Гипоталамус как высший подкорковый центр регуляции вегетативных функций. Подкорковые центры Понятие о нервном центре

Регуляция вегетативных функций может быть связана с их гормональной регуляцией

H а п p и м е p в о з б у ж д е н и е СИМПАТИЧЕСКОГО отдела увеличивает секрецию адреналина и норадреналина в мозговом слое надпочечников.Следствием является повышение сахара в крови ПАРАСИМПАТИЧЕСКОГО - стимулирует выход инсулина в островках Лангерганса поджелудочной железы, следствием чего является отложение сахара в печени в форме гликогена

Таким образом, центральная регуляция вегетативных функций о с у щ е с т в л я е т с я сложным многоэтажным комплексом центров и многокомпонентными нервными образованиями с участием гормональных механизмов.

Высшими центрами вегетативной регуляции являются

ПЕРЕДНИЙ ГИПОТАЛАМУС  трофотропные центры (парасимпатические)

ЗАДНИЙ ГИПОТАЛАМУС  эрготрофные центры (симпатические)

СРЕДНИЙ ГИПОТАЛАМУС  центры обмена веществ и терморегуляции

ЛИМБИЧЕСКАЯ СИСТЕМА  центры интеграции вегетативных и соматических функций, эмоциональных реакций

КОРА ГОЛОВНОГО МОЗГА  центры условных рефлексов, организации поведения

Гипоталамус находится на дне и по бокам III желудочка мозга. Структуры: серый бугор, воронка, сосцевидные тела. Зоны: гипофизотропная (преоптические и передние ядра), медиальная (средние ядра), латеральная (наружные, задние ядра).Физиологическая роль – высший подкорковый интегративный центр вегетативной нервной системы, который оказывает действие на:

1) терморегуляцию. Передние ядра – это центр теплоотдачи, где происходит регуляция процесса потоотделения, частоты дыхания и тонуса сосудов в ответ на повышение температуры окружающей среды. Задние ядра – центр теплопродукции и обеспечения сохранности тепла при понижении температуры;

2) гипофиз. Либерины способствуют секреции гормонов передней доли гипофиза, статины тормозят ее;

3) жировой обмен. Раздражение латеральных (центра питания) ядер и вентромедиальных (центра насыщения) ядер ведет к ожирению, торможение – к кахексии;

4) углеводный обмен. Раздражение передних ядер ведет к гипогликемии, задних – к гипергликемии;

5) сердечно-сосудистую систему. Раздражение передних ядер оказывает тормозное влияние, задних – активирующее;

6) моторную и секреторную функции ЖКТ. Раздражение передних ядер повышает моторику и секреторную функцию ЖКТ, задних – тормозит половую функцию. Разрушение ядер ведет к нарушению овуляции, сперматогенеза, снижению половой функции;

7) поведенческие реакции. Раздражение стартовой эмоциональной зоны (передних ядер) вызывает чувство радости, удовлетворения, эротические чувства, стопорной зоны (задних ядер) вызывает страх, чувство гнева, ярости.



37. Условный рефлекс как форма приспособления человека к изменяющимся условиям существования. Отличия условных и безусловных рефлексов. Закономерности образования и проявления условных рефлексов.

Условные рефлексы вырабатываются в течение жизни, так как не имеют готовых рефлекторных дуг. Они носят индивидуальный характер и в зависимости от условий существования могут постоянно меняться. Их особенности:

морфологическим субстратом является кора больших полушарий, при ее удалении старые рефлексы исчезают, а новые не вырабатываются;

на их базе формируется взаимодействие организма с внешней средой, т. е. они уточняют, усложняют и делают тонкими данные отношения.

Итак, условные рефлексы – это приобретенный в течение жизни набор поведенческих реакций. Их классификация:

по природе условного раздражителя выделяют натуральные и искусственные рефлексы. Натуральные рефлексы вырабатываются на естественные качества раздражителя (например, вид пищи), а искусственные – на любые;

по рецепторному признаку – экстероцептивные, интероцептивные и проприоцептивные;

в зависимости от структуры условного раздражителя – простые и сложные;

по эфферентному пути – соматические (двигательные) и вегетативные (симпатические и парасимпатические);

по биологическому значению – витальные (пищевые, оборонительные, локомоторные), зоосоциальные, ориентировочные;

по характеру подкрепления – низшего и высшего порядка;

в зависимости от сочетания условного и безусловного раздражителя – наличные и следовые.

Таким образом, условные рефлексы вырабатываются в течение жизни и имеют большое значение для человека.

Для образования условных рефлексов необходимы определенные условия.



