Справочные материалы по пластинчатым смазкам. Роль пластичной смазки в работе подшипника

Пластичные смазки использовались еще в XIV веке до н.э. египтянами для осей деревянных колесниц. Изготавливали их из оливкового масла, смешивая его с известью. Современные смазки представляют собой многокомпонентные структуры, отвечающие многим, зачастую противоречивым требованиям, которые выдвигает специфика работы различных узлов. Пластичные смазки используют для уменьшения трения и износа узлов, в которых создавать принудительную циркуляцию масла нецелесообразно или невозможно. Легко проникая в зону контакта трущихся деталей, смазки удерживаются на трущихся поверхностях, не стекая с них, как это происходит с маслом. Смазки применяются также в качестве защитных или уплотнительных материалов.

Пластичные смазки использовались еще в XIV веке до н.э. египтянами для осей деревянных колесниц. Изготавливали их из оливкового масла, смешивая его с известью. Современные смазки представляют собой многокомпонентные структуры, отвечающие многим, зачастую противоречивым требованиям, которые выдвигает специфика работы различных узлов.
Пластичные смазки используют для уменьшения трения и износа узлов, в которых создавать принудительную циркуляцию масла нецелесообразно или невозможно. Легко проникая в зону контакта трущихся деталей, смазки удерживаются на трущихся поверхностях, не стекая с них, как это происходит с маслом. Смазки применяются также в качестве защитных или уплотнительных материалов.

Достоинства и недостатки смазок.

К достоинствам следует отнести способность удерживаться, не вытекать и не выдавливаться из негерметизированных узлов трения, более широкий, чем у масел, температурный диапазон применения. Перечисленные достоинства позволяют упростить конструкцию узлов трения, следовательно, уменьшить их металлоемкость и стоимость. Некоторые смазки обладают хорошей герметизирующей способностью и хорошими консервационными свойствами.

Основными недостатками являются удержание продуктов механического и коррозионного износа, которые увеличивают скорость разрушения трущихся поверхностей, и плохой отвод тепла от смазываемых деталей.

Состав пластичных смазок.

Масло является основой смазки, и на него приходится 70–90% от ее массы. Свойства масла определяют основные свойства смазки.

Загуститель создает пространственный каркас смазки. Упрощенно его можно сравнить с поролоном, удерживающим своими ячейками масло. Загуститель составляет 8–20% от массы смазки.

Добавки необходимы для улучшения эксплуатационных свойств. К ним относятся:

  • присадки - преимущественно те же, что используются в товарных маслах (моторных, трансмиссионных и т. п.). Представляют собой маслорастворимые поверхностно-активные вещества и составляют 0,1–5% от массы смазки;
  • наполнители - улучшают антифрикционные и герметизирующие свойства. Представляют собой твердые вещества, как правило, неорганического происхождения, нерастворимые в масле (дисульфид молибдена, графит, слюда и др.), составляют 1–20% от массы смазки;
  • модификаторы структуры - способствуют формированию более прочной и эластичной структуры смазки. Представляют собой поверхностно-активные вещества (кислоты, спирты и др.), составляют 0,1-1% от массы смазки.

Основные показатели качества смазок.

  • Пенетрация (проникновение) – характеризует консистенцию (густоту) смазки по глубине погружения в нее конуса стандартных размеров и массы. Пенетрация измеряется при различных температурах и численно равна количеству миллиметров погружения конуса, умноженному на 10.
  • Температура каплепадения – температура падения первой капли смазки, нагреваемой в специальном измерительном приборе. Практически характеризует температуру плавления загустителя, разрушения структуры смазки и ее вытекания из смазываемых узлов (определяет верхний температурный предел работоспособности не для всех смазок).
  • Предел прочности на сдвиг – минимальная нагрузка, при которой происходит необратимое разрушение каркаса смазки и она ведет себя как жидкость.
  • Водостойкость – применительно к пластичным смазкам обозначает несколько свойств: устойчивость к растворению в воде, способность поглощать влагу, проницаемость смазочного слоя для паров влаги, смываемость водой со смазываемых поверхностей.
  • Механическая стабильность – характеризует тиксотропные свойства, т.е. способность смазок практически мгновенно восстанавливать свою структуру (каркас) послу выхода из зоны непосредственного контакта трущихся деталей. Благодаря этому уникальному свойству смазка легко удерживается в негерметизированных узлах трения.
  • Термическая стабильность – способность смазки сохранять свои свойства при воздействии повышенных температур.
  • Коллоидная стабильность – характеризует выделение масла из смазки в процессе механического или температурного воздействия при хранении, транспортировке и применении.
  • Химическая стабильность – характеризует в основном устойчивость смазок к окислению.
  • Испаряемость – оценивают количество масла, испарившегося из смазки за определенный промежуток времени, при нагреве до максимальной температуры применения.
  • Коррозионная активность – способность компонентов смазки вызывать коррозию металла узлов трения.
  • Защитные свойства – способность смазок защищать трущиеся поверхности металлов от воздействия коррозионно-активной внешней среды (вода, растворы солей и др.).
  • Вязкость – определяется величинами потерь на внутреннее трение в смазке. Фактически определяет пусковые характеристики механизмов, легкость подачи и заправки в узлы трения.

Пластичные смазки по консистенции занимают промежуточное положение между маслами и твердыми смазочными материалами (графитами).

Несмотря на отсутствие в качестве критериев разбивки на классы других характеристик смазок, эта классификация признана основополагающей во всех странах. Некоторые производители указывают в документации не только класс смазки, но и уровень пенетрации.

Классификация пластичных смазок.

Следует отметить, что не все нижеперечисленные классификации являются общепринятыми для отечественных и зарубежных производителей.

Классификация по типу масла (основы)

  • На нефтяных маслах (полученных переработкой нефти).
  • На синтетических маслах (искусственно синтезированных).
  • На растительных маслах.
  • На смеси вышеперечисленных масел (в основном нефтяных и синтетических).

Классификация по природе загустителя

  • Мыльные - это смазки, для производства которых в качестве загустителя применяют мыла (соли высших карбоновых кислот). В свою очередь, их подразделяют на натриевые (созданы в 1872 г.), кальциевые и алюминиевые (созданы в 1882 г.), литиевые (созданы в 1942 г.), комплексные (например, комплексные кальциевые, комплексные литиевые) и др. На мыльные приходится более 80% всего производства смазок.
  • Углеводородные - смазки, для производства которых в качестве загустителя используются парафины, церезины, петролатумы и др.
  • Неорганические - смазки, для производства которых в качестве загустителя используются силикагели, бентониты и др.
  • Органические - смазки, для производства которых в качестве загустителя используются сажа, полимочевина, полимеры и др.

Классификация по области применения .В соответствии с ГОСТом 23258-78 смазки делятся на следующие группы.

  • Антифрикционные - снижают силу трения и износ различных трущихся поверхностей.
  • Консервационные - предотвращают коррозию металлических поверхностей механизмов при их хранении и эксплуатации.
  • Уплотнительные - герметизируют и предотвращают износ резьбовых соединений и запорной арматуры (вентили, задвижки, краны).
  • Канатные - предотвращают износ и коррозию стальных канатов.

В свою очередь, антифрикционная группа делится на подгруппы: смазки общего назначения, многоцелевые смазки, термостойкие, низкотемпературные, химически стойкие, приборные, автомобильные, авиационные и т.д.

В автомобилях наибольшее распространение получили антифрикционные смазки многоцелевые (Литол-24, Фиол-2М, Зимол, Лита) и антифрикционные смазки автомобильные (ЛСЦ-15, Фиол-2У, ШРБ-4, ШРУС-4, КСБ, ДТ-1, № 158, ЛЗ-31).

Классификация смазок по консистенции (густоте).

Разработана NLGI (Национальный институт смазочных материалов США). Согласно этой классификации смазки делят на классы в зависимости от уровня пенетрации (см. выше) - чем больше численное значение пенетрации, тем мягче смазка. Классификация NLGI пластичных смазок по консистенции приведена в табл. 8.1 (соответствует сортам по DIN 51818. DIN - Институт стандартов Германии).

Наименование смазок.

В бывшем СССР до 1979 г. наименования смазок устанавливали произвольно. В результате одни смазки получили словесное название (Солидол-С), другие - номер (№ 158), третьи - обозначение создавшего их учреждения (ЦИАТИМ-201, ВНИИНП-242). В 1979 г. был введен ГОСТ 23258-78 (действующий в настоящее время в России), согласно которому наименование смазки должно состоять из одного слова и цифры.

За рубежом фирмы-производители вводят наименование смазок произвольно из-за отсутствия единой для всех классификации по эксплуатационным показателям (за исключением классификации по консистенции). Это привело к появлению огромного ассортимента пластичных смазок (по различным оценкам несколько тысяч наименований).

