через интерфейс, имеет определенное назначение. На полезные данные в шине отводится только небольшая часть перенаправляющегося трафика.
  3. Возможны проблемы в плане отсутствия стандартизации. Это обусловлено использованием протокола высшего уровня.

Как установить и подключить сигнализацию к CAN шине?

Наличие данного интерфейса позволяет соединить противоугонный комплекс с «мозгами» автомобиля более быстро. Выполнить эту задачу можно своими руками.

Подготовительные работы

При подготовке надо точно узнать, где находится микропроцессорный модуль управления охранной системой. Если процедура ее монтажа выполнялась в гаражных условиях, то поиск будет несложным. В случае когда установка производилась специалистами, надо уточнить месторасположения устройства.

Пошаговая инструкция

Процесс подключения охранного комплекса к КАН интерфейсу выполняется так:

  1. Автосигнализация должна быть установлена на машине и соединена со всеми системами и компонентами авто.
  2. Надо найти толстый провод с оранжевой окантовкой. Этот проводник соединяется с цифровым интерфейсом.
  3. Модуль охранного комплекса подключается к указанному контакту. Для этого используется разъем.
  4. Выполняется установка микропроцессорного блока сигналки в надежном и сухом месте. Устройство закрепляется. Необходимо заизолировать места соединений всех проводников, а также сами кабели, чтобы предотвратить их перетирание и повреждение изоляции. После подключения производится проверка.
  5. На последнем этапе необходимо произвести настройку всех каналов, чтобы охранный комплекс функционировал без перебоев. Процедура регулировки параметров выполняется с помощью сервисного руководства, которое входит в комплектацию сигналки.

Пользователь sigmax69 в ролике показал, как выполняется процедура подключения противоугонного комплекса с помощью КАН модуля на примере автомобиля Хендай Солярис.

Неисправности CAN шины

О неполадках в работе КАН интерфейса могут сообщить следующие признаки:

  • на контрольном щитке одновременно появились несколько световых индикаторов, указывающих на неисправности;
  • на приборке нет информации о температуре хладагента, уровне горючего в баке и т. д.;
  • появился индикатор Чек Энджин.

Как проверить?

При его отсутствии можно воспользоваться мультиметром:

  1. Сначала необходимо найти провода витой пары интерфейса. Обычно они оснащаются черной либо серо-оранжевой изоляцией. Первый вариант — высокий уровень, второй — низкий.
  2. С использованием тестера выполняется диагностика напряжения на контактах, зажигание при этом должно быть активировано. Диагностика должна показать величину напряжения в диапазоне от 0 до 11 вольт, как правило, это 4,5 В.
  3. Затем зажигание в автомобиле отключается, от АКБ отсоединяется клеммный зажим с минусовым контактом.
  4. Производится замер величины сопротивления между кабелями. Если этот параметр стремится к нулю, это говорит о наличии короткого замыкания в интерфейсе. В случае когда величина напряжения движется к бесконечности, это свидетельствует об обрыве. Тогда выполняется поиск дефекта.
  5. Замыкание в интерфейсе может происходить в результате выхода из строя одного из управляющих модулей. Тогда необходимо по очереди отключить каждое устройство и повторно произвести замер сопротивления.

Как устранить?

Если CAN шина повреждена, необходимо найти вышедшие из строя контакты и отремонтировать их. Процедура восстановления работоспособности выполняется посредством перепайки. Поврежденные провода также подлежат замене, как и проводники, на которых стерлась изоляция.

Видео «Диагностика авто с помощью CAN шины»

Канал KV Avtoservice подробно рассказал о процедуре выполнения компьютерной проверки машины с использованием КАН интерфейса.

CAN-шина – это электронное устройство, встроенное в электронную систему автомобиля для контроля технических характеристики и ездовых показателей. Она является обязательным элементом для оснащения автомобиля противоугонной системой, но это лишь малая часть её возможностей.

CAN-шина – это одно из устройств в электронной автоматике автомобиля, на которое возлагается задача по объединению различных датчиков и процессоров в общую синхронизированную систему. Она обеспечивает сбор и обмен данными, посредством чего в работу различных систем и узлов машины вносятся необходимые корректировки.

Аббревиатура CAN расшифровывается как Controller Area Network, то есть сеть контроллеров. Соответственно, CAN-шина – это устройство, принимающее информацию от устройств и передающее между ними. Данный стандарт был разработан и внедрён более 30 лет назад компанией Robert Bosch GmbH. Сейчас его используются в автомобилестроении, промышленной автоматизации и сфере проектирования объектов, обозначаемых «умными», например, домов.