1. Наличие двух раздражителей – индифферентного и безусловного. Это связано с тем, что адекватный раздражитель вызовет безусловный рефлекс, а уже на его базе будет вырабатываться условный. Индифферентный раздражитель гасит ориентировочный рефлекс.

2. Определенное сочетание во времени двух раздражителей. Сначала должен включиться индифферентный, а затем безусловный, причем промежуточное время должно быть постоянным.

3. Определенное сочетание по силе двух раздражителей. Индифферентный – пороговой, а безусловный – сверхпороговой.

4. Полноценность ЦНС.

5. Отсутствие посторонних раздражителей.

6. Многократное повторение действия раздражителей для возникновения доминантного очага возбуждения.

В экспериментальных условиях доказано, что образование условного рефлекса происходит в три этапа:

1) знакомство;

2) выработка условного рефлекса, после погашения действия ориентировочного;

3) закрепление выработанного условного рефлекса.

Закрепление происходит в две стадии. Вначале условный рефлекс возникает и на действие похожих раздражителей из-за иррадиации возбуждения. Через небольшой промежуток времени уже только на условный сигнал, так как происходит концентрация процессов возбуждения в области проекции в коре больших полушарий.

Центры вегетативной нервной системы разделяют на сегментарные и надсегментарные (высшие вегетативные центры).
Сегментарные центры располагаются в нескольких отделах центральной нервной системы, где выделяют 4 очага:
1. Мезенцефалический отдел в среднем мозге - добавочное ядро (Якубовича), nucleus accessorius, и непарное срединное ядро глазодвигательного нерва (III пара).
2. Бульбарный отдел в продолговатом мозге и мосту - верхнее слюноотделительное ядро, nucleus salivatorius superior, промежуточно-лицевого нерва (VII пара), нижнее слюноотделительное ядро, nucleus salivatorius inferior, языкоглоточного нерва (IX пара) и дорсальное ядроблуждающего нерва (X пара), nucleus dorsalis n. vagi.
Оба этих отдела объединяются под названием краниального и относятся к парасимпатическим центрам.
3. Тораколюмбальный отдел - промежуточно-боковые ядра, nuclei intermediolaterales, 16-ти сегментов спинного мозга (С8, Th1-12, L1-3). Они являются симпатическими центрами.
4. Сакральный отдел - промежуточно-боковые ядра, nuclei intermediolaterales, 3-х крестцовых сегментов спинного мозга (S2-4) и относятся к парасимпатическим центрам.
Высшие вегетативные центры (надсегментарные) объединяют и регулируют деятельность симпатического и парасимпатического отделов, к ним относятся:
1. Ретикулярная формация, ядра которой формируют центры жизненно-важных функций (дыхательный и сосудодвигательный центры, центры сердечной деятельности, регуляции обмена веществ и т.д.). Проекция дыхательного центра соответствует средней трети продолговатого мозга, сосудодвигательного центра - нижней части ромбовидной ямки. Нарушение функции ретикулярной формации проявляется вегетативно-сосудистыми расстройствами (кардио-васкулярные, вазомоторные). Кроме того страдают интегративные функции, которые необходимы для формирования целесообразного адаптивного поведения.
2. Мозжечок, принимая участие в регуляции двигательных актов, одновременно обеспечивает эти анимальные функции адаптационно-трофическими влияниями, которые через соответствующие центры приводят к расширению сосудов интенсивно работающих мышц, повышению уровня трофических процессов в последних. Установлено участие мозжечка в регуляции таких вегетативных функций, как зрачковый рефлекс, трофика кожи (скорость заживления ран), сокращение мышц, поднимающих волосы.
3. Гипоталамус - главный подкорковый центр интеграции вегетативных функций, имеет существенное значение в поддержании оптимального уровня обмена веществ (белкового, углеводного, жирового, минерального, водного) и терморегуляции. За счет связей с таламусом он получает разностороннюю информацию о состоянии органов и систем организма, а вместе с гипофизом образует функциональный комплекс - гипоталамо-гипофизарную систему. Гипоталамус в ней выполняет роль своеобразного реле, включающего гипофизарную гормональную цепь в регуляцию различных висцеральных и соматических функций.
4. Особое место занимает лимбическая система обеспечивающая интеграцию вегетативных, соматических и эмоциональных реакций.
5. Полосатое тело имеет ближайшее отношение к безусловнорефлекторной регуляции вегетативных функций. Повреждение или раздражение ядер полосатого тела вызывает изменение кровяного давления, усиление слюно- и слезоотделения, усиление потоотделения.
Высшим центром регуляции вегетативных и соматических функций, а также их координации является кора полушарий большого мозга. Непрерывный поток импульсов от органов чувств, сомы и внутренних органов по афферентным путям поступает в кору головного мозга и через эфферентную часть вегетативной нервной системы, главным образом через гипоталамус, кора оказывает соответствующее влияние на функцию внутренних органов, обеспечивая адаптацию организма к меняющимся условиям окружающей и внутренней среды. Примером кортиковисцеральной связи может служить изменение вегетативных реакций под влиянием словесных сигналов (через вторую сигнальную систему).
Таким образом, вегетативная нервная система, так же как и вся нервная система, построена по принципу иерархии, подчиненности. Схему организации вегетативной иннервации иллюстрирует рис.1.