Таблица 4.1 – Классификация пластичных смазок по числу пенетрации

Класс

Диапазон пенетрации

Визуальная оценка консистенции

85…115

Очень мягкая, как очень вязкое масло

Вазелинообразная

Почти твёрдая

Очень твёрдая мылообразная

Коллоидная стабильность. Способность удерживать масло, сопротивляться его выделению при хранении и эксплуатации характеризует коллоидную стабильность смазок. Выделение масла может быть самопроизвольным вследствие структурных изменений в смазке, например, под действием собственной массы, и может ускоряться или замедляться под действием температуры, давления и др. факторов. Слишком большое выделение масла в процессе работы - более 30 % - приводит к резкому упрочнению смазки и нарушает её нормальное поступление к контактируемым поверхностям.

Коллоидная стабильность зависит от размеров, формы и прочности связей структурных элементов. Большое влияние оказывает вязкость дисперсной среды: чем выше вязкость масла, тем труднее ему вытекать из объёма смазки.

Коллоидная стабильность оценивается по объёму масла, отпрессованного из смазки при комнатной температуре в течении 30 минут и выражается в % - для смазок она не должна превышать 30 %. Проводят это на разных приборах, но самым простым и удобным является механическое отпрессовывание масла из некоторого объёма, помещенного между слоями фильтровальной бумаги.

Химическая стабильность . Под химической стабильностью понимают стойкость смазок против окисления кислородом воздуха, хотя в широком смысле - это отсутствие изменения свойств смазок под воздействием на них химических реагентов (кислот, щелочей, кислорода и т.д.). Окисление приводит к образованию и накоплению в смазках кислородосодержащих, активных веществ, к изменению реологических свойств (как правило, разупрочнению), ухудшению коллоидной стабильности, понижению температуры каплепадения, смазочной способности и т.д.

Стабильность против окисления особенно важный показатель для смазок, которые

Заправляют в узлы трения 1...2 раза в течение 10...15 лет;

Работают при высоких температурах;

Работают в тонких слоях;

В контакте с цветными металлами.

Медь, бронза, олово, свинец и ряд других металлов и сплавов ускоряют окисление смазок.

Об образовании и накоплении в смазке продуктов окисления судят по данным ИК-спектроскопии. Исследования проводят методом ускоренного окисления под действием высокой температуры в присутствии катализаторов.

Имеется несколько способов повышения стойкости смазок против окисления:

Подбор масляной основы;

Выбор типа и концентрации загустителя;

Варьирование технологическими режимами производства;

Введение антиокислительных присадок (амино- и фенолосодержащих соединения, фосфор- и серосодержащие органические продукты и т.д.).

Термическая стабильность . Способность смазок не изменять свои свойства и прежде всего не упрочняться при кратковременном воздействии высоких температур характеризует их термическую стабильность. Особенно подвержены упрочнению вплоть до потери пластичности при повышенных температурах смазки из мыл синтетических жирных кислот, натриевые, натриево-кальциевые и в меньшей степени кальциевые. Упрочнение затрудняет поступление смазки к узлу трения, ухудшает его адгезионные свойства. Особенность термоупрочнения - полная и многократная обратимость - перетирание затвердевшей смазки приводит к восстановлению её первоначальных свойств.

Испаряемость - один из показателей смазок, определяющих стабильность состава при хранении и в эксплуатации. Испарение масла из-за высоких температур, вакуума и отсутствия частой смены приводит к повышению концентрации загустителя, что сопровождается увеличением предела прочности и ухудшением низкотемпературных свойств: на поверхности образуются корки и трещины, снижается защитная способность.

Скорость испарения зависит от условий хранения и эксплуатации, фракционного состава масла. Чем тоньше слой и больше его поверхность, тем выше испаряемость. Тип и концентрация загустителя мало влияют на испаряемость масла.

Выражается испаряемость в %. Определяется измерением потери массы образца, который выдерживают в стандартных условиях в течение определённого времени при постоянной температуре.

Температура каплепадения. Минимальная температура, при которой происходит падение первой капли смазки, нагреваемой в приборе Уббелоде. Эта температура зависит от условий оценки и не всегда определяется одними и теми же свойствами смазок. Она условно характеризует температуру плавления загустителя. Считается, что температура каплепадения должна быть на 15...20°С выше максимальной температуры применения смазки. Однако температура каплепадения не всегда позволяет правильно судить о высокотемпературных свойствах смазки. Например, температура каплепадения литиевых смазок лежит в пределах 170...200°С, а работоспособны они до 130°С.

Микробиологическая стабильность. Под действием микроорганизмов, попавших в смазку и развившихся в ней, происходит изменение состава и свойств смазок. При развитии микроорганизмы потребляют те или иные компоненты смазки, продукты обмена накапливаются и, как правило, увеличивают кислотность смазки. При этом происходит разупрочнение и изменение эксплуатационных свойств.

Для борьбы с микроорганизмами в смазки вводят антисептики - органические вещества, например, бензойную и салициловую кислоты, фенолы, производные ртути, олова и др. Бактерицидными действиями обладают некоторые антиокислительные, противоизносные присадки и ингибиторы коррозии.

Радиационная стойкость. Воздействие на смазки излучений высоких энергий приводит к глубоким изменениям их структуры и свойств. В значительной степени стойкость смазок к облучению зависит от состава масла, на основе которого они приготовлены. По дисперсионной стойкости смазки располагаются следующим образом в порядке возрастания: кремнийорганические жидкости -сложные эфиры - нефтяные масла - простые эфиры. Смазки в зависимости от типа загустителя при облучении могут приобретать «наведённую» радиоактивность. Наиболее легко радиоактивность приобретают натриевые смазки.

Ассортимент смазок

Автомобильный транспорт один из основных потребителей пластичных смазок. Здесь применяют антифрикционные, защитные и уплотнительные смазки. Более всего при эксплуатации расходуются антифрикционные смазки.

Основными узлами трения являются:

- подшипники качения ступиц колёс;

- подшипники качения насоса системы охлаждения (раньше);

- шарниры рулевого управления;

- шаровые опоры независимой подвески;

- шарниры карданные равных и неравных угловых скоростей и т.д.

Ассортимент антифрикционных смазок промышленного производства превышает 100 наименований. В инструкциях по эксплуатации для одних и тех же узлов разных автомобилей рекомендуются различные смазки.

Схема маркировки пластичных смазок представлена на рисунке 4.1.

Рисунок 4.1 – Схема маркировки пластичных смазок по ГОСТ 23258–78

Пояснение к рисунку 4.1:
1 – подгруппа по назначению (таблица 4.2) (например М – многоцелевая);
2 – тип загустителя (таблица 4.3) (например Ли – литиевое мыло);
3 – температурный диапазон применения смазки;
4 – тип дисперсной среды (у – синтетические углеводороды, к – кремнийорганические жидкости, э – сложные эфиры, ф – фторсилоксаны, н – нефтяное масло, ж – галогеноуглеродные жидкости, а – перфторалкилполиэфиры, «-» – нефтяная основа, п – прочие масла и жидкости);
5 – твердые добавки (г – графит, д – дисульфид молибдена, с – порошки свинца, м – порошки меди, ц – порошки цинка, т – прочие твердые добавки).
6 – число пенетрации (класс консистенции) (по возрастанию густоты изменяется от 000 до 7).
Пример маркировки: СКа 2/7-2 – С – антифрикционная смазка общего назначения, применяемая при температуре до 70°С (солидол), Ка – загуститель – калиевое мыло, 2/7 – рекомендуемый температурный диапазон применения от -20°С до +70°С, «-» – смазка приготовлена на нефтяной основе, 2 – число пенетрации (класс консистенции) (пенетрация при 25°С составляет 265…295).

