Конструкция рулевых устройств с пассивным рулем. Типы рулей Пособие по рулевым машинам на судне

Рулевое устройство служит для изменения направления движения судна или удерживать его на заданном курсе. В последнем случае задачей рулевого устройства является противодействие внешним силам, таким как ветер или течение, которые могут привести к отклонению судна от заданного курса.

Рулевые устройства известны с момента возникновения первых плавучих средств. В древности рулевые устройства представляли собой большие распашные весла, укрепленные на корме, на одном борту или на обоих бортах судна. Во времена средневековья их стали заменять шарнирным рулем, который помещался на ахтерштевне в диаметральной плоскости судна. В таком виде он и сохранился до наших дней. Рулевое устройство состоит из руля, баллера, рулевого привода, рулевой передачи, рулевой машины и поста управления (рис. 6.1).

Рулевое устройство должно иметь два привода: главный и вспомогательный.
Главный рулевой привод - это механизмы, исполнительные приводы перекладки руля, силовые агрегаты рулевого привода, а также вспомогательное оборудование и средства приложения крутящего момента к баллеру (например, румпель или сектор), необходимые для перекладки руля с целью управления судном в нормальных условиях эксплуатации.
Вспомогательный рулевой привод – это оборудование необходимое для управления судном в случае выхода из строя главного рулевого привода, за исключением румпеля, сектора или других элементов, предназначенных для той же цели.
Главный рулевой привод должен обеспечивать перекладку руля с 350 одного борта на 350 другого борта при максимальной эксплуатационной осадке и скорости переднего хода судна не более чем за 28 секунд.
Вспомогательный рулевой привод должен обеспечивать перекладку руля с 150 одного борта на 150 другого борта не более чем за 60 секунд при максимальной эксплуатационной осадке судна и скорости, равной половине его максимальной эксплуатационной скорости переднего хода.
Управление вспомогательным рулевым приводом должно быть предусмотрено из румпельного отделения. Переход с главного на вспомогательный привод должен выполняться за время, не превышающее 2 минуты.
Руль – основная часть рулевого устройства. Он располагается в кормовой части и действует только на ходу судна. Основной элемент руля – перо, которое по форме может быть плоским (пластинчатым) или обтекаемым (профилированным).
По положению пера руля относительно оси вращения баллера различают (рис. 6.2):
- обыкновенный руль – плоскость пера руля расположена за осью вращения;
- полубалансирный руль – только большая часть пера руля находится позади оси вращения, за счет чего возникает уменьшенный момент вращения при перекладке руля;
- балансирный руль – перо руля так расположено по обеим сторонам оси вращения, что при перекладке руля не возникают какие-либо значительные моменты.

В зависимости от принципа действия различают пассивные и активные рули. Пассивными называются рулевые устройства, позволяющие производить поворот судна только во время хода, точнее сказать, во время движения воды относительно корпуса судна.
Винторулевой комплекс судов не обеспечивает их необходимую маневренность при движении на малых скоростях. Поэтому на многих судах для улучшения маневренных характеристик используются средства активного управления, которые позволяют создавать силу тяги в направлениях, отличных от направления диаметральной плоскости судна. К ним относятся: активные рули, подруливающие
устройства, поворотные винтовые колонки и раздельные поворотные насадки.


Активный руль
– это руль с установленным на нем вспомогательным винтом, расположенным на задней кромке пера руля (рис. 6.3). В перо руля встроен электродвигатель, приводящий во вращение гребной винт, который для защиты от повреждений помещен в насадку. За счет поворота пера руля вместе с гребным винтом на определенный угол возникает поперечный упор, обусловливающий поворот судна. Активный руль используется на малых скоростях до 5 узлов. При маневрировании на стесненных акваториях активный руль может использоваться в качестве основного движителя, что обеспечивает высокие маневренные качества судна. При больших скоростях винт активного руля отключается, и перекладка руля осуществляется в обычном режиме.

Раздельные поворотные насадки
(рис. 6.4). Поворотная насадка – это стальное кольцо, профиль которого представляет элемент крыла. Площадь входного отверстия насадки больше площади выходного. Гребной винт располагается в наиболее узком ее сечении. Поворотная насадка устанавливается на баллере и поворачивается до 40° на каждый борт, заменяя руль. Раздельные поворотные насадки установлены на многих транспортных судах, главным образом речных и смешанного плавания, и обеспечивают их высокие маневренные характеристики.


Подруливающие устройства
(рис. 6.5). Необходимость создания эффективных средств управления носовой оконечностью судна привела к оборудованию судов подруливающими устройствами. ПУ создают силу тяги в направлении, перпендикулярном диаметральной плоскости судна независимо от работы главных движителей и рулевого устройства. Подруливающими устройствами оборудовано большое количество судов самого разного назначения. В сочетании с винтом и рулем ПУ обеспечивает высокую маневренность судна, возможность разворота на месте при отсутствии хода, отход или подход к причалу практически лагом.