Рис. 1 Принцип организации вегетативной нервной системы.

Главными образованиями промежуточного мозга являются таламус (зрительный бугор) и гипоталамус (подбугорная область).

Таламус – чувствительное ядро подкорки. Его называют “коллектором чувствительности”, так как к нему сходятся афферентные (чувствительные) пути от всех , исключая обонятельные. Здесь находится третий афферентных путей, отростки которого заканчиваются в чувствительных зонах коры.

Главной функцией таламуса является интеграция (объединение) всех видов чувствительности. Для анализа внешней среды недостаточно сигналов от отдельных рецепторов. Здесь происходит сопоставление информации, получаемой по различным каналам связи, и оценка ее биологического значения. В зрительном бугре насчитывается 40 пар ядер, которые подразделяются на специфические (на нейронах этих ядер заканчиваются восходящие афферентные пути), неспецифические (ядра ) и ассоциативные. Через ассоциативные ядра таламус связан со всеми двигательными ядрами подкорки – полосатым телом, бледным шаром, гипоталамусом и с ядрами среднего и .

Изучение функций зрительного бугра проводится путем перерезок, раздражения и разрушения.

Кошка, у которой разрез сделан выше промежуточного мозга, резко отличается от кошки, у которой высшим отделом центральной нервной системы является . Она не только поднимается и ходит, т. е. выполняет сложно координированные движения, но еще проявляет все признаки эмоциональных . Легкое прикосновение вызывает злобную реакцию. Кошка бьет хвостом, скалит зубы, рычит, кусается, выпускает когти. У человека зрительный бугор играет существенную роль в эмоциональном , характеризующемся своеобразной мимикой, жестами и сдвигами функций внутренних органов. При эмоциональных реакциях повышается давление, учащаются пульс, дыхание, расширяются зрачки. Мимическая реакция человека является врожденной. Если пощекотать нос плода 5 – 6 мес., то можно видеть типичную гримасу неудовольствия (П. К. Анохин). При раздражении зрительного бугра у животных возникают двигательные и болевые реакции – визг, ворчание. Эффект можно объяснить тем, что импульсы от зрительных бугров легко переходят на связанные с ними двигательные ядра подкорки.

В клинике симптомами поражения зрительных бугров являются сильная головная , нарушения чувствительности как в сторону повышения, так и понижения, нарушения движений, их точности, соразмерности, возникновение насильственных непроизвольных движений.

Гипоталамус является высшим подкорковым центром вегетативной нервной системы. В этой области расположены центры, регулирующие все вегетативные функции, обеспечивающие постоянство внутренней среды организма, а также регулирующие жировой, белковый, углеводный и водно-солевой обмен.

В деятельности вегетативной нервной системы гипоталамус играет такую же важную роль, какую играют красные ядра в регуляции скелетно-моторных функций соматической нервной системы.

Самые ранние исследования функций гипоталамуса принадлежат – Клоду Бернару. Он обнаружил, что укол в промежуточный мозг кролика вызывает повышение температуры тела почти на 3°С. Этот классический , открывший локализацию центра терморегуляции в гипоталамусе, получил название теплового укола. После разрушения гипоталамуса животное становится пойкилотермным, т. е. теряет способность удерживать постоянство температуры тела. В холодной комнате температура тела понижается, а в жаркой повышается.

Позднее было установлено, что почти все органы, иннервируемые вегетативной нервной системой, могут быть активированы раздражением подбугорной области. Иными словами, все эффекты, которые можно получить при раздражении симпатических и парасимпатических нервов, получаются при раздражении гипоталамуса.

В настоящее время для раздражения различных структур мозга широко применяется метод вживления электродов. С помощью особой, так называемой стереотаксической техники, через трепанационное отверстие в черепе вводят электроды в любой заданный участок мозга. Электроды изолированы на всем протяжении, свободен только их кончик. Включая электроды в цепь, можно узко локально раздражать те или иные зоны.