Таблица 4.2 — Классификация пластичных смазок по назначению

Основное назначение

Подгруппа

Область применения

Антифрикционные

Для снижения износа и трения скольжения сопряженных деталей

Общего назначения для обычных температур (солидолы)

Узлы трения с рабочей температурой до 70°С

Общего назначения для повышенных температур

Узлы трения с рабочей температурой до 100°С

Многоцелевые

Узлы трения с рабочей температурой от -30 до 130°С в условиях повышенной влажности

Термостойкие

Узлы трения с рабочей температурой 150°С и выше

Морозостойкие

Узлы трения с рабочей температурой -40°С и ниже

Противозадирные и противоизносные

Подшипники качения при контактных напряжениях выше 2500 МПа и скольжения при нагрузках выше 150 МПа

Химически стойкие

Узлы, контактирующие с агрессивными средами

Приборные

Узлы трения приборов и точных механизмов

Редукторные

Зубчатые и винтовые передачи всех видов

Приработочные (дисульфидмолибденовые, графитные и другие пасты)

Сопряженные поверхности для облегчения сборки, предотвращения задиров и ускорения приработки

Узкоспециальные (отраслевые)

Узлы трения, смазки для которых должны удовлетворять дополнительным требованиям (прокачиваемость, эмульгируемость, искрогашение и т.д.) автомобильные железнодорожные индустриальные

Брикетные

Узлы и поверхности скольжения с устройствами для использования смазки в виде брикетов

Консервационные

Для предотвращения коррозии при хранении, транспортировании и эксплуатации

Металлические изделия, за исключением стальных канатов и в случаях, требующих консервационных масел или твердых покрытий

Канатные

Для предотвращения коррозии и износа стальных канатов

Стальные канаты и тросы, органические сердечники стальных канатов

Уплотнительные

Для герметизации, облегчения сборки и разборки арматуры; сальниковых устройств; резьбовых, разъемных и любых подвижных соединений, в то числе вакуумных систем

Арматурные

Запорная арматура и сальниковые устройства

Резьбовые

Резьбовые соединения

Вакуумные

Подвижные и разъемные соединения и уплотнения вакуумных систем

Таблица 4.3 — Типы загустителей пластичных смазок

Загуститель

Загуститель

Органические вещества:

алюминиевое

пигменты

бариевое

полимеры

калиевое

литиевое

фтороуглероды

натриевое

Неорганические вещества:

свинцовое

глины (бентонитовые)

цинковое

комплексное

силикагель

смесь мыл

Углеводороды твердые

Антифрикционные смазки

Самыми распространёнными мыльными смазками из кальциевых смазок общего назначения являются солидолы. Готовят две марки синтетического солидола – пресс-солидол С и солидол С , и две марки жирового солидола – пресс-солидол УС-1 и солидол УС-2 (УС – универсальная среднеплавкая). Жировые солидолы готовят загущением нефтяных индустриальных масел кальциевыми мылами. Солидолы нерастворимы в воде, обладают высокой коллоидной стабильностью, но не могут использоваться при температурах выше + 75 0 С и ниже – 30 0 С.

Кроме солидолов выпускают другие кальциевые гидратированные смазки – УссА , ЦИАТИМ-208 и др.

К комплексным кальциевым смазкам, изготавливаемым на нефтяных или синтетических маслах, относятся – униол-1 , униол-2 , ЦИАТИМ-221 и др. Эти смазки по сравнению с обычными мыльными смазками более термостойки: температура каплепадения у них выше 200 0 С (у солидолов 80…90 0 С), что позволяет использовать их при температурах до 160 0 С. Они обладают хорошими противоизносными и противозадирными свойствами, то есть их можно применять в тяжелонагруженных узлах. Они так же обладают хорошими защитными и противокоррозионными свойствами. К недостаткам этих смазок относится склонность к термоупрочнению.

Натриевые и натриево-кальциевые смазки. По объёму производства эти смазки занимают второе место после гидратированных кальциевых. Распространёнными натриевыми смазками являются консталины УТ-1 и УТ-2 (УТ – универсальная тугоплавкая), которые в отличии от солидолов работоспособны при температурах до 115 0 С и хорошо удерживаются при таких температурах в тяжелонагруженных узлах. Однако натриевые и натриево-кальциевые смазки растворимы в воде и, следовательно, смываются с металлических поверхностей. При низких температурах (ниже – 20 0 С) применять эти смазки не рекомендуется. Преимущественно консталины используются как железнодорожные смазки.

Среди натриево-кальциевых смазок самой массовой является смазка 1-13 . Эту смазку и её вариант 1-Л3 или ЛЗ-ЦНИИ применяют в роликовых и шариковых подшипниках.

Литиевые смазки. Эти смазки работоспособны в широком интервале температур и до – 50 0 С, нагрузок и скоростей. Их свойства стабильны во времени. К недостаткам можно отнести низкую механическуюстабильность и ограниченный верхний предел температуры – не выше 120…130 0 С. Первой литиевой смазкой была ЦИАТИТМ-201 . Сейчас выпускают: литол-24 , фиол-2 или , фиол-3 и др. Литол-24 используется в качестве единой автомобильной смазки.

Алюминиевые смазки. Наиболее распространённой является смазка АМС-1,3 . Она используется в механизмах, работающих в морской воде или соприкасающихся с ней. Относится к защитно-антифрикционным смазкам. Выпускается смазка МС-70 имеющая такие же свойства.

В ассортименте антифрикционных смазок имеются также смазки на бариевых и цинковых мылах. Бариевые смазки обладают хорошей стойкостью к воде и нефтепродуктам, повышенной химической и механической стабильностью. В шаровых шарнирах подвески и наконечниках рулевых тяг автомобилей ВАЗ применяется бариевая смазка ШРБ-4 .

В качестве антифрикционных смазок используют смазки на неорганических загустителях – силикагелевые, бентонитовые и др. У них хорошие высокотемпературные свойства, высокая химическая стабильность и удовлетворительные смазочные свойства. К их недостаткам можно отнести низкую защитную стабильность. Кселикагелевым относятсясмазки–ВНИИНП-262 ,ВНИИНП-264 ,

ВНИИНП-279 . В основном они предназначены для высокоскоростных подшипников качения, работающих в жёстких режимах трения. Смазки эти дорогие.

К бентонитовым смазкам для подшипников качения относится смазка ВНИИНП-226 .

Консервационные смазки

Ассортимент консервационных смазок значительно уступает ассортименту антифрикционных смазок. Наибольшее распространение получили углеводородные смазки. Их низкая температура плавления (40…75 0 С) позволяет наносить их на поверхность в расплавленном виде путём окунания или распыливания. Можно наносить и при помощи кисти. Предварительно поверхность очищают от следов коррозии и прочих загрязнений.

К углеводородным смазкам относятся ПВК , ГОИ-54п , УНЗ (пушечная ), вазелин технический волокнистый ВТВ-1 , ВНИИСТ-2 и др.

Смазка ПВК имеет высокую водостойкость и стабильность, низкую испаряемость, что позволяет использовать её в течение 10 лет. Недостатком её является потеря подвижности при температуре ниже – 10 0 С.

ГОИ-54п используют для защиты от коррозии машин и механизмов, работающих на открытом воздухе. Смазка сохраняет работоспособность при температуре до – 50 0 С, однако, как большинство углеводородных смазок, её не рекомендую использовать при температурах выше + 50 0 С.

Смазку ВТВ-1 применяют для смазывания клемм аккумуляторов. От смазки ПВК она отличается лучшими низкотемпературными свойствами.

ВНИИСТ-2 применяется для защиты от коррозии наземных трубопроводов.

Удовлетворительные защитные свойства имеют и некоторые мыльные смазки: АМС-1 , АМС-3 , МС-70 , ЗЭС и др.

Смазки АМС-1 , АМС-3 и МС-70 используют как антифрикционные, обладающие хорошими защитными свойствами в условиях контакта с морской водой. Они обладают высокой липкостью и водостойкостью.

Смазку ЗЭС применяют для защиты линий электропередач и другой высоковольтной аппаратуры от коррозии.

Особую группу консервационных смазок составляют канатные смазки: 39у , БОЗ-1 , торсиол-35 , торсиол-55 Е-1 и др. Они занимают промежуточное положение между консервационными и антифрикционными смазками. Предназначены эти смазки для защиты стальных канатов и тросов при эксплуатации и хранении, а так же снижать износ, уменьшать трение, предотвращать обрывы.

Уплотнительные смазки

По составу и свойствам эти смазки специфичны, что не позволяет, как правило, заменять их смазками других типов. В качестве дисперсионной среды используют касторовое масло, глицерин, синтетические масла и смеси с нефтяными. Смазки на основе касторового масла и его смеси с нефтяным или синтетическим маслом практически нерастворимы в нефтепродуктах.

Загустителями могут быть твёрдые углеводороды и неорганические продукты (силикагель, бентонит).

Большинство уплотнительных смазок содержат наполнители – графит, слюду, тальк, дисульфид молибдена, асбест, оксиды металлов и др. В уплотнительной смазке для запорной арматуры вводят 10…15 % наполнителей.

Широкое применение уплотнительные смазки нашли в резьбовых соединениях. В таких соединениях, рассчитанных на высокое давление, уплотнительные смазки подвергаются воздействию высоких контактных нагрузок. Роль самой смазки при жёстких условиях работы резьбового соединения сводится только к функции носителя наполнителя. В смазках для резьбовых соединений концентрация наполнителей, как правило, превышает 50 %.