В последнее время получила распространение электродвижущаяся система AZIPOD (Azimuthing Electric Propulsion Drive), которая включает в себя дизельгенератор, электромотор и винт (рис. 6.6).

Дизель-генератор, расположенный в машинном отделении судна, вырабатывает электроэнергию, которая по кабельным соединениям передается на электромотор. Элетромотор, обеспечивающий вращение винта, расположен в специальной гондоле. Винт находится на горизонтальной оси, уменьшается количество механических передач. Винторулевая колонка имеет угол разворота до 3600, что значительно повышает управляемость судна.
Достоинства AZIPOD:
– экономия времени и средств при постройке;
– великолепная маневренность;
– уменьшается расход топлива на 10 – 20 %;
– уменьшается вибрация корпуса судна;
– из-за того, что диаметр гребного винта меньше – эффект кавитации снижен;
– отсутствует эффект резонанса гребного винта.

Один из примеров использования AZIPOD – танкер двойного действия (рис.6.7), который на открытой воде двигается как обычное судно, а во льдах двигается кормой вперёд как ледокол. Для ледового плавания кормовая часть DAT оснащена ледовым подкреплением для ломки льда и AZIPOD.

На рис. 6.8. показана схема расположения приборов и пультов управления: один пульт для управления судном при движении вперед, второй пульт для управления судном при движении кормой вперед и два пульта управления на крыльях мостика.

Рулевое устройство предназначено для обеспечения управляемости судном (устойчивости на курсе и поворотливости).

Общий вид рулевого устройства показан на рис.6.20. В состав рулевого устройства входят руль, привод руля, привод управления.

Вруль входит перо руля и баллер. Основой пера руля является мощная вертикальная балка –рудерпис . С рудерписом соединены горизонтальные рёбра жесткости и петли. По сечению рули делятся на пластинчатые и обтекаемые. Обтекаемый руль - пустотелый в сечении имеет каплевидную форму, улучшает управляемость, увеличивает КПД винта, обладая собственной

Рис. 6.19.Основные типы рулей: а – обыкновенный небалансирный; б – балансирный; в – балансирный подвесной; г – полубалансирный полуподвесной.

плавучестью, уменьшает нагрузку на подшипники. Из-за этих преимуществ практически все морские суда имеют обтекаемые рули. По положению оси вращения рули делятся на: небалансирные, полубалансирные и балансирные, По методу крепления к корпусу судна - обыкновенные, подвесные и полуподвесные (рис.6.19). У балансирных и полубалансирных рулей часть площади руля (до 20%) расположена в нос от оси вращения руля, что уменьшает момент и мощность, необходимую для поворота руля и нагрузку на подшипники.

Баллер служит для передачи вращающего момента на перо руля и его поворота. Баллер – прямой или изогнутый стержень, который крепится одним концом к перу руля с помощью фланца или конуса, а другой конец входит через гельмпортовую трубу и сальник в корпус судна. Баллер поддерживается подшипниками, на его верхний конец насажен румпель – одноплечий или двуплечий рычаг.

Рулевой привод связывает баллер руля с рулевой машиной и состоит из румпеля и соответствующей передачи к нему от рулевой машины. Наибольшее применение имеет гидравлический плунжерный привод рис. 6.21 и рулевая машина с качающимися цилиндрами рис. 6.23. Находят применение зубчатосекторный привод(устаревший тип), румпельный и винтовой (рис.6.22).

Рис. 6.20. Рулевое устройство.

1 – перо руля; 2 – рудерпис; 3 – баллер; 4 – нижний подшипник; 5 – рулевая машина; 6 – гельпортовая труба.

От рулевого устройства зависит безопасность судна, поэтому требуется, чтобы кроме основного привода был и запасной. Основной привод должен обеспечивать поворот руля на полном ходу судна с 35° одного борта до 30° другого борта за 28 сек (механический ограничитель поворота руля на 35 о, а конечный выключатель на 30 о). Запасной привод должен обеспечивать перекладку руля при половинной скорости (но не менее 7 узлов) с 20° на 20° другого борта за 60 сек. Аварийный привод должен быть предусмотрен, если какая-либо ватерлиния проходит выше палубы румпельной (помещения, где размещена рулевая машина).

Учитывая особую важность рулевого устройства для безопасности судна, на современных судах обычно устанавливают два одинаковых привода, которые соответствуют требованиям к основному приводу (рис. 6.21). Это значительно повышает надёжность рулевого устройства, так как в этом случае возможна взаимная замена узлов.