При раздражении передних отделов гипоталамуса возникают парасимпатические эффекты – усиление движений кишечника, отделение пищеварительных соков, замедление сокращений сердца и др. при раздражении задних отделов наблюдаются симпатические эффекты – учащение сердцебиения, сужение сосудов, повышение температуры тела и др. Следовательно, в передних отделах подбугорной области располагаются парасимпатические центры, а в задних – симпатические.

Так как раздражение при помощи вживленных электродов производится на целом животном, без , то представляется возможность судить о животного. В опытах Андерсена на козе с вживленными электродами был найден центр, раздражение которого вызывает неутолимую жажду, – центр жажды. При его раздражении коза могла выпивать до10 лводы. Раздражением других участков можно было заставить сытое животное есть (центр голода).

Широкую известность получили опыты испанского ученого Дельгадо на быке с электродом, вживленным в центр страха: Когда на арене разъяренный бык бросался на тореадора, включали раздражение, и бык отступал с ясно выраженными признаками страха.

Американский исследователь Д. Олдз предложил модифицировать метод – предоставить возможность самому животному замыкать, что неприятных раздражений животное будет избегать и, наоборот, стремиться повторять приятные.

Опыты показали, что имеются структуры, раздражение которых вызывает безудержное стремление к повторению. Крысы доводили себя до истощения, нажимая на рычаг до 14000 раз! Кроме того, обнаружены структуры, раздражение которых, по-видимому, вызывает крайне неприятное ощущение, так как крыса второй раз избегает нажать на рычаг и убегает от него. Первый центр, очевидно, является центром удовольствия, второй – центром неудовольствия.

Чрезвычайно важным для понимания функций гипоталамуса явилось открытие в этом отделе мозга рецепторов, улавливающих изменения температуры крови (терморецепторы), осмотического давления (осморецепторы) и состава крови (глюкорецепторы).

С рецепторов, обращенных в кровь, возникают , направленные на поддержание постоянства внутренней среды организма – гомеостаза. “Голодная кровь”, раздражая глюкорецепторы, возбуждает пищевой центр: возникают пищевые реакции, направленные на поиск и поедание пищи.

Одним из частых проявлений заболевания гипоталамуса в клинике является нарушение водно-солевого обмена, проявляющееся в выделении большого количества мочи с низкой плотностью. Заболевание носит название несахарного мочеизнурения.

Подбугорная область тесно связана с деятельностью гипофиза. В крупных нейронах надзрительного и околожелудочкового ядер гипоталамуса образуются гормоны – вазопрессин и окситоцин. По аксонам гормоны стекают к гипофизу, где накапливаются, а затем поступают в кровь.

Иное взаимоотношение между гипоталамусом и передней долей гипофиза. Сосуды, окружающие ядра гипоталамуса, объединяются в систему вен, которые спускаются к передней доле гипофиза и здесь распадаются на капилляры. С кровью к гипофизу поступают вещества – релизинг-факторы, или освобождающие факторы, стимулирующие образование гормонов в передней его доле.

Гипоталамус является высшим центром регуляции вегетативных функций, которые отвечают за состояние внутренней среды организма. Он является важным интегративным центром вегетативных, соматических и эндокринных функций.
Гипоталамус - центральный отдел промежуточного мозга. Он лежит вентральнише от таламуса. Нижней границей таламуса служит средний мозг, а верхней - конечная пластинка, передняя спайка и зрительный перекрест. В нем насчитывается около 48 пар ядер. В гипоталамусе выделяют следующие участки: 1) преоптическое, 2) переднюю группу, 3) среднюю группу, 4) внешнюю группу, 5) заднюю группу. Среди ядер выделяют специфические и неспецифические. Специфические ядра соединены с гипофизом и способны к нейрокринии, т.е. синтеза и выделения ряда гормонов.
Ядра гипоталамуса не является ни симпатичными, ни парасимпатическими, хотя принято считать, что в задних ядрах гипоталамуса находятся группы нейронов, соединенные преимущественно с симпатической системой, а в передних его ядрах - нейроны, которые регулируют функции парасимпатической системы. Гипоталамус регулирует функции обеих частей вегетативной нервной системы в зависимости от характера и уровня афферентации, поступающей в его ядер. Он образует двухсторонние (афферентные и эфферентные) связи с различными отделами головного мозга - верхними отделами ствола мозга, центральным серым веществом среднего мозга, со структурами лимбической системы таламуса, ретикулярной формацией, подкорковыми ядрами и корой. Афферентные сигналы поступают в гипоталамус от поверхности тела и внутренних органов, а также от некоторых отделов головного мозга. В медиальной области гипоталамуса есть особые нейроны (осмо-, глюко-, терморецепторы), которые контролируют важные параметры крови (водно-электролитный состав плазмы, температуру крови и др.) и спинномозговой жидкости, то есть «следят» за состоянием внутренней среды организма. Через нервные механизмы медиальная участок гипоталамуса управляет деятельностью нейрогипофиза, а через гуморальные механизмы - аденогипофиза.
Гипоталамус регулирует водно-электролитный обмен, температуру тела, функции эндокринных желез, половое созревание, деятельность сердечно-сосудистой, дыхательной систем, органов пищеварения, почек. Он участвует в формировании пищевого, полового защиты, в регуляции цикла сон - бодрость подобное. Поэтому любое действие на гипоталамус сопровождается комплексом реакций многих систем организма, что выражается в висцеральных, соматических и психических эффектах.
В случае повреждения гипоталамуса (опухоли, травматические или воспалительные поражения) наблюдаются расстройства энергетического и водного балансов, терморегуляции, функций сердечно-сосудистой системы, органов пищеварения, эндокринные нарушения, эмоциональные реакции.
На вегетативные функции организма существенное влияние оказывают лимбических структурах мозга.