Твёрдые смазки

Характерная особенность твёрдых смазок заключается в том, что эти материалы, так же как пластичные смазки, находятся в агрегатном состоянии, исключающем их вытекание из узла трения. Благодаря этому их можно использовать в негерметизированных узлах трения. Достоинства их перед маслами таки же, как у пластичных смазок:

- уменьшение расхода смазочного материала;

- уменьшение эксплуатационных расходов.

Твёрдые слоистые смазки. Это кристаллические вещества, обладающие смазочными свойствами: графит, дисульфиды молибдена и вольфрама, нитрид бора, бромиды олова и кадмия, сульфат серебра, иодиды висмута, никеля и кадмия, фталоцианин, селениды и теллуриды вольфрама, титана и пр.

Все эти смазки обладают слоистой структурой, характеризующиеся тем, что атомы, лежащие в одной плоскости – одном слое – находятся друг к другу ближе, чем в различных слоях. Это обусловливает различную прочность между атомами в различных направлениях. В результате под действием внешних сил происходит скольжение одних слоёв кристаллов относительно других. Это свойство необходимо, но недостаточно. Нужна также хорошая адгезия твёрдой смазки к материалу поверхности трения, поэтому дисульфид титана и многие алюмосиликаты (слюда, тальк и др.), обладая ярко выраженной слоистой структурой, не отличаются смазочными свойствами, так как имеют плохие адгезионные свойства с металлами.

Наиболее распространённые твёрдые слоистые смазки.

Графит обладает антифрикционными свойствами в паре трения со сталью, чугуном и хромом. Несколько хуже эти свойства с медью и алюминием. В присутствии воздуха и воднографитная смазка улучшает свои показатели. Графит адсорбируется на поверхности трения, образуя прочную плёнку, ориентированную в направлении скольжения. Наличие на поверхности металла плёнки оксидов облегчает адсорбцию графита, поэтому использование графита особенно эффективно для металлов, образующих прочную оксидную плёнку – хром, титан, несколько меньше сталь. Предел работоспособности графитной смазки равен 600 0 С. Из-за наличия свободных электронов графит обладает высокой электропроводностью, что способствует отводу электростатических зарядов и сохранению прочности смазочного слоя. С увеличение нагрузки и повышения температуры коэффициент трения графита возрастает. По стали коэффициент трения равен 0,04…0,08.

Дисульфид молибдена Мо S 2 – синевато-серый порошок с металлическим блеском, обладает хорошими адсорбционными свойствами по отношению к большинству чёрных и цветных металлов. Его смазочная способность обусловлена выраженным слоистым строением кристаллов и сильной поляризацией атомов серы в процессе трения. В отличии от графита при увеличении нагрузки и температуры коэффициент трения Мо S 2 уменьшается. Средняя величина коэффициента трения равна 0,05…0,095.

Несущая способность граничной смазочной плёнки дисульфида молибдена выше, чем у любых смазочных масел. При температуре выше 500 0 С дисульфид молибдена окисляется с выделением SO 2 . К недостаткам можно отнести высокую химическую активность, в результате чего он легко вступает в реакцию с водой и кислородом. Поэтому максимальная температура ограничена 450 0 С. Водород восстанавливает дисульфид молибдена до металла.

Дисульфид вольфрама WS 2 по сравнению с дисульфидом молибдена обладает большей термостойкостью. Предельная температура его применения равняется 580 0 С. У него больше стойкость к окислению и в 3 раза большая несущая способность. Химически дисульфид молибдена инертен, коррозионно неагрессивен, нетоксичен. Его применение ограничено высокой стоимостью. Из-за высокой плотности дисульфид молибдена мало используется в качестве добавки к маслам, так как затруднено получение однородной смеси с маслом. Рекомендуется использовать при температуре свыше 450 0 С.

Нитрид кремния имеет низкий коэффициент трения в парах со стальными деталями и некоторыми металлокерамическими материалами. Обладает хорошими механическими характеристиками и высокой термической и термоокислительной устойчивостью до 1200 0 С. Благодаря сочетанию этих качеств нитрид кремния является перспективным материалом для изготовления деталей цилиндро-поршневой группы.

Нитрид бора обладает высокой термической и термоокислительной устойчивостью. Разлагается при температуре свыше 1000 0 С.

Фталоцианины (меди C 32 H 16 N 6 Cu , железа C 32 H 16 N 8 Fe и пр.) – металлосодержащие полициклические органические соединения, обладающие крупными плоскими молекулами со слабыми межмолекулярными связями. Наряду с физической адсорбцией они образуют хемосорбированные плёнки на поверхностях металлов. Фталоцианины имеют хорошую термическую стойкость до 650 0 С, стабильны при контакте с воздухом и водой. При температурах до 300 0 С коэффициент трения у них выше, чем у графита и дисульфида молибдена, но понижается до 0,03…0,05 с увеличением температуры до 500 0 С.

Из фталоцианинов делают защитный слой на юбках поршней.

Коэффициенты трения некоторых твёрдых слоистых смазок:

Дисульфид молибдена – 0,05;

Иодистый кадмий – 0,06;

Хлористый кадмий – 0,07;

Сернокислый вольфрам – 0,08;

Сернокислое серебро – 0,14;

Иодистый свинец – 0,28;

Графит – 0,10;

Хлористый кобальт – 0,10;

Иодистая ртуть – 0,18;

Бромистая ртуть – 0,06;

Иодистое серебро – 0,25.

Твёрдые смазки могут использовать и в качестве добавок к маслам. Большинство твёрдых смазок нерастворимы в углеводородах, поэтому их вводят в моторное масло в виде коллоидных дисперсий. При этом увеличивается ресурс узлов трения и снижается вероятность задира в условиях масляной недостаточности.

Мягкие металлы. Свинец, индий, олово, кадмий, медь, серебро, золото и т.д. обладают низкой прочностью на срез. Благодаря этому они используются как твёрдые смазки в виде тонких плёнок, наносимых на более прочные основы. Плёнки этих металлов ведут себя как масло. Кроме того, они облегчают и ускоряют процесс приработки. Важным требование является высокая адгезия к материалу основы и низкая к материалу пары.

Полимерные материалы – фторопласт-4 (тефлон), капрон, нейлон, полиэтилен, политетрафторэтилен, полиамид и др. обладают смазывающими свойствами. Их наносят на поверхности трения в виде плёнок различной толщины или используют как прессованные проставки. Применение твёрдых смазок на основе полимеров ограничивается низкой термической стойкостью этих материалов, маленьким коэффициентом теплопроводности и большим коэффициентом теплового расширения.

Они имеют недостаточные механические свойства, поэтому для обеспечения прочности при средних и высоких нагрузках их армируют. Используемый для армирования материал должен быть мягче материала поверхности трения.

Композиционные смазочные материалы. Это комбинация отдельных видов твёрдых смазок, обеспечивающая оптимальное сочетание их смазывающих свойств, механической прочности и обрабатываемости.

Физически композиционные смазочные материалы представляют собой механическую смесь двух или более различных по свойствам твёрдых веществ. При этом одно вещество является основой, может образовывать структурный каркас, обеспечивающий механические свойства. Основа изготавливается из полимерных, металлических или керамических материалов. В основе зафиксирован материал, являющийся наполнителем, обеспечивающим смазочные свойства.

Полимерная основа имеет хорошие смазочные свойства, химическую инертность, более высокую, чем у металлов, усталостную прочность, малую массу, низкую чувствительность к местным нарушениям структуры – трещинам, надрезам. Наиболее термостойки материалы на основе ароматических полиамидов. Они могут длительное время эксплуатироваться при температуре до 450 0 С. Основными недостатками являются большой коэффициент термического расширения, низкие теплопроводность, термическая стойкость и стабильность.

В полимерных материалах наиболее часто в качестве наполнителей используются дисульфид молибдена, графит, нитрид бора, порошки алюминия, меди, никеля, молибдена и др.

Композиционные смазочные материалы на основе металлических материалов получают путём прессования и спекания из порошков металлов с последующей пропиткой полученной пористой основы твёрдыми слоистыми смазками, мягкими металлами или полимерами. Для получения материалов, работающих в особо тяжёлых температурных условиях, в качестве основы используют никель, кобальт и их сплавы. В качестве наполнителя применяют материалы на основе молибдена или вольфрама.

Например, для получения направляющих втулок клапанов двигателя получили распространение композиционные смазочные материалы на металлической основе, поры которых заполнены фторопластом-4 с добавками сульфидов, селенидов и теллуридов молибдена, вольфрама. Такая смазка кроме смазочного действия обеспечивает высокую несущую способность и износостойкость.

Композиционные смазочные материалы на керамической основе обладают высокой термической и химической стойкостью. Для этого используют окислы бериллия, циркония и других металлов. Основным недостатков этих материалов является их хрупкость и низкая прочность на растяжение.