При гидроприводе поворот руля осуществляется за счёт подачи масла высокого давления в один из гидроцилиндров и под действием плунжера поворачивается румпель и руль (из противоположного гидроцилиндра масло свободно сливается).

Рис. 6.21. Общий вид (а) и схема действия электрогидравлической рулевой машины (б): 1-баллер, 2 – румпель, 3 – цилиндр, 4 – плунжер, 5 – электродвигатель, 6 – масляный насос, 7 – пост управления.

Рис. 6.22. Рулевые приводы: а – румпельный; б – винтовой; в – секторный.

1- перо руля; 2- баллер; 3- румпель; 4- штуртрос; 5- зубчатый сектор; 6- пружинный амортизатор;

7-винтовой шпиндель; 8- ползун.

Ручной румпельный привод (рис.6.22.а ) применяется на катерах. Так как тросы намотаны на барабан в противоположных направлениях, то при вращении штурвала с барабаном один трос удлиняется, а второй укорачивается, что заставляет поворачиваться румпель и руль.

Винтовой привод (рис.6.22.б ) применяется на небольших судах. Так как резьба на шпинделе в районе ползунов противоположного направления, то при вращении шпинделя в одну сторону ползуны сближаются, а при вращении в другую - удаляются друг от друга. Это заставляет поворачиваться румпель и руль.

Зубчато-секторный привод раннее достаточно широко применялся (рис.6.22.в ). Приводится в движение электромотором через редуктор. В этом приводе румпель как всегда жёстко посажен на баллер, а зубчатый сектор свободно вращается на баллере. Румпель связан с сектором пружинным аммортизатором, что смягчает удары волн передаваемые от пера руля на редуктор

Привод управления рулевой машины связывает штурвал, расположенный в рулевой рубке и рулевую машину. Наиболее распространены электрический и гидравлический приводы.


Рис. 6.23. Рулевой привод с качающимися цилиндрами

В узкостях на малом ходу судно плохо слушается руля, так как малая скорость набегающего на руль потока резко уменьшает поперечную гидродинамическую силу на руле. Поэтому в этих случаях обычно прибегают к помощи буксиров или на судне устанавливают средства активного управления (САУ): подруливающие устройства, выдвижные поворотные винтовые колонки, активные рули, поворотные насадки.

Подруливающие устройства (рис. 6.24.а) обычно устанавливают в носовой части судна, а иногда и в кормовой. Для того, чтобы ниша в корпусе не создавала дополнительного сопротивления на ходу судна, она закрывается жалюзями.

Выдвижная рулевая колонка обеспечивает упор в любом направлении, поэтому она часто используется на малых судах и плавсредствах для удержания на одном месте на больших глубинах. На малых глубинах возможно повреждение колонки.

Активный руль (рис.6.25) – это установленный в пере руля небольшой винт с приводом от электродвигателя или гидродвигателя, расположенного в капсуле, встроенной в руль. В некоторых случаях привод винта осуществляется от электродвигателя, расположенного в румпельной через вал, который проходит через полый баллер. При неработающем главном двигателе руль может поворачиваться до 90 о и создавать упор в нужном направлении при работе вспомогательного винта. Иногда этот вариант САУ используется, когда необходимо обеспечить малую скорость судна порядка 2 – 4 узлов

Рис. 6.24. Подруливающее устройство (а) и выдвижная поворотная движительно-рулевая колонка (б).

Поворотная насадка (рис. 6.25.б) представляет собой обтекаемое кольцеобразное тело, внутри которого вращается винт. При повороте насадки отклоняется отбрасываемая винтом струя воды, что вызывает поворот судна. Поворотная насадка значительно улучшает поворотливость на малых ходах и особенно на заднем ходу. Это объясняется тем, что вся струя воды отклоняется насадкой как на переднем, так и на заднем ходу, в отличие от руля. Кроме того, в ряде случаев насадка позволяет увеличить КПД винта.

К

рыльчатый движитель, как было показано в первой части, позволяет перемещаться судну в любом направлении.

Рис.6.25 Активный руль (а) и поворотная насадка (б): 1- перо руля; 2- вспомогательный винт; 3- электродвигатель;4- баллер; 5- электрокабель; 6- гребной винт; 7-насадка поворотная.

Все большую популярность приобретают азимутальные комплексы “AZIPOD”, которые устанавливаю на пассажирских судах и даже на суда арктического плавания. Типичная компоновка предусматривает: две кормового расположения поворотные винторулевые колонки, удерживающие гондолы, вмещающие в себя электродвигатели, приспособленные для вращения “тянущих” гребных винтов (ВФШ) (рис.6.26). Мощность каждой из колонок до 24000 квт.