Как работает CAN шина

Фактически, шина представляет собой компактное устройство со множеством входов для подключения кабелей или разъём, к которому подсоединяются кабели. Принцип её действия заключается в передаче сообщений между разными компонентами электронной системы.

Для передачи разной информации в сообщения включаются идентификаторы. Они уникальны и сообщают, например, что в конкретный момент времени автомобиль едет со скоростью 60 км/ч. Серия сообщения отправляется на все устройства, но благодаря индивидуальным идентификаторам они обрабатывают только те, которые предназначаются именно для них. Идентификаторы CAN-шины могут иметь длину от 11 до 29 бит.

В зависимости от назначения КАН шины разделяются на несколько категорий:

  • Силовые. Они предназначены для синхронизации и обмена данными между электронным блоком двигателя и антиблокировочной системой, коробкой передач, зажиганием, другими рабочими узлами автомобиля.
  • Комфорт. Эти шины обеспечивают совместную работу цифровых интерфейсов, которые не связаны с ходовыми блоками машины, а отвечают за комфорт. Это система подогрева сидений, климат-контроль, регулировка зеркал и т.п.
  • Информационно-командные. Эти модели разработаны для оперативного обмена информацией между узлами, отвечающими за обслуживание авто. Например, навигационной системой, смартфоном и ЭБУ.

Для чего CAN шина в автомобиле

Распространение интерфейса КАН в автомобильной сфере связано с тем, что он выполняет ряд важных функций:

  • упрощает алгоритм подсоединения и функционирования дополнительных систем и приборов;
  • снижает влияние внешних помех на работу электроники;
  • обеспечивает одновременное получение, анализ и передачу информации к устройствам;
  • ускоряет передачу сигналов к механизмам, ходовым узлам и иным устройствам;
  • уменьшает количество необходимых проводов;

В современном автомобиле цифровая шина обеспечивает работу следующих компонентов и систем:

  • центральный монтажный блок и замок зажигания;
  • антиблокировочная система;
  • двигатель и коробка переключения передач;
  • подушки безопасности;
  • рулевой механизм;
  • датчик поворота руля;
  • силовой агрегат;
  • электронные блоки для парковки и блокировки дверей;
  • датчик давления в колёсах;
  • блок управления стеклоочистителями;
  • топливный насос высокого давления;
  • звуковая система;
  • информационно-навигационные модули.

Этот не полный список, так как в него не включаются внешние совместимые приборы, которые тоже можно соединить с шиной. Часто таким образом подключается автомобильная сигнализация. CAN-шина также доступна для подключения внешних устройств для мониторинга рабочих показателей и диагностики на ПК. А при подключении автосигнализации вместе с маяком можно управлять отдельными системами извне, например, со смартфона.

Плюсы и минусы CAN шины

Специалисты по автомобильной электронике, высказываясь в пользу использования CAN-интерфейса, отмечают следующие преимущества:

  • простой канал обмена данными;
  • скорость передачи информации;
  • широкая совместимость с рабочими и диагностическими приборами;
  • более простая схема установки автосигнализации;
  • многоуровневый мониторинг и контроль интерфейсов;
  • автоматическое распределение скорости передачи с приоритетом в пользу основных систем и узлов.

Но есть у CAN-шины и функциональные недостатки:

  • при повышенной информационной нагрузке на канал вырастает время отклика, что особенно характерно для работы автомобилей, «напичканных» электронными устройствами;
  • из-за использования протокола высшего уровня встречаются проблемы стандартизации.

Возможные проблемы с CAN шиной

По причине включения во многие функциональные процессы, неполадки в работе CAN-шины проявляются очень быстро. Среди признаков нарушений чаще всего проявляются:

  • индикация вопросительного знака на приборной панели;
  • одновременное свечение нескольких лампочек, например, CHECK ENGINE и ABS;
  • исчезновение показателей уровня топлива, оборотов двигателя, скорости на приборной панели.

Такие проблемы возникают по разным причинам, связанным с питанием или нарушением электроцепи. Это может быть замыкание на массу или аккумулятор, обрыв цепи, повреждение перемычек, падение напряжения из-за проблем с генератором или разряд АКБ.

Первая мера для проверки шины – компьютерная диагностика всех систем. Если она показывает шину, необходимо измерить напряжение на выводах H и L (должно быть ~4V) и изучить форму сигнала на осциллографе под зажиганием. Если сигнала нет или он соответствует напряжению сети, налицо замыкание или обрыв.

Ввиду сложности системы и большого количества подключений компьютерную диагностику и устранение неисправностей целесообразно передать в руки специалистов с высококачественным оборудованием.



Поделиться