Узлы трения на основе композиционных смазочных материалов могут долгое время работать без дополнительного подвода смазки, вплоть до всего моторесурса узла. Большинство композиционных смазочных материалов хорошо работают совместно с жидкими и консистентными смазками. Это обеспечивает существенное повышение надёжности двигателя, особе в режиме недостатка масла. Для вкладышей коренных и шатунных подшипников можно использовать композиции из медно-молибденового материала CuO + MoS 2 . Для подшипников распределительного вала применяют вкладыши, изготовленные из металлокерамических композиций на основе мягких металлов, насыщенных фталоцианиновой твёрдой смазкой. Изготовляют материал, состоящий из стальной ленты, на которую спеканием нанесён тонкий слой сферических частиц пористой оловянистой бронзы, пропитанной смесью фторопласта со свинцом. Сталь обеспечивает необходимую прочность подшипника, бронза – теплопроводность, смесь тефлона со свинцом – смазочные свойства.

Пластичные (консистентные) смазки представляют собой густые составы, используемые для уменьшения трения в подшипниках качения, рычажных и шарнирных системах, цепных, зубчатых и винтовых передачах.

В отличие от жидких масел пластичные смазки способны:

  • хорошо удерживаться на вертикальных поверхностях;
  • не выходить из контакта с трущимися поверхностями;
  • герметизировать смазываемый узел.

Материалы отличаются высокими смазывающими свойствами в широком температурном диапазоне и обладают длительным эксплуатационным периодом. Благодаря этому применение пластичных смазок может быть более экономичным в сравнении с жидкими маслами.

Состав

Консистентная смазка представляет собой концентрированную дисперсию твердого загустителя (10–15 %) в жидкой среде (70–90 %), в качестве которой выступают масла на синтетической или минеральной основе. Загустителями служат соли высокомолекулярных кислот (мыла), твердые углеводороды, а также продукты органического и неорганического происхождения. Именно они позволяют материалу вести себя как твердое тело в спокойной фазе и как вязкая жидкость при появлении нагрузки. Состав и количество загустителей регулируют эксплуатационные свойства пластичных смазок. Для придания материалу определенных качеств применяются модифицирующие присадки и добавки (до 5 % от общей массы). С целью снижения окислительных процессов могут использоваться органические антиоксиданты фенольной группы. Ингибиторами коррозии служат производные парафина, а для повышения противоизносных свойств применяются эфиры ортофосфорной кислоты. В качестве антифрикционных и герметизирующих добавок выступают диосульфит молибдена, графит, порошки свинца, меди или цинка.

Функциональное назначение консистентной смазки

В результате нанесения смазочного материала на рабочие элементы достигаются следующие условия:

  • снижается коэффициент трения на поверхности;
  • увеличивается скольжение рабочих элементов;
  • уменьшается износ поверхностей трущихся деталей за счет наличия между ними смазочной пленки;
  • происходит формирование антикоррозионной пленки, предохраняющей элементы механизма от разрушения;
  • обеспечивается защитный барьер при работе в агрессивных средах;
  • происходит охлаждение механизмов и отвод тепла (такого эффекта позволяют достичь пластичные смазки для подшипников).

Классификация продуктов

Основные виды консистентных смазок классифицируют по типу применяемого в них загустителя.

  • Мыльные. Для их приготовления используют соли карбоновых кислот. В эту группу входят кальциевые, натриевые и комплексные (с включением анионов лития, бария, алюминия и др.) смазки. Продукты на основе кальция (солидолы) являются самыми простыми, но имеют низкий температурный предел эксплуатации. Натриевые составы не обладают водостойкостью, поэтому практически вышли из употребления. Комплексные пластичные смазки термостойки и обладают высокими противозадирными свойствами.
  • Углеводородные. Составы изготавливаются на основе высокоплавких углеводородов. Преимущественно это канатные и консервационные материалы.
  • Неорганические. Для их загущения используют бентонит, силикагель, графит, асбест и другие вещества. Данный вид продуктов обладает высокой термостабильностью.
  • Органические. К ним относятся продукты на основе кристаллических полимеров и производных карбамида.

По области использования пластичные смазки делят:

  • на антифрикционные – самая большая группа, применяемая для снижения износа механизмов в процессе трения. В нее входят следующие виды смазочных материалов:
    • общего назначения (например, консистентная смазка для подшипников, материал для редукторов и зубчатых передач различных механизмов);
    • термостойкие (например, высокотемпературная консистентная смазка для скоростных узлов скольжения и качения, работающих в экстремальных температурных режимах);
    • морозостойкие (материалы, имеющие низкий порог загустения, используемые при очень низких температурах);
    • химически стойкие (например, консистентная смазка, используемая в механизмах, работающих в агрессивных средах);
    • приборные и др.
  • консервационные – предназначены для предотвращения коррозии деталей оборудования как в процессе эксплуатации, так и во время хранения;
  • уплотнительные – служат для герметизации соединений и облегчения их монтажа (например, консистентная силиконовая смазка для сальников запорной арматуры и резьбовых соединений);
  • узкоспециализированные – применяются в определенных отраслях с особыми требованиями к смазкам (пищевая, электротехническая и химическая промышленность, ж/д и авиационный транспорт и др.).

Стоит отметить, что данное разделение смазок весьма условно, так как материалы обладают одновременно несколькими свойствами и могут выполнять различные функции.

Основные свойства смазок

  • Прочностные качества. С помощью частиц загустителя в материале образуется структурный каркас, обладающий определенным пределом прочности на сдвиг, благодаря которому вещество способно удерживаться на вертикальных и наклонных поверхностях. На формирование каркаса также влияет химический состав жидкой основы. При увеличении температуры прочность материала уменьшается.
  • Механическая стабильность. Разжижение при деформации и обратное загустевание при снятии нагрузки является отличием смазок от жидких масел.
  • Вязкостные свойства. Эффективная вязкость материала определяется его прокачиваемостью при низких температурах. При большой скорости приложения нагрузки и увеличении температуры вязкость резко уменьшается.
  • Коллоидная стабильность. Эта характеристика пластичных смазок определяет их способность удерживать дисперсионную среду (базовую масляную основу) от выделения в отдельную массу в результате хранения или эксплуатации. На это влияет как вязкость самой жидкой составляющей, так и структурные связи загустителя.
  • Химическая стабильность. Способность смазок противостоять окислению под воздействием кислорода, которое приводит к образованию активных веществ, ухудшающих эксплуатационные свойства продукта.
  • Термическая стабильность. Сохранение пластичного состояния под влиянием кратковременного воздействия высоких температур.
  • Испаряемость масла. Один из важнейших показателей, определяющий стабильность смазки как при длительном хранении, так и при эксплуатации в условиях высокой температуры. Повышение концентрации загустителя за счет уменьшения количества масла приводит к изменению многих других характеристик.

Klüber Lubrication является крупным производителем смазочных материалов и предлагает качественную продукцию для различных областей применения.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Пластичные автомобильные смазки

Введение

Пластичные (консистентные) смазки занимают особое место в организации технического обслуживания автомобиля. Они, например, являются основным эксплуатационным материалом при первом техническом обслуживании. Качество применяемых пластичных смазок влияет на срок службы многих деталей автомобиля, надежность его работы, а также затраты на техническое обслуживание и ремонт.

1. Назначение и требования к пластичным смазкам

Для смазки автомобилей наряду с жидкими маслами применяются пластичные смазки, находящиеся в пластическом мазеобразном состоянии. Применяются они в таких узлах автомобилей, где трудно создать герметичность для жидкого масла и трудно защитить поверхности деталей от проникновения влаги, пыли, грязи.

Пластичные смазки обладают более низкими смазочными качествами, чем жидкие масла, и поэтому применяются там, где относительно невелики потери на трение. В некоторых случаях пластичная смазка применяется только или главным образом для защиты от коррозии.

Требования к автомобильным пластичным смазкам вытекают из их назначения и сводятся к следующему:

Разделять трущиеся детали прочной смазочной пленкой для уменьшения износов и потерь на трение;

Удерживаться в узлах трения, не вытекая из них;

Защищать трущиеся детали от попадания пыли, влаги и грязи;

Не вызывать коррозионного износа деталей;

Легко припрессовываться (прокачиваться) по смазочным каналам, не требуя для этого слишком больших давлений;

Не изменять длительное время своих свойств в процессе работы и хранения;

Быть экономичными и недефицитными.

2. Производство пластичных смазок

Производство пластичных смазок существенно отличается от производства жидких масел и в основном сводится к смешиванию (варке) в определенных пропорциях входящих в них компонентов.

Основой любой консистентной смазки является жидкое минеральное масло (75--90 %).