Рис.6.26. Винторулевые колонки типа “AZIPOD”

Специальный гидравлический привод обеспечивает поворот каждой из гондол на 360° с угловой скоростью до 8° за секунду. Управление вращением винтов дает возможность выбрать любой режим работы в диапазоне от “полного вперед” до “полного назад”. Существенно, что режим “полный назад” может быть обеспечен судну без разворота колонок-гондол на 180°.

Ходовой режим” -используется при движении судна с относительно большой скоростью; гондолы при этом поворачиваются синхронно (углы совместной перекладки в пределах ±35°). Отмечается высокая гидродинамическая эффективность такого рулевого комплекса: управляемость судна остается приемлемой даже при остановке вращения винтов. Ходовой режим допускает экстренное торможение (за счет реверса – без поворота колонок);

Режим маневрирования” (мягкая форма) – используется при движении судна с относительно малой скоростью. В этом режиме одна из гондол сохраняют функцию “маршевого” устройства, вторую разворачивают на 90°, заставляя работать в качестве мощного кормового подруливающего устройства;

Режим маневрирования” (жесткая форма ) – винты, переложенные на правый и левый борт (+45° и –45°), заставляют вращаться “вперед” или “назад”. Если винт правой гондолы рабо­тает “вперед”, левой – “назад”, возникает поперечная управляющая сила в направлении правого борта; в симметричной ситуации – в направлении левого борта.

Рулевое устройство включает рулевую машину с румпельным, секторным, винтовым или гидравлическим приводом и собственно руль, основной и ручной (запасной) привод руля.

К основным требованиям, предъявляемым к рулевым устройствам, относят:

Максимальный угол перекладки руля для морских судов должен быть равен 35 градусам, а для судов речного флота может достигать 45 градусов;

Длительность перекладки руля с одного борта до другого борта должна быть не более 28 с;

Рулевые машины должны обеспечивать надёжную работу рулевого устройства в условиях качки судна с креном до 45 градусов, длительного крена — до 22,5 градусов и дифферента — до 10 градусов.

Дефектоскопия и ремонт . К характерным дефектам рулевого устройства относят:

Изнашивание шеек баллера руля, его изгиб и скручивание;

Изнашивание подшипников, штырей, чечевицы;

Повреждения соединения баллера с пером руля;

Коррозионные и эрозионные разрушения, трещины пера руля;

Нарушение центрирования руля.

Техническое состояние рулевого устройства определяют перед каждым очередным освидетельствованием судна (на плаву или в доке), до и после ремонта судна и при подозрении о появлении неисправности.

Дефектоскопию рулевого устройства проводят в два этапа.

На первом этапе, без каких-либо демонтажных работ, определяют общее техническое состояние рулевого устройства методом внешнего осмотра (со шлюпки и водолазный осмотр): соответствие положения пера руля и указателей (для определения величины скручивания баллера руля); зазоры в подшипниках и высоту от пятки ахтерштевня до пера руля (Н) (проседание руля):

На втором этапе рулевое устройство демонтируют и разбирают.

Демонтаж, разборка. Перед демонтажем руля в кормовой части устанавливают настил, подвешивают тали, готовят стропы, домкраты и необходимый инструмент. Разборка включает следующие операции:

Разбирают ручной привод руля, тормозное устройство и выводят из зацепления зубчатый сектор механического привода;

Снимают с головной части баллера руля зубчатый сектор, румпель;

Разбирают подшипники баллера руля, разъединяют и разобщают баллер с рудерписом;

Поднимают и выводят перо руля из кормового подзора и опускают на палубу дока, судна или на причал;

Опускают застропленный баллер через гельмпортовую трубу на палубу;

Выбивают чечевицу из гнезда пятки ахтерштевня через отверстие, имеющее в ней.

Втулку-подшипник, запрессованную в пятке ахтерштевня, в случае большого изнашивания, разрезают по длине и после смятия её краев выбивают из гнезда.

При разборке рулевого устройства наибольшую сложность представляет демонтаж румпеля с баллера руля. Как правило, румпель напрессован на головную часть баллера в горячем состоянии с натягом. Иногда головку румпеля для снятия разрезают газовым резаком во время разборки и проводят детальную дефектоскопию с последующим ремонтом деталей рулевого устройства.

Изнашивание шеек баллера устраняют проточкой (допустимое уменьшение диаметра шейки баллера — не более 10% номинального значения), либо электронаплавкой с последующей механической обработкой.

Изогнутый баллер правят в горячем состоянии с нагревом до температуры 850-900 С, а после правки его подвергают отжигу и нормализации. Точность правки считается удовлетворительной, если биение баллера в месте изгиба будет находиться в пределах 0,5-1 мм. После правки и нормализации плоскость фланца баллера и шейки протачивают на токарном станке.