Строение гипоталамуса . Гипоталамус относится к филогенетически древним образованиям мозга и хорошо развит уже у низших позвоночных. Он образует дно третьего желудочка и лежит между перекрестом зрительных нервов и задним краем маммилярных тел. В состав гипоталамуса входит серый бугор, срединное возвышение, воронка и задняя или нервная доля гипофиза. Спереди он граничит с преоптической областью, которую отдельные авторы также включают в систему подбугорья.

10.Функции мозжечка. Его роль в регуляции двигательных функций.

Мозжечок состоит из 2-х полушарий и червя между ними. Серое вещество образует кору и ядра. Белое образовано отростками нейронов. Мозжечок получает афферентные нервные импульсы от тактильных рецепторов, рецепторов вестибулярного аппарата, проприорецепторов мышц и сухожилий, а также двигательных зон коры. Эфферентные импульсы от мозжечка идут к красному ядру среднего, ядру Дейтерса продолговатого мозга, к таламусу, а затем моторным зонам КБП и подкорковым ядрам.

Общей функцией мозжечка является регуляция позы и движений. Эту функцию он осуществляет путем координации активности других двигательных центров: вестибулярных ядер, красного ядра, пирамидных нейронов коры. Поэтому он выполняет следующие двигательные функции: 1. Регуляцию мышечного тонуса и позы.

2. Коррекцию медленных целенаправленных движений в ходе их выполнения, а также координацию этих движений с рефлексами положения тела.

3. Контроль за правильным выполнением быстрых движений, осуществляемых корой.

Предполагают, что мозжечок выполняет роль своеобразного компьютера, который позволяет осуществлять точный расчет временных параметров мышечного сокращения. Благодаря мозжечку соматосенсорная, вестибулярная и зрительная обратная афферентация обеспечивает коррекцию направления движения руки, соразмерность и плавность движений при приближении к цели, своевременное окончание движения. Но только обратная связь не позволяла бы осуществить быстрое и точное движение. Еще до начала движения должны быть определены сила и направление движения с учетом полученного раннее опыта, а также целого комплекса механических параметров конечностей, в частности инерции, эластичности, резистентности отдельных сегментов конечностей и суставов, а также взаимовлияния одних сегментов на другие. В отсутствие этого предвосхищающего прямого контроля нарушается координация сегментов конечностей, развиваются гиперметрия и декомпозиция движений.

Таким образом, мозжечок участвует в регуляции движений на уровне его планирования. Функции базальных ганглиев и мозжечка во многом дополняют друг друга. Если базальные ганглии действуют как «детектор контекстов», предоставляя моторным зонам коры информацию, необходимую для планирования, выбора и подготовки движений, то мозжечок главным образом участвует в программировании и контроле выполнения движений. Таким образом, базальные ганглии активируют необходимые в данный момент моторные программы, оптимизируют последовательность включения отдельных компонентов движения, способствуют выбору его направления, тогда как мозжечок «калибрует» программы, участвуя в определении набора активируемых мышц, требуемых для выполнения задачи, а также времени их включения, с тем чтобы движение было координированным и точным.