От качества жидкого масла зависят смазывающие свойства консистентной смазки.

Вторым непременным составным элементом смазки является загуститель. Добавление к жидкому минеральному маслу загустителя превращает его в пластическую смазку, т. е. густую малоподвижную мазеобразную массу От вида загустителя зависят такие важные эксплуатационные свойства пластических смазок, как температурная стойкость и влагостойкость. Загустители делятся на немыльные и мыльные.

В качестве немыльных загустителей используются парафин, церезин, петролатум, воск и др.

Пластическая смазка, изготовленная на немыльном загустителе (углеводородная), обладает хорошей химической и физической стабильностью и хорошо предохраняет детали от окисления кислородом воздуха. В то же время она имеет низкие смазывающие и температурные свойства и поэтому преимущественно используется как защитная (кроме алюминиевых деталей).

Большинство автомобильных пластических смазок (80 %) изготавливается на мыльных загустителях, которое более сложно, чем на немыльных, и может вестись последовательно, когда вначале изготавливается мыло-загуститель, а затем смазка, а чаще эти процессы совмещаются.

Мыло-загуститель получают омылением жира щелочью.

Мыльные смазки по типу катиона делят на кальциевые, натриевые, литиевые, бариевые, алюминиевые и другие (используют около 10 различных мыл, а также их смеси).

В зависимости от состава жиров, употребляемых для приготовления мыльных загустителей, выделяют смазки на синтетических жирных кислотах (получают при окислении парафинов) и природных жирах, а также на технических жирных кислотах (стеариновой, 12-окси-стеариновой и др.).

Все более широкое применение находят комплексные мыльные смазки, для приготовления которых используют мыла высших жирных кислот и соли низкомолекулярных органических (иногда и минеральных) кислот.

В качестве загустителей все чаще используют продукты неорганического происхождения -- силикагель, бентонитовые глины и технический углерод.

3. Физико-химические свойства

Физико-химические свойства смазок характеризуются рядом показателей, указываемых в стандартах или технических условиях. Большинство из этих показателей по названию совпадают с предусмотренными для жирных масел, но отличаются от них количественными значениями и особенностями методов испытаний. Другая часть показателей является специфической только для пластических смазок.

Кроме того, номенклатура показателей пластических смазок несколько различается в зависимости от типа смазок.

Все показатели физико-химических свойств пластических смазок с некоторой условностью делятся на две группы.

К первой группе показателей, характеризующих прокачиваемость, температурные условия применения смазки, смазывающие и защитные ее свойства, относятся: пенетрация, температура каплепадения, эффективная вязкость, предел прочности, коллоидная стабильность.

Ко второй группе, характеризующей предельное содержание примесей, относятся: содержание щелочей, кислот, механических примесей, воды, золы.

Эффективная вязкость -- это вязкость смазки, соответствующая истинной вязкости такой ньютоновской жидкости, которая при заданном напряжении сдвига имеет ту же среднюю скорость деформации (средний градиент скорости). Эффективная вязкость характеризует прокачиваемость пластических смазок по шлангам и трубкам к узлам трения под определенным давлением, зависящим от размеров шлангов и трубок, и минимальную температуру, при которой смазка способна прокачиваться. Эффективная вязкость характеризует также пусковые свойства механизмов. Эффективную вязкость определяют автоматическими капиллярными вискозиметрами АКВ-4 или АКВ-2.

Предел прочности (предельное напряжение сдвига) показывает, какое минимальное усилие надо приложить" к смазке, чтобы при определенной температуре изменить ее форму и сдвинуть один слой смазки относительно другого. Если смазка при данной температуре обладает достаточной прочностью, это значит, что она будет удерживаться на негерметизированных поверхностях трения и не будет сползать с вертикальных поверхностей. Предел прочности смазок определяют пластомером К-2 и прочномером СК.

Пенетрация характеризует густоту (консистентность) смазки и выражается в градусах, соответствующих числу десятых долей мм глубины погружения в смазку конуса иглы под действием собственного веса (150 г) за 5 с при температуре плюс 25°С.

Чем мягче смазка, тем глубже погружается конус и тем выше пенетрация. Лучшей пластичной смазкой будет та, у которой с повышением температуры меньше увеличивается пенетрация.

Температура каплепадения позволяет установить, при какой температуре смазка расплавляется и превращается в жидкость, теряя свои смазывающие свойства. Для надежной смазки рабочая температура механизма должна быть на 10--20° меньше температуры каплепадения смазки. Смазка с низкой температурой каплепадения не будет удерживаться в механизме и ее придется часто пополнять, а смазка с чрезмерно высокой температурой каплепадения вызовет усиленный нагрев трущихся деталей.

Коллоидная стабильность характеризует способность пластичной смазки сопротивляться выделению из нее масла. Она оценивается количеством масла, % по массе, перешедшего из смазки к слою фильтровальной бумаги. Интенсивность выделения масла из смазки возрастает при повышении температуры, под воздействием центробежных сил и т. д.

Испытание на коррозию металлических пластинок характеризует коррозионность пластичных смазок вследствие наличия свободных (не омыленных) органических кислот или щелочей и продуктов окисления смазки. Для испытания в смазку, подогретую до 100°С, погружают на 3 часа отшлифованные и обезжиренные медные и стальные пластинки. Смазка считается выдержавшей испытания, если после промывки на медных пластинках не обнаруживается зелени, побежалости или оттенков какого-либо цвета, а на стальных пластинках нет точек коррозии.

Содержание свободных органических кислот в смазках не допускается, а содержание свободных щелочей жестко ограничивается. Они вызывают коррозию деталей, а также ухудшают коллоидную стабильность, предел прочности. Определение содержания свободных органических кислот и щелочей производится путем титрования растворов смазки соляной кислоты (при определении щелочей) или едким калием (при определении кислот).

Содержание воды в пластичных смазках сказывается различно в зависимости от типа смазки. Смазки на немыльных загустителях разрушаются водой, и поэтому ее присутствие не допускается, В натриевых и кальциево-натриевых смазках допускается ограниченное содержание воды. В кальциевых смазках вода входит в их структуру, она служит стабилизатором, без нее смазка распадается на масло и кальциевое мыло, но количественное содержание воды должно быть ограничено (до 1,5--3,0 %). Содержание воды в смазке определяется аналогично определению воды в масле и топливе.

4. Марки пластичных смазок и их применение

Применяемые для смазки автомобилей пластичные смазки по их основному назначению подразделяют на антифрикционные, защитные и уплотнительные.

Антифрикционные смазки снижают износ и трение сопряженных деталей механизмов, ниже приведены применяемые группы антифрикционных смазок.

Антифрикционные смазки общего назначения для обычных температур (группа С) используют для узлов трения с рабочей температурой до 70°С. К этой группе смазок относят; солидолы, смазки AM (карданные), ЯНЗ-2, графитную УСсА, ЛИТОЛ-24 и ЦИАТИМ-201.

Солидолы вырабатывают загущением индустриальных масел кальциевыми мылами Жирных кислот, получаемых на основе натуральных растительных масел (жировой солидол) или синтетических жирных кислот. Солидолы предназначены для смазывания грубых и малоответственных поверхностей трения машин и механизмов, ручного инструмента. Солидолы работоспособны в течение относительно малого срока времени.

Пресс-солидол С используют главным образом для поверхностей трения шасси автомобилей, к которым он подается под давлением; солидол С -- для смазывания подшипников качения и скольжения, шаровых, винтовых и цепных передач, тихоходных шестеренных редукторов и других узлов трения. Жировой солидол УС, представляющий собой однородную мазь от светло-желтого до темно-коричневого цвета, выпускают двух марок: УС-1 (пресс-солидол) и УС-2, работоспособность которых ограничена диапазоном температур от -50 до +65°С. В маркировке буквы обозначают: у -- универсальная, с -- синтетическая, с -- сред не плавкая. Гидратированная кальциевая смазка графитная УСсА применяется для смазывания рессор автомобилей, открытых зубчатых колес, торсионных подвесок, резьб домкратов. По внешнему виду -- это однородная мазь от темно-коричневого до черного цвета. Применять солидолы в качестве защитных смазок не рекомендуется, так как в них содержится до 3 % воды, которая может вызывать коррозию металла под слоем смазки.

Смазка ЯНЗ-2 -- автомобильная тугоплавкая кальциево-натриевая служит дня смазывания подшипников ступиц колес, червячного вала коробки передач, генераторов автомобилей и др. По внешнему виду это однородная мазь от светло-желтого до темно-коричневого цвета. Может заменять солидол.

Смазка ЛИТОЛ-24 -- универсальная смазка на литиевых мылах 12-оксистеариновой кислоты предназначена для поверхностей трения, для которых рекомендуются солидолы и смазка ЯНЗ-2.