При скручивании баллера до 15 градусов заваривают старый шпоночный паз, выполняют термообработку этого участка для снятия напряжений скручивания, размечают и фрезеруют новый шпоночный паз в плоскости пера руля.

При изнашивании втулки-подшипника и чечевицы их заменяют. Чечевицу изготавливают из стали с последующей закалкой.

Дефект фланцевого соединения баллера с пером руля устраняют их проворачиванием, шабрением шпоночного паза и установкой новой шпонки.

К наиболее частым повреждениям пера руля относят вмятины и разрывы листов обшивки пера руля. При общем изнашивании обшивки пера руля (более 25% толщины) листы заменяют.

Трещины и коррозионные разрушения сварных швов устраняют разделкой и сваркой. Перед заменой обшивки пера руля из её внутренней полости удаляют варпек (продукт перегонки каменного угля), который представляет собой твёрдую стекловидную массу чёрного цвета. После ремонта во внутреннюю полость пера руля опять заливают варпек в горячем состоянии (при нагревании варпек становится жидким).

До постановки простого руля на место проверяют центрирование отверстий петель ахтерштевня методом натянутой струны. За базу при центровке петель ахтерштевня принимают оси гельмпортового подшипника и подшипника пятки ахтерштевня.

Качество ремонта и монтажа рулевого устройства оценивают по результатам центрирования, величине установочных зазоров в подшипниках, соответствию положений пера руля и указателей.

Критерием общего технического состояния рулевого устройства является время перекладки руля во время ходовых испытаний судна, которое не должно превышать 28 с. Испытания рулевого устройства должны проходить при волнении моря не более 3 баллов, на полном переднем ходу судна при номинальной частоте вращения гребного вала.

Методика контроля рулевого устройства по техническому состоянию.

Методика предусматривает определение общего технического состояния рулевого устройства на основе его наружных осмотров без каких-либо демонтажных работ (осмотр со шлюпки, водолазный осмотр) и контроля следующих параметров:

Уровня виброускорения баллера руля; .

Времени перекладки руля с борта на борт;

Давления жидкости в гидравлических цилиндрах для электрогидравлических рулевых машин;

Силы рабочего тока исполнительного электродвигателя для электрических рулевых машин;

Наличия металлических и абразивных продуктов изнашивания в рабочей жидкости.

По уровню виброускорения баллера руля контролируют состояние зазоров в подшипниках руля.

Периодичность контроля параметров рулевого устройства приведены в таблице:

Достижение предельно-допустимого значения хотя бы одним из параметров говорит о необходимости проведения технического обслуживания (ремонта) рулевого устройства.

На основе контроля фактического технического состояния рулевого устройства могут выполняться следующие работы: замена или пополнение смазки в подшипниках, замена подшипников, плунжерных пар; кроме того, решается вопрос о необходимости постановки судна в док для демонтажа баллера из-за увеличенных зазоров в его подшипниках и повреждений пера руля.


Рулевое устройство предназначено для сохранения заданного курса или изменения его в нужном направлении. В состав рулевого устройства входят руль, рулевой привод, рулевая машина и системы дистанционного управления рулевой машиной с ходового мостика.

Руль. Основными органами управления большинства современных морских судов являются рули: обыкновенные, балансирные и полубалансирные. На некоторых судах улучшение ходкости и управляемости достигается установкой винтов с насадками, активных рулей, подруливающих устройств, крыльчатых движителей и др. Перекладка обычных и активных рулей, а также поворотных насадок с нужной скоростью на требуемый угол (от диаметральной плоскости - ДП) или удержание их в заданном положении производится рулевой машиной.

Рулевой привод . Рулевые приводы делятся на две группы: с гибкой связью (штуртросовые, цепные) и с жесткой связью (зубчатые, винтовые, гидравлические).

Выбор типа рулевого привода обусловливается расположением рулевой машины на судне. На большинстве судов, особенно маломерных, рулевая машина располагается в рулевой рубке или под ней на уровне верхней палубы. При таком расположении рулевой машины ее связь с баллером руля осуществляется обычно через гибкую цепную или тросовую передачу. Охватывающую тяговый барабан рулевой машины цепь направляют через ролики вдоль бортов и присоединяют концами к сектору или румпелю, закрепленному на баллере руля. На. прямолинейных участках цепь часто заменяют стальными штангами. В бортовую проводку включают талрепные стяжки для выборки слабины и амортизирующие буферные пружины, работающие на сжатие.

На рис. 4.1 схематически изображен штуртросовый привод с рычажным румпелем.