Мозжечок определяет временные параметры моторных программ, которые уточняются при обучении. Мозжечок и базальные ганглии участвуют в процессе формирования двигательного навыка и автоматизации движений. Благодаря мозжечку происходит адаптация двигательной программы при повторении движения, вследствие которой попытки совершить его становятся все более успешными.

При поражениях мозжечка даже в случае движения в одном суставе возникает задержка торможения сегмента из-за замедленной активации антагонистов, что приводит к гиперметрии. Предполагают, что замедленность активации антагонистов возникает вследствие того, что вместо предвосхищающего прямого контроля задачу коррекции движения берет на себя транскортикальная сенсомоторная петля, функционирующая как система обратной связи. Необходимость дополнительных коррекций может приводить к развитию акционного тремора. Снижение мышечного тонуса при поражениях мозжечка связано с утратой активирующего влияния на гамма-мотонейроны, что снижает чувствительность мышечных веретен и ослабляет тонические рефлексы растяжения.

11. отделы вегетативной нервной системы: морфологические и физиологические различия.

Физиологические и морфологические различия мужчины и женщины связаны с их жизненными функциями. Мужчины, выступая преобразователями внешнего мира, могут, как созидать, так и разрушать его. Они новаторы в освоении времени и пространства, новых сфер деятельности. Выполнение этой жизненной функции достигается за счет следующих физических качеств: высокий рост, широкие плечи, выявленный рельеф мышц, физическая сила, больший вес, грубая кожа, выраженный волосяной покров на теле. Все эти качества необходимы для выполнения физических нагрузок, борьбы и активного преобразования внешнего мира.

Женщины, чья жизненная функция - сохранять человеческую жизнь и род, стремятся стабилизировать все, сохраняя мир, покой, благополучие, достигнутые успехи в семье и обществе. Это обеспечивается за счет специфических физических качеств. Широкий таз, грудной тип дыхания, развитые грудные железы - все это напрямую влияет на деторождение и кормление младенца, а выраженная жировая ткань (на боках, бедрах, ягодицах) является своеобразным «хранилищем оперативной энергии». Эстетичность женского тела, его округлость, красивые волосы, гладкая нежная кожа делают женщину привлекательной, что немаловажно в интимных отношениях и в конечном счете - для продолжения человеческого рода.

Мальчики рождаются в среднем более крупными, чем девочки, но последние немного обгоняют мальчиков в созревании скелета, имеют преимущества в темпах освоения речи; у девочек раньше начинается период полового созревания, они, как правило, лучше учатся в школе, а среди неуспевающих учеников преобладают мальчики. Среди мужчин разброс интеллектуальных показателей разительнее: от сверходаренности и сверхинтеллектуальности до умственной отсталости и неполноценности. Интеллектуальный уровень девочек и женщин близок к среднему, и сравнительно редко встречаются сверхвысокие или сверхнизкие его показатели. К 12-15 годам девочки превосходят мальчиков в вербальных навыках, но те лучше их справляются с оперированием пространственными представлениями и с решением математических задач. К 18 годам средний юноша физически сильнее средней девушки примерно в 2 раза.

Взрослый мужчина более мускулист и имеет более прочную костную систему, а на теле средней женщины образуется более толстая жировая прослойка. Женский организм имеет ряд врожденных особенностей: большую эластичность кровеносных сосудов и способность более эффективно вырабатывать жировые вещества. В среднем возрасте мужчины гораздо чаще, чем женщины, рискуют стать жертвой такого заболевания, как артериосклероз, более подвержены сердечным приступам

12.Кора больших полушарий головного мозга как высший отдел центральной нервной системы. Корковая локализация.

Большие полушария головного мозга представляют собой самый массивный отдел головного мозга. Они покрывают мозжечок и ствол мозга. Большие полушария головного мозга разделены по средней линии глубокой вертикальной щелью на правое и левое полушария. В глубине средней части оба полушария соединены между собой большой спайкой - мозолистым телом. В каждом полушарии различают доли: лобную, теменную, височную, затылочную и островок.Доли мозговых полушарий отделяются одна от другой глубокими бороздами. Наиболее важны три глубокие борозды: центральная (роландова), отделяющая лобную долю от теменной; боковая (сильвиева), отделяющая височную долю от теменной, и теменно-затылочная, отделяющая теменную долю от затылочной на внутренней поверхности полушария.
Каждое полушарие имеет верхнебоковую (выпуклую), нижнюю и внутреннюю поверхность.
Каждая доля полушария имеет мозговые извилины, отделенные друг от друга бороздами. Сверху полушарие покрыто корой - тонким слоем серого вещества, которое состоит из нервных клеток.