До недавнего времени большую часть литиевых смазок готовили на мылах стеариновой кислоты -- ЦИАТИМ-201, которая предназначена для узлов трения, работающих при относительно низких нагрузках и невысоких температурах.

Смазки для повышенных температур (группа 0) используют для узлов трения с рабочей температурой до 110°С, К этой группе относятся смазки: ЦИАТИМ-202, ЛЗ-31, 1-13.

Смазка ЦИАТИМ-202 служит для смазывания подшипников качения, работающих в интервале температур -40 -- +110°С. Смазка токсична, и при работе с ней следует применять индивидуальные средства защиты. По внешнему виду это однородная мягкая мазь от желтого до светло-коричневого цвета.

Смазку ЛЗ-31 применяют для закрытых подшипников качения, не контактирующих с водой, а также для выжимного подшипника сцепления автомобилей ЗИЛ и ГАЗ, работающих в интервале температур от --40 до +20°С. По внешнему виду это мазь от светло-коричневого до светло-желтого цвета.

Смазка 1-13 на натриевых и натриево-кальциевых мылах предназначена для смазывания подшипников качения, опор карданного вала, первичного вала коробки передач, ступиц колес, оси и шарниров педалей управления. Смазка готовится загущением нефтяных масел натриево-кальциевым мылом касторового масла. Вариант указанной смазки -- смазка 1-ЛЗ, отличающийся присутствием антиокислителя дифениламина. Смазка по внешнему виду -- однородная мазь от светло-коричневого до коричневого цвета, применяется при температуре от --20 до +110°С„

Смазка Консталин (1 и 2) изготавливается на натриевых и натриево-кальциевых мылах, служит для поверхностей трения, работающих в условиях отсутствия влаги при температуре от --20 до +110°С. По внешнему виду -- это однородная мазь от светло-желтого до темно-коричневого цвета.

Редукторные (трансмиссионные) смазки (группа Т) предназначены для зубчатых и винтовых передач всех видов. К этой группе относится индустриальная кальциевая смазка ЦИАТИМ-208, Смазку используют для смазывания тяжелонагруженных шестеренных редукторов, работающих при температуре от--30 до +100°С. По внешнему виду это однородная вязкая жидкость черного цвета. Смазка токсична, поэтому при работе с ней следует применять индивидуальные средства защиты.

Морозостойкие смазки (группа Н) предназначены для поверхностей трения с рабочей температурой -- 40°С и ниже. К этой группе "относятся смазки ВНИИНП-257, ОКБ--122--7. Смазку ВНИИНП-257 применяют для смазывания шарикоподшипников и маломощных зубчатых передач. Смазка морозостойка, это мягкая консистентная мазь черного цвета, температура применения от -60 до + 150°С. Смазка ОКБ-122-7 служит для смазывания шарикоподшипников и других поверхностей трения, работающих в интервале температур от -40 до +ЮО°С. По внешнему виду это мазь от светложелтого до светло-коричневого цвета.

Химически стойкие смазки (группа X) предназначены для узлов трения, имеющих контакт с агрессивными средами. К этой группе откосятся смазки; ЦИАТИМ-205, ВНИИНП-279. Смазка ЦИАТИМ-205 предохраняет от спекания неподвижные резьбовые соединения., работающие при температуре --60 -- +50°С. По внешнему виду это однородная вазелинообразная мазь от белого до светло-кремового цвета.

К противозадирным и противоизносным смазкам (группа И) относится смазка ЦИАТИМ-203, которая служит для смазывания высоконагруженных шестеренных передач, червячных редукторов, опор скольжения и качения при температуре от -50 до +90°С. Это однородная мазь темно-коричневого цвета без комков.

Защитные (консервационные) смазки (группа К) предназначены для защиты металлических изделий и механизмов от коррозии при хранении, транспортировании и эксплуатации. Наиболее распространенной защитной

смазкой является технический вазелин (УН). Консерва-циснные смазки по объему производства занимают второе место после антифрикционных (около 15 % в общем объеме производства смазок). При правильном нанесении защитных смазок они препятствуют проникновению к металлической поверхности коррозионно-агрес-сибых веществ, влаги и кислорода воздуха, тем самым предотвращают коррозию в течение 10--15 лет. Для улучшения защитных и противокоррозионных свойств в смазки вводят специальные присадки. Наряду с пластичными защитными смазками используют жидкие консервационные масла, пленкообразующие ингибиро-ванные нефтяные составы (ПИНС), мастики и некоторые другие продукты нефтяного происхождения. Несмотря на широкое распространение консервационных пластичных смазок, они имеют ряд недостатков. Одним из серьезных является большая трудность нанесения и удаления их с защищаемых поверхностей по сравнению с жидкими продуктами. Чтобы нанести или удалить смазку, зачастую приходится разбирать механизм, что осложняет и удлиняет консервацию и расконсервацию изделий.

5. Уплотнительные смазки

Уплотнительные смазки предназначены для герметизации зазоров и щелей, подвижных и неподвижных узлов трения. Уплотнительной смазкой является смазка бензиноупорная (БУ). С ее помощью могут быть уплотнены соединения топливопроводов, топливных насосов, кранов систем питания и смазки. Она содержит цинковое мыло, касторовое масло и глицерин. Зимой для понижения вязкости можно добавлять до 25 % спирта.

Выбор смазок необходимо производить в соответствии с условиями работы узлов автомобиля и техническими характеристиками смазок, приведенными в табл. 1.

Таблица 1 Основные характеристики пластичных смазок

Вязкость, Па-с, при температуре

Температура применения, °С

Солидол С

от -30 до +60

Пресс-солидол С

от -40 до +50

Графитная УСсА

от -20 до +60

от -30 до +100

ЦИАТИМ-201

от -60 до +90

ЦИАТИМ-202

от -40 до +110

ЦИАТИМ-203

от -50 до +100

от -40 до +120

Кон Сталин 1

от -20 до +110

Koi [станин 2

от -20 до +110

ВНИИНП-257

при-50"С -- 200

от ^40 до +130

6. Определение качества и марки пластичных смазок

Необходимость определения в автохозяйстве марки пластичной смазки встречается довольно часто, так как номенклатура используемых смазок велика, а по внешнему виду они мало отличаются. Пользуясь такими признаками, как цвет, влагостойкость, растворимость в бензине и жировое пятно, можно установить вид пластичной смазки, а в некоторых случаях ориентировочно и конкретную ее марку.

Цвет может служить хорошим признаком для графитной смазки, имеющей темный цвет от темно-коричневого до черного, и до некоторой степени для технического вазелина, имеющего цвет от светло-коричневого до темно-коричневого и прозрачного в тонком слое. Остальные же "Пластичные смазки могут иметь цвет от светло-желтого до темно-коричневого и различить их по этому признаку нельзя.

Влагостойкость дает возможность отличить солидолы и технический вазелин от других смазок и, прежде всего, от консталинов. При растирании пальцами смазки с небольшим количеством воды солидолы и технический вазелин (влагостойкие смазки (не намыливаются и не смываются).

Растворимость в бензине позволяет различить смазку на немыльном загустителе (защитные смазки) от смазок на мыльном загустителе (антифрикционные смазки). Смазка на немыльном загустителе, смешанная с четырехкратным количеством бензина и подогретая до 60"С, растворяется и превращается в прозрачный раствор, а смазка на мыльном загустителе не растворяется.

Жировое пятно, образовавшееся на фильтровальной бумаге от нанесения на нее комочка пластичной смазки, может послужить признаком для определения ее вида. Фильтровальная бумага с пластичной смазкой подогревается над каким-либо источником тепла, от чего смазка полностью или частично расплавляется, образуя масляное пятно. Технический вазелин расплавляется полностью, оставляя равномерное желтое пятно. Графитная смазка образует темное пятно с четко видимыми включениями графита. Солидолы оставляют пятно с мягким остатком в центре обычно того же цвета, что и пятно. Консталины и кальциево-натриевые смазки образуют пятно меньшего диаметра и остаются частично на бумаге в нерасплавленном виде и при интенсивном нагреве до обугливания бумаги.

Поступающие в автохозяйства пластинчатые смазки по физико-химическим свойствам должны полностью отвечать соответствующим стандартам или техническим условиям.

По внешнему виду пластичная смазка должна представлять собой однородную массу без наличия комков, посторонних включений, примесей или выделившегося масла. Смазка, не отвечающая этим условиям, должна быть забракована.

Для проверки наличия абразивных примесей комок смазки растирается между двумя стеклами или же между пальцами. Механические примеси обнаруживаются также путем расплавления комка смазки на фильтровальной бумаге.