Рис. 4.1. Схема штуртросового привода с рычажным румпелем

Румпель 5 представляет собой рычаг, один конец которого жестко насажен на головку баллера руля О. Ко второму концу румпеля присоединен штуртрос 4, выполненный из цепи или стального троса. Штуртрос проходит по направляющим блокам 2 и навивается на барабан 1. При вращении барабана один конец штуртроса навивается и тянет за собой румпель, который поворачивает руль, а второй конец в это время сматывается с барабана. Для смягчения толчков от ударов волн о перо руля в системе штуртроса предусмотрены пружинные амортизаторы 3.

Недостатком описанного рулевого привода является появление неизбежной слабины в штуртросах. Это приводит к неточности перекладки руля, так как при перемене направления вращения штуртросового барабана сначала будет выбираться слабина, т. е. будет мертвый ход.

Провисание штуртроса устранено в штуртросовых приводах с секторным румпелем (рис. 4.2). Замена румпеля сектором позволяет уравнять длины сбегающего и набегающего тросов при перекладке пера руля.


Рис. 4.2. Схема секторного штуртросового привода


Рис. 4.3, Схема секторного зубчатого привода

На внешней стороне сектора 3 имеются две канавки, в которых размещены два противоположных конца штуртроса, закрепленные на ступице в точках 1 и 2. Трос к проушинам крепят через амортизирующие пружины, работающие на сжатие. Провисание штуртроса исключается, так как последний не сходит полностью с сектора при его повороте на углы перекладки руля и обеспечивает постоянство плеча, создающего момент на баллере.

Секторный зубчатый рулевой привод показан на рис. 4.3.

Он состоит из зубчатого сектора 2, свободно сидящего на голове баллера 1 руля, и румпеля 3, жестко укрепленного на баллере. Связь между сектором и румпелем осуществляется с помощью буферных пружин 4, которые предохраняют зубчатую передачу от поломки при ударе волн о перо руля. Зубчатый сектор находится в зацеплении с цилиндрической шестерней 5, вал 6 которой вращается рулевой машиной. Секторный зубчатый привод позволяет осуществлять точную перекладку руля.

Расположение рулевой машины на корме в специальном румпельном отделении обеспечивает надежную связь машины с румпелем, однако при этом требуется довольно длинная кинематическая связь рулевой машины с ходовым мостиком.

В современном судостроении более широко применяются рулевые приводы с жесткой связью. Рулевые машины расположены в непосредственной близости от рулевого привода.

На рис. 4.4 изображен винтовой привод, который может приводиться в действие электродвигателем или ручным штурвалом.


Рис. 4.4. Винтовой привод

Привод состоит из вала 12 с правой и левой резьбами, по которому при вращении движутся в разные стороны ползуны 11 и 4, скользящие вдоль неподвижных направляющих 5 и 10. Тягами 3 и 13 ползуны соединены с концами румпеля 1, насаженного на баллер руля 2. Винтовой вал приводится во вращение червяком 8, сидящим на валу двигателя и находящимся в зацеплении с червячным колесом 7 и парой цилиндрических шестерен 9 и 6. Если при вращении вала ползун 11 пойдет вправо, а ползун 4 - влево, то руль будет перекладываться на правый борт. При обратном движении вала ползуны 11 и 4 будут расходиться и руль будет перекладываться на левый борт.

Рулевой привод такой конструкции часто применяют в качестве запасного ручного привода. Его недостатками являются косвенное влияние конечной длины тяг на точность перемещения ползуна, низкий механический КПД и жесткость соединений.

Назначение : обеспечение управляемости судна, т.е. его способности двигаться по определённой траектории.

Конструкция рулевого устройства .

Общее расположение одного из вариантов рулевого устройства представлено на рисунке.

Рис. 3.1.1. Схема рулевого устройства:

1- перо руля; 2 – фланцевое соединение; 3- опоры баллера;

4 – голова баллера; 5 – рулевой привод; 6 – рулевая машина;

7- штурвал; 8 – рулевая передача; 9 – баллер; 10 – гельмпортовая труба;

11 – петля пера руля; 12 – штырь; 13 – петля рудерпоста;

14 – рудерпост; 15 – пятка ахтерштевня.

Основным элементом, создающим необходимое для маневра усилие, является перо руля 1. Для поворота пера руля на некоторый угол относительно ДП служит баллер 9 – вал переменного по длине диаметра. Участки с увеличенным по сравнению с расчётным диаметром предусматриваются в местах расположения опор баллера 3 для повышения ремонтопригодности. Для соединения баллера и пера руля чаще всего используют либо фланцевое соединение 2, изображённое на рисунке, либо конусное соединение. Баллер руля входит в кормовой подзор корпуса судна через гельмпортовую трубу 10, обеспечивающую непроницаемость корпуса, и имеет не менее двух опор 3 по высоте. Нижняя опора располагается над гельмпортовой трубой и имеет сальниковое уплотнение, препятствующее попаданию воды в корпус судна. Верхняя опора располагается непосредственно у головы баллера, обычно она воспринимает массу баллера и руля, поэтому на баллере делают кольцевой выступ.

Необходимое для поворота руля усилие на баллере создаётся посредством рулевого привода . В состав рулевого привода входят: рулевая машина 6; средства передачи крутящего момента от рулевой машины голове баллера 4 (рулевой привод - румпель или сектор 5); рулевая передача 8; а так же система дистанционного управления рулевым приводом – устройство для передачи команд по перекладке руля с ходового мостика (от штурвала 7) на органы управления рулевой машины.

Классификация рулей .

По распределению площади пера руля относительно оси вращения выделяют следующие типы рулей (рисунок 3.1.2):

Рис. 3.1.2. Классификация рулей по распределению площади:

1 – перо руля; 2 – противоледовый выступ; 3 – баллер;

4 – рудерпост; 5- кронштейн.

- небалансирный (обычный ) (рис. 3.1.2, а), ось вращения которого близка к передней (носовой) кромке пера руля (отстоит от неё на расстояние, равное радиусу опоры руля);

- балансирный (рис. 3.1.2, б), ось вращения которого смещена ближе к центру гидродинамического давления (отстоит от передней кромки на расстояние, большее радиуса опоры руля), при этом часть площади пера, находящаяся в нос от оси вращения, называется балансирной;


- полубалансирный (рис. 3.1.2, в), у которого распределение площади в нижней части пера руля соответствует балансирному, а в верхней – обычному рулю;

- подвесной (рис. 3.1.2, г), выделяется в классификации традиционно и является тем же балансирным рулём, отличающимся тем, что непосредственно на пере руля опоры не размещаются.

Балансирные и полубалансирные рули характеризуются коэффициентом балансирности k d:

где: F d - часть площади пера руля, находящаяся между передней кромкой и осью вращения (балансирная), м 2 ; F – полная площадь пера руля, м 2 .

Для балансирных рулей обычно k d = 0,21¸0,23, для полубалансирных k d = 0,15.

Достоинство балансирных и полубалансирных рулей: вследствие меньшего отстояния центра давления от оси вращения момент на баллере требуется меньше, чем у небалансирных.

Недостаток – крепление таких рулей к судну сложнее и менее надёжно.

По форме профиля выделяют следующие типы рулей:

- плоские однослойные, из-за своей низкой эффективности применяются редко – в основном на несамоходных судах;

- профилированные двухслойные (обтекаемые ), состоящие из наружной обшивки и внутреннего набора. Набор формируется из горизонтальных рёбёр и вертикальных диафрагм, сваренных друг с другом. Гоизонтальные рёбра крепятся к основе пера руля – рудерпису, представляющему собой массивный вертикальный стержень. Рудерпис изготавливается вместе с петлями для навешивания пера руля на рудерпост. Конкретную форму профиля руля как правило подбирают экспериментально, соответственно, именуют профили по названию лабораторий, в которых они разработаны.


Рулевые приводы, их виды, конструкция и требования к ним .

Рулевой привод предназначен для непосредственного выполнения перекладки руля и контроля его положения.

В составе рулевого привода можно выделить (достаточно условно) следующие элементы:

Устройство для передачи крутящего момента от рулевой машины к баллеру (иногда называемое собственно рулевым приводом);

Рулевая машина – силовая установка, создающая необходимое усилие для поворота баллера;

Рулевая передача, осуществляющая связь между постом управления и рулевой машиной;

Система контроля.

Выделяют следующие основные виды рулевых приводов:

Механические (ручные), к которым относятся румпельно-штуртросовые, секторно-штуртросовые, секторные с валиковой проводкой, винтовые румпельные;

Имеющие источник энергии (гидравлические, электрические, электрогидравлические).

Механические приводы применяются только на малых судах и в качестве вспомогательных рулевых приводов.

Требования к рулевым приводам содержатся в Правилах классификации и постройки морских судов РМРС (том 1, раздел III «Устройства, оборудование и снабжение», п. 2 «Рулевое устройство» и том 2, раздел IX «Механизмы», п.6.2 «Рулевые приводы»). Среди основных требований можно выделить следующие:

1. Все суда должны быть снабжены главным и вспомогательным рулевыми приводами, действующими независимо один от другого.

2. Главный привод и баллер должны обеспечивать перекладку руля с 35 0 одного борта на 30 0 другого борта не более чем за 28 с при максимальной эксплуатационной осадке и скорости переднего хода.

3. Вспомогательный привод должен обеспечивать перекладку руля с 15 0 одного борта на 15 0 другого борта не более чем за 60 с при максимальной эксплуатационной осадке и скорости хода, равной половине максимальной эксплуатационной скорости переднего хода или 7 уз (в зависимости от того что больше).

4. На нефтеналивных судах, газовозах и химовозах валовой вместимостью 10000 и более, на прочих судах вместимостью 70000 и более, а также на всех атомных судах главный рулевой привод должен включать в себя два (или более) одинаковых силовых агрегата. Соответственно, для них должны быть предусмотрены две независимых системы управления с ходового мостика.

5. Управление главным приводом должно быть предусмотрено с ходового мостика и из румпельного отделения.

6. Управление вспомогательным приводом должно быть предусмотрено из румпельного отделения, а в том случае если он действует от источника энергии – должно быть предусмотрено также независимое управление с ходового мостика.

7. Конструкция рулевых приводов должна обеспечивать переход при аварии с главного привода на вспомогательный за время не более 2 мин.

8. Должен быть обеспечен контроль положения руля.

Выделяют следующие типы рулевых приводов:

Продольно-румпельный, в котором одноплечий румпель, насаженный на головку баллера, расположен в продольном направлении (рис. 3.1.3, а);

Поперечно-румпельный, в котором румпель представляет собой двуплечий рычаг (рис. 3.1.3, б) – название при этом условно, т.к. румпель может находиться как вдоль, так и поперёк ДП судна;

Секторный, в котором насаженный на головку баллера сектор поворачивается ведущей шестернёй рулевой машины (рис. 3.1.3, в).

а) б) в)

Рис. 3.1.3 Типы рулевых приводов:

а – продольно-румпельный; б – поперечно-румпельный; в секторный.

В настоящее время на крупных судах получил распространение поперечно-румпельный привод с совмещённой с ним четырёхплунжерной гидравлической рулевой машиной.

Выделяют следующие типы рулевых передач:

Валиковая, при которой связь между постом управления и исполнительным механизмом (например, золотником гидравлической рулевой машины) осуществляется посредством системы стальных валиков (отрезков труб), соединённых между собой с помощью шарниров или конических зубчатых передач;

Гидравлическая, в которой используется объёмный гидропривод;

Электрическая, состоящая из системы самосинхронизирующихся двигателей – при вращении штурвала в роторе передающего двигателя (генератора) возбуждается ток, вызывающей вращение ротора приёмника, соединённого с исполнительным механизмом рулевой машины.

Из различных типов рулевых машин наибольшее распространение получили электрические и электрогидравлические рулевые машины.

Наиболее распространёнными на современных судах являются электрогидравлические четырёхплунжерные рулевые машины с поперечно-румпельным рулевым приводом. Конструкция такой ЭГРМ с механической обратной связью приведена на рисунке 3.1.4.


Рис. 3.1.4 Электрогидравлическая рулевая машина (ЭГРМ)

Два идентичных исполнительных механизма ИМ (приводимых в действие электродвигателями 11 от двух электрических линий управления) работают на один выходной управляющий элемент – шток 12. Перемещение штока h (являющееся заданием на перекладку руля) с помощью рычагов BD и FG, соединённых в точке С, и штанги 17 передаётся насосам регулируемой подачи 8, приводимых в действие электродвигателями 7. Насосы согласно полученным перемещениям е 1 и е 2 регулируемых органов создают подачу Q 1 и Q 2 соответственно.

При работе насосов в цилиндрах рулевой машины 6 создаётся перепад давлений р 1 – р 2 , в результате чего баллер 3 посредством плунжеров 5 и румпеля 2 поворачивается, и руль 1 перекладывается на некоторый угол a.

При этом обратная механическая связь 4 возвращает посредством рычагов DB и FG штангу 17 в исходное среднее положение, в котором суммарное перемещение регулируемых органов насосов е = 0. Давления в полостях цилиндров выравниваются, перемещение руля останавливается и поддерживается заданный угол a. Таким образом, данная ЭГРМ с механической обратной связью представляет собой автономную следящую систему, включённую последовательно замкнутому контуру электрической системы управления.

Указатели положения руля на мостике получают электрический сигнал от датчика 14, приводимого в действие рычагом 13, соединённым со штоком 12.

Для согласования нулевых положений штанги и управляемых органов насосов служит регулировочное устройство, состоящее из винтовых соединений 15 и 16 на концах штанги NL. Серьги AB и HG компенсируют взаимное перемещение рычагов.

В случае отказа дистанционной системы управления рулевая машина приводится в действие штурвалом 10, соединённым с редуктором 9.



Поделиться