Корковая локализация

1. В коре постцентральной извилины и верх­ней теменной дольки залегают нервные клетки, образующие ядро коркового анализатора общей чувствительно­сти (температурной, болевой, осязательной) и ироприоцептивной.

2. Ядро двигательного анализатора находится в двигательной области коры, к которой относятся предцентральная извилина и парацентральная доль­ка на медиальной поверхности полушария.

3. Ядро анализатора, обеспечивающее функцию сочетанного поворота головы и глаз в противоположную сторону, находится в задних отделах средней лобной извилины, в так называемой премоторной зоне.

4. В области нижней теменной дольки, в надкраевой извилине находит­ся ядро двигательного анализатора.

6. В глубине латеральной борозды, находится ядро слухового анализатора.

7. Ядро зрительного анализатора располагается на медиаль­ной поверхности затылочной доли полушария большого мозга, по обеим сторонам от шпорной борозды.

8. На нижней поверхности височной доли полушария боль­шого мозга находится ядро обонятельного анализа­тора.

13.классификация рефлексов. различие условных и безусловных рефлексов. учение об условных рефлексах. правила и механизмы выработки условных рефлексов.

Является конечным отделом мозгового ствола и сверху полностью покрыт большими полушариями. Основными образованиями промежуточного мозга являются (зрительный бугор) и (подбугровая область). Последний соединен с гипофизом — главной железой внутренней секреции. Вместе они составляют единую гипоталамо-гипофизарную систему.

Промежуточный мозг интегрирует сенсорные, двигательные и вегетативные реакции организма. Он подразделяется на таламус, эпиталамус и гипоталамус.

Таламус

Таламус представляет своего рода ворота, через которые в кору поступает и достигает сознания основная информация об окружающем мире и о состоянии тела. Таламус состоит примерно из 40 пар ядер, которые функционально делятся на специфические, неспецифические и ассоциативные.

Специфические ядра служат областью переключения различных афферентных сигналов, направляющихся в соответствующие центры коры головного мозга. К специфическим ядрам таламуса идут сигналы от рецепторов кожи, глаз, уха, мышечной системы и внутренних органов. Эти структуры осуществляют регуляцию тактильной, температурной, болевой и вкусовой чувствительности, а также зрительных и слуховых ощущений. Так, латеральные коленчатые тела являются подкорковыми центрами зрения, а медиальные — подкорковыми центрами слуха. Нарушение функций специфических ядер приводит к выпадению конкретных видов чувствительности.

Основной функциональной единицей специфических ядер таламуса являются «релейные» нейроны, у которых мало дендритов и длинный аксон; их функция заключается в переключении информации, идущей в кору больших полушарий от кожных, мышечных и других рецепторов .

Неспецифические ядра являются продолжением ретикулярной формации среднего мозга, представляя собой ретикулярную формацию таламуса. Неспецифические ядра таламуса диффузно посылают нервные импульсы по множеству коллатералей ко всей коре головного мозга и образуют неспецифический путь анализатора. Без этого пути информация анализатора не будет полной.

Повреждения неспецифических ядер таламуса приводят к нарушению сознания. Это свидетельствует о том, что им пульсация, поступающая по неспецифической восходящей системе таламуса, поддерживает уровень возбудимости корковых нейронов, необходимый для сохранения сознания.

Ассоциативные ядра таламуса обеспечивают связь с теменной, лобной и височными долями коры больших полушарий. Повреждение этой связи сопровождается нарушениями зрения, слуха и речи.

Через нейроны таламуса вся информация идет в . выполняет роль «фильтра», отбирая наиболее значимую для организма информацию, которая поступает в кору больших полушарий.

Таламус является высшим центром болевой чувствительности. При некоторых поражениях зрительного бугра появляются мучительные болевые ощущения, повышение чувствительности к раздражителям (гиперестезия); незначительное раздражение (даже прикосновение одежды) вызывает приступ мучительной боли. В других случаях нарушение функций таламуса вызывает состояние анальгезии — снижение болевой чувствительности вплоть до полного ее исчезновения.

Эпиталамус

Эпиталамус , или надбугорье , состоит из поводка и эпифиза (шишковидная железа), которые формируют верхнюю стенку третьего желудочка.

Гипоталамус

Гипоталамус располагается вентральнее зрительного бугра и является главным центром вегетативных, соматических и эндокринных функций. В нем различают 48 пар ядер: преоптические, супраоптическое и паравентрикулярное, средние, наружные, задние. Большинство авторов выделяют в гипоталамусе три основные группы ядер:

  • передняя группа содержит медиальное преоптическое, супрахиазматическое, супраоптическое, паравентрикулярное и переднее гипоталамическое ядра;
  • средняя группа включает дорсо-медиальное, вентро- медиальное, аркуатное и латеральное гипоталамические ядра;
  • в состав задней группы входят супрамамиллярное, премамиллярное, мамиллярныеядра, задние гипоталамическое и перифорниатное ядра.

Важная физиологическая особенность гипоталамуса — высокая проницаемость его сосудов для различных веществ.

Гипоталамус тесно связан с деятельностью гипофиза. Средняя группа ядер образует медиальный гипоталамус и содержит нейроны- датчики, реагирующие на изменения состава и свойств внутренней среды организма. Латеральный гипоталамус формирует пути к верхним и нижним отделам ствола мозга.

Нейроны гипоталамуса получают импульсы с , ретикулярной формации, мозжечка, ядер таламуса, подкорковых ядер и коры; участвуют в оценке информации и формировании программы действий. Они имеют двусторонние связи с таламусом, а через него — с корой больших полушарий. Определенные нейроны гипоталамуса чувствительны к химическим воздействиям, гормонам, гуморальным факторам.

С передних ядер осуществляются эфферентные влияния на исполнительные органы по парасимпатическому отделу, обеспечивающие общие парасимпатические приспособительные реакции (замедление сердечных сокращений, понижение тонуса сосудов и давления крови, увеличение секреции пищеварительных соков, усиление двигательной активности желудка и кишечника и др.). Через задние ядра осуществляются эфферентные влияния, поступающие к периферическим исполнительным органам по симпатическому отделу и обеспечивающие симпатические приспособительные реакции: учащение ритма сердечных сокращений, сужение сосудов и повышение давления крови, торможение моторной функции желудка и кишечника и др.

В передних и преоптических ядрах расположены высшие центры парасимпатического отдела, а в задних и латеральных ядрах — симпатического отдела нервной системы. Через эти центры обеспечивается интеграция соматических и вегетативных функций. В целом гипоталамус обеспечивает интеграцию деятельности эндокринной, вегетативной и соматической систем.

В латеральных ядрах гипоталамуса находится центр голода, ответственный за пищевое поведение. В медиальных ядрах расположен центр насыщения. Разрушение этих центров вызывает гибель животного. При раздражении центра насыщения прием корма прекращается, и возникают поведенческие реакции, характерные для состояния насыщения, а повреждение этого центра способствует повышенному потреблению корма и ожирению животных.

В средних ядрах находятся центры регуляции всех видов обмена веществ, энергорегуляции, теплорегуляции (теплообразования и теплоотдачи), половой функции, беременности, лактации, жажды.

Нейроны, расположенные в области супраоптического и пара- вентрикулярного ядер, участвуют в регуляции обмена воды. Раздражение их вызывает резкое увеличение потребления жидкости.

Гипоталамус является главной структурой, ответственной за температурный гомеостаз. В нем различают два центра: теплоотдачи и теплопродукции. Центр теплоотдачи локализован в передней и преоптической зонах гипоталамуса и включает паравентрикулярные, супраоптические и медиальные преоптические ядра. Раздражение этих структур вызывает увеличение теплоотдачи в результате расширения сосудов кожи и повышения температуры ее поверхности, увеличения потоотделения. Центр теплопродукции расположен в заднем гипоталамусе и состоит из различных ядер. Раздражение этого центра вызывает повышение температуры тела в результате усиления окислительных процессов, сужения сосудов кожи и появления мышечной дрожи.

Гипоталамус оказывает важное регулирующее влияние на половую функцию животных и человека .

Специфические ядра гипоталамуса (супраоптическое и паравентрикулярное) тесно взаимодействуют с гипофизом. Их нейроны секретируют нейрогормоны. В супраоптическом ядре образуется антидиуретический гормон (вазопрессин), в паравентрикулярном — окситоцин. Отсюда эти гормоны транспортируются по аксонам в гипофиз, где и накапливаются.

В нейронах гипоталамуса синтезируются либерины (рилизинг-гормоны) и статины, которые затем по нервным и сосудистым связям поступают в гипофиз. В гипоталамусе осуществляется интегрирование нервной и гуморальной регуляции функций многих органов. Гипоталамус и гипофиз образуют единую гипоталамо-гипофизарную систему с обратными связями. Уменьшение или увеличение количества гормонов в крови с помощью прямой и обратной афферентации изменяет активность нейросекреторных нейронов гипоталамуса, в результате чего изменяется уровень экскреции гипофизарных гормонов.



Поделиться