Подобные документы

    Физико-химические и эксплуатационные свойства автомобильных смазок на примере ЛИТОЛ 24. Классификация пластичных смазок по NLGI, DIN 51 502, ISO 6743/9. Группы и подгруппы смазочных материалов в соответствии с ГОСТом 23258-78, анализ их совместимости.

    реферат , добавлен 16.11.2012

    Подбор дисперсионных сред, дисперсных фаз и введение добавок при изготовлении пластичных смазок. Общие требования, свойства, классификация и система обозначения гидравлических масел. Физико-химические и эксплуатационные свойства тормозных жидкостей.

    контрольная работа , добавлен 24.02.2014

    Эксплуатационные свойства пластичных смазок: температура каплепадения, эффективная вязкость, коллоидная стабильность и водостойкость. Химмотологическая карта горюче-смазочных материалов и спецжидкостей, применяемых по необходимости при ремонтных работах.

    курсовая работа , добавлен 06.03.2015

    Применение бензинов в поршневых двигателях внутреннего сгорания с принудительным воспламенением. Марки дизельного топлива и моторных масел, применяемых в отечественном сельском хозяйстве. Гидравлические, трансмиссионные масла и консистентные смазки.

    доклад , добавлен 12.12.2010

    Показатели качества, классификация и ассортимент эксплуатационных материалов: бензинов, моторных и трансмиссионных масел, пластичных смазок. Процессы, происходящие при воспламенении и сгорании в цилиндре двигателя. Технологии окраски автомобилей.

    курсовая работа , добавлен 16.05.2011

    Процесс производства и технология получения пластичных смазок. Эксплуатационные свойства бензина и показатели их оценивающие. Система классификации и маркировка тормозных жидкостей. Характеристика эксплуатационных материалов, их классификация по SAE.

    контрольная работа , добавлен 13.08.2012

    Смазочные материалы: выполняемая ими функция, классификация в зависимости от агрегатного состояния. Сравнение смазок с маслами. Состав и компоненты пластичных смазок. Классификация присадок к смазочным материалам по назначению, их основные характеристики.

    реферат , добавлен 04.11.2012

    Изучение количества и рационального применения в тракторах, автомобилях и сельскохозяйственной технике топлива, масел, смазок и специальных жидкостей. Основные и альтернативные виды топлива, их физико-химические свойства и предъявляемые к ним требования.

    реферат , добавлен 30.11.2010

    Технологии получения топлив, их физико-химические, эксплуатационные и экологические свойства. Основные свойства бензинов, обеспечивающих нормальную эксплуатацию двигателей. Производство автомобильных бензинов, их марки, применение и характеристика.

    контрольная работа , добавлен 20.08.2017

    Древесные материалы, которые применяются на автотранспортных предприятиях, краткая характеристика. Основные марки топлив, моторных и трансмиссионных масел, пластичных смазок и специальных жидкостей, применяемых для автомобилей ГАЗ-31029 при эксплуатации.

Пластичные смазки использовались еще в XIV веке до н.э. египтянами для осей деревянных колесниц. Изготавливали их из оливкового масла, смешивая его с известью.

Современные смазки представляют собой многокомпонентные структуры, отвечающие многим, зачастую противоречивым требованиям, которые выдвигает специфика работы различных узлов.

Пластичные смазки используют для уменьшения трения и износа узлов, в которых создавать принудительную циркуляцию масла нецелесообразно или невозможно. Легко проникая в зону контакта трущихся деталей, смазки удерживаются на трущихся поверхностях, не стекая с них, как это происходит с маслом. Смазки применяются также в качестве защитных или уплотнительных материалов.

К достоинствам пластичных смазок следует отнести способности:

    Удерживаться

    Не вытекать

    Не выдавливаться из негерметизированных узлов трения

    Более широкий, чем у масел, температурный диапазон применения

Все это позволяет упростить конструкцию узлов трения, следовательно, уменьшить их металлоемкость и стоимость. Некоторые смазки обладают хорошей герметизирующей способностью и хорошими консервационными свойствами.

Основными недостатками являются удержание продуктов механического и коррозионного износа, которые увеличивают скорость разрушения трущихся поверхностей, и плохой отвод тепла от смазываемых деталей.

По области применения в соответствии с ГОСТ смазки делятся на следующие группы:

  • Антифрикционные смазки – снижают силу трения и износ различных трущихся поверхностей
  • Консервационные смазки – предотвращают коррозию металлических поверхностей механизмов при их хранении и эксплуатации
  • Уплотнительные смазки – герметизируют и предотвращают износ резьбовых соединений и запорной арматуры (вентили, задвижки, краны)
  • Канатные смазки – предотвращают износ и коррозию стальных канатов

В автомобилях наибольшее распространение получили антифрикционные смазки многоцелевые.

В бывшем СССР до 1979 г. наименования смазок устанавливали произвольно.

В результате одни смазки получили словесное название (Солидол-С), другие – номер (№ 158), третьи – обозначение создавшего их учреждения (ЦИАТИМ-201, ВНИИНП-292). В 1979 г. был введен ГОСТ 23258-78 (действующий в настоящее время в России), согласно которому наименование смазки должно состоять из одного слова и цифры.

За рубежом фирмы-производители вводят наименование смазок произвольно из-за отсутствия единой для всех классификации по эксплуатационным показателям (за исключением классификации по консистенции).

Это привело к появлению огромного ассортимента пластичных смазок.

Не каждая смазка допускает перемешивание с другой, поэтому перед закладкой новой смазки рекомендуется тщательно удалить остатки старой. Сделать это необходимо еще и потому, что старая смазка содержит продукты износа. Отечественные автомобили смазываются в соответствии со своей картой смазки. В случае ее отсутствия можно воспользоваться таблицей.

Узел трения
Наименование смазки
Регулируемые подшипники ступицы, нерегулируемые подшипники полуоси
Литол-24, ЛСЦ-15, Зимол, Лита
Подшипники промежуточной опоры карданного вала
Литол-24, ЛСЦ-15
Подшипники генератора, стартера и других электродвигателей, оси октан-корректора распределителя зажигания
Фиол-2М*, Литол-24, Зимол, № 158, ЦИАТИМ-201
Игольчатые подшипники карданных шарниров
Фиол-2У*, ШРУС-4*, № 158
Шарниры равных угловых скоростей
ШРУС-4
Шарниры подвески и рулевого управления, имеющие пресс-масленки
ШРБ-4, ШРУС-4, Литол-24
Герметизированные разборные шарниры подвески
ШРБ-4*
Герметизированные шарниры рулевого управления
ЛСЦ-15*
Герметизированные неразборные шарниры подвески
ШРБ-4*
Шлицевые соединения
ЛСЦ-15*, Литол-24
Оси, валики, подшипники скольжения, петли, тросы в оболочках
ЛСЦ-15*, Литол-24, ЦИАТИМ-201
Гибкий вал спидометра
ЦИАТИМ-201
Переключатель указателей поворота
КСБ*
Шарниры и оси привода педалей газа, выключения сцепления
ЛСЦ-15*
Шарниры подвески и рулевого управления легковых автомобилей ГАЗ
ВНИИ НП-242*, Фиол-2У
Рессоры
Графитная, Лимол, ВНИИ НП-232
Монтаж деталей, работающих в контакте резина – металл
ДТ-1
Стеклоподъемники, замки, стопорные механизмы дверей
ЛСЦ-15*

* Применяется в качестве несменяемой на весь период эксплуатации.

Подделка или смазка, не соответствующая названию на упаковке, выявляется в некоторых случаях достаточно просто.

Встретив в розничной торговле смазку в банке или тюбике с обозначением неизвестной вам фирмы, обратите внимание на товарный знак изготовителя. Если таковой отсутствует на упаковке, желательно посмотреть на сертификат соответствия, где должен быть обязательно указан изготовитель смазки и другая ценная информация (срок действия сертификата, данные об испытательной лаборатории, проводившей анализ, информация об органе, выдавшем сертификат).

Например, вы взяли смазку Литол-24, вызывающую у вас сомнение. Попробуйте опустить небольшую емкость с небольшим количеством смазки в кипящую воду. Плавление проверяемой смазки означает, что это не Литол-24 и ее применение обязательно вызовет нежелательные последствия для узлов автомобиля.

Подавляющее большинство современных смазок (в т. ч. литиевые) имеют температуру каплепадения значительно выше +100 °С. Специалистам известны случаи продажи банок с наименованием ШРУС-4, которые были наполнены дешевой графитной смазкой, представляющей собой смесь порошкообразного графита и Солидола, с максимальной температурой применения +65 °С.

Зарубежные производители пластичных смазок – это в основном крупные нефтеперерабатывающие корпорации, известные автолюбителям по производимым ими качественным моторным и трансмиссионным маслам.



Поделиться