Шумахер энергосберегающие типы обмоток для электродвигателя. Международные стандарты энергоэффективности электродвигателей

УДК 621.313.333:658.562

ЭНЕРГОЭФФЕКТИВНЫЕ АСИНХРОННЫЕ ДВИГАТЕЛИ ДЛЯ РЕГУЛИРУЕМОГО ЭЛЕКТРОПРИВОДА

О.О. Муравлева

Томский политехнический университет E-mail: [email protected]

Рассмотрена возможность создания энергоэффективных асинхронных двигателей без изменения поперечного сечения для регулируемых электроприводов, что позволяет обеспечить реальное энергосбережение. Показаны пути обеспечения энергосбережения за счет использования асинхронных двигателей повышенной мощности в насосных агрегатах сферы жилищно-коммунального хозяйства. Проведенные экономические расчеты и анализ результатов показывают экономическую эффективность использования двигателей повышенной мощности, несмотря на увеличение стоимости самого двигателя.

Введение

В соответствии с «Энергетической стратегией на период до 2020 года» высшим приоритетом государственной энергетической политики является повышение энергоэффективности промышленности. Эффективность российской экономики существенно снижается из-за ее высокой энергоемкости. По этому показателю Россия опережает США в 2,6 раза, Западную Европу в 3,9 раза, Японию - в 4,5 раза . Лишь отчасти указанные различия могут быть оправданы суровыми климатическими условиями России и обширностью ее территории. Одним из основных способов предотвращения энергетического кризиса в нашей стране - проведение политики, предусматривающей масштабное внедрение на предприятиях энерго- и ресурсосберегающих технологий. Энергосбережение превратилось в приоритетное направление технической политики во всех развитых странах мира.

В ближайшем будущем проблема энергосбережения повысит свой рейтинг при ускоренном развитии экономики, когда появится дефицит электрической энергии и компенсировать его можно двумя путями - введением новых энергогенерирующих систем и энергосбережением. Первый путь более дорогой и длительный во времени, а второй -значительно быстрее и экономически выгоднее потому, что 1 кВт мощности при энергосбережении стоит в 4...5 раз меньше, чем в первом случае. Большие затраты электрической энергии на единицу всеобщего валового продукта создают огромный потенциал энергосбережения в народном хозяйстве. В основном высокая энергоемкость экономики вызвана использованием энергорасточительных технологий и оборудования, большими потерями энергоресурсов (при их добыче, переработке, преобразовании, транспорте и потреблении), нерациональной структурой экономики (высокая доля энергоемкого промышленного производства). В результате накопился обширный потенциал энергосбережения, оцениваемый в 360.430 млн. т у. т., или 38.46 % современного потребления энергии . Реализация этого потенциала может позволить при росте экономики за 20 лет в 2,3...3,3 раза ограничиться ростом потребления энергии всего в 1,25.1,4 раза, значительно повысить качество жизни граждан и конкурентоспособность отечествен-

ных товаров и услуг на внутреннем и внешнем рынках. Таким образом, энергосбережение является важным фактором экономического роста и повышения эффективности народного хозяйства.

Целью данной работы является рассмотрение возможностей создания энергоэффективных асинхронных двигателей (АД) для регулируемых электроприводов для обеспечения реального энергосбережения.

Возможности создания энергоэффективных

асинхронных двигателей

В настоящей работе на основе системного подхода определены эффективные пути обеспечения реального энергосбережения. Системный подход к энергосбережению объединяет два направления - совершенствование преобразователей и асинхронных двигателей. Учитывая возможности современной вычислительной техники, совершенствование методов оптимизации, приходим к необходимости создания программно-вычислительного комплекса для проектирования энергоэффективных АД, работающих в регулируемых электроприводах. Принимая во внимание большой потенциал энергосбережения в жилищнокоммунальном хозяйстве (ЖКХ), рассмотрим возможности применения регулируемого электропривода на базе асинхронных двигателей в этой сфере.

Решение проблемы энергосбережения возможно при совершенствовании регулируемого электропривода на базе асинхронных двигателей, которые должны быть спроектированы и изготовлены специально для энергосберегающих технологий. В настоящее время потенциал энергосбережения для самых массовых электроприводов - насосных агрегатов составляет более 30 % от потребляемой мощности. На основании мониторинга в Алтайском крае можно получить при использовании регулируемого электропривода на базе асинхронных двигателей следующие показатели: экономия электроэнергии - 20.60 %; экономия воды - до 20 %; исключение гидравлических ударов в системе; снижение пусковых токов двигателей; минимизация затрат на обслуживание; снижение вероятности возникновения аварийных ситуаций . Это требует совершенствования всех звеньев электропривода, и, прежде всего, основного элемента, выполняющего электромеханическое преобразование энергии, - асинхронного двигателя.

Сейчас в большинстве случаев в регулируемом электроприводе используются серийные асинхронные двигатели общего назначения. Уровень расхода активных материалов на единицу мощности АД практически стабилизировался. Согласно некоторым оценкам применение серийных АД в регулируемых электроприводах приводит к снижению их КПД и повышению установленной мощности на 15.20 % . Среди российских и зарубежных специалистов высказывается мнение о том, что для подобных систем нужны специальные двигатели. В настоящее время требуется новый подход к проектированию в связи с энергетическим кризисом. Масса АД перестала быть определяющим фактором. На первый план выходит повышение энергетических показателей, в том числе за счет увеличения их стоимости и расхода активных материалов.

Одним из перспективных способов совершенствования электропривода является проектирование и изготовление АД специально для конкретных условий эксплуатации, что благоприятно для обеспечения энергосбережения. При этом решается задача адаптации АД к конкретному электроприводу, что дает наибольший экономический эффект в условиях эксплуатации.

Следует отметить, что выпуск АД специально для регулируемого электропривода производят фирмы Simens (Германия), Atlans-Ge Motors (США), Lenze Bachofen (Германия), Leroy Somer (Франция), Мэйден (Япония). Существует устойчивая тенденция мирового электромашиностроения по расширению производства таких двигателей. На Украине разработан программный комплекс проектирования модификаций АД для регулируемого электропривода . В нашей стране утвержден ГОСТ Р 51677-2000 для АД с высокими энергетическими показателями и возможно в ближайшее время будет организован их выпуск. Применение модификаций АД, специально спроектированных для обеспечения эффективного энергосбережения, - перспективное направление для совершенствования асинхронных двигателей.

При этом встает вопрос об обоснованном выборе подходящего двигателя из разнообразной по исполнению, модификациям номенклатуры выпускаемых двигателей, потому что применение общепромышленных асинхронных двигателей для электропривода с регулируемой частотой вращения оказывается неоптимальным по массогабаритным, стоимостным и энергетическим показателям. В связи с этим требуется проектирование энергоэффективных асинхронных двигателей.

Энергоэффективным является асинхронный двигатель, в котором с использованием системного подхода при проектировании, изготовлении и эксплуатации повышены КПД, коэффициент мощности и надежность. Характерными требованиями к общепромышленным приводам являются минимизация капитальных и эксплуатационных затрат,

в том числе и на техническое обслуживание. В этой связи, а также в силу надежности и простоты механической части электропривода подавляющее большинство общепромышленных электроприводов строятся именно на основе асинхронного двигателя - наиболее экономичного двигателя, который конструктивно прост, неприхотлив и имеет низкую стоимость. Анализ проблем регулируемых асинхронных двигателей показал, что их разработка должна выполняться на основании системного подхода с учетом особенностей работы в регулируемых электроприводах .

В настоящее время в связи с возросшими требованиями к эффективности за счет решения вопросов энергосбережения и повышения надежности функционирования электротехнических систем приобретают особую актуальность задачи модернизации асинхронных двигателей для улучшения их энергетических характеристик (КПД и коэффициента мощности), получения новых потребительских качеств (совершенствование защиты от окружающей среды, в том числе герметизация), обеспечение надежности при проектировании, изготовлении и эксплуатации асинхронных двигателей. Поэтому при выполнении исследований и разработок в области модернизации и оптимизации асинхронных двигателей необходимо создание соответствующих методик для определения их оптимальных параметров, из условия получения максимальных энергетических характеристик, и расчета динамических характеристик (время пуска, нагрев обмоток и т.д.). В результате теоретических и экспериментальных исследований важно определить наилучшие абсолютные и удельные энергетические характеристики асинхронных двигателей, исходя из требований предъявляемых к регулируемому электроприводу переменного тока.

Стоимость преобразователя обычно в несколько раз выше стоимости асинхронного двигателя одинаковой мощности. Асинхронные двигатели являются основными преобразователями электрической энергии в механическую, и в значительной степени они определяют эффективность энергосбережения.

Существует три пути обеспечения эффективного энергосбережения при применении регулируемого электропривода на базе асинхронных двигателей:

Совершенствование АД без изменения поперечного сечения;

Совершенствование АД с изменением геометрии статора и ротора;

Выбор АД общепромышленного исполнения

большей мощности.

Каждый из этих способов имеет свои достоинства, недостатки и ограничения по применению и выбор одного их них возможен только путем экономической оценки соответствующих вариантов.

Совершенствование и оптимизация асинхронных двигателей с изменением геометрии статора и ротора даст больший эффект, спроектированный двигатель будет иметь лучшие энергетические и динамические характеристики. Однако при этом финансовые затраты на модернизацию и переоборудование производства для его выпуска составят значительные суммы. Поэтому на первом этапе рассмотрим мероприятия, которые не требуют больших финансовых затрат, но при этом позволяют обеспечить реальное энергосбережение.

Результаты исследования

В настоящее время АД для регулируемого электропривода практически не разрабатываются. Целесообразно использовать специальные модификации асинхронных двигателей, в которых сохраняются штампы на листы статора и ротора и основные конструкционные элементы. В данной статье рассматривается возможность создания энергоэффективных АД путем изменения длины сердечника статора (/), числа витков в фазе обмотки статора (№) и диаметра провода при использовании заводской геометрии поперечного сечения. На начальном этапе была произведена модернизация асинхронных двигателей с короткозамкнутым ротором за счет изменения только активной длины . В качестве базового двигателя взят асинхронный двигатель АИР112М2 мощностью 7,5 кВт, выпускающийся на ОАО «Сибэлектромотор» (г. Томск). Значения длины сердечника статора для расчетов принимались в диапазоне /=100.170 %. Результаты расчетов в виде зависимостей максимального (Ппш) и номинального (цн) КПД от длины для взятого типоразмера двигателя представлены на рис. 1.

Рис. 1. Зависимости максимального и номинального коэффициента полезного действия при различной длине сердечника статора

Из рис. 1 видно, как количественно изменяется значение КПД при увеличении длины. Модернизированный АД имеет номинальный КПД выше, чем у базового двигателя при изменении длины сердечника статора до 160 %, при этом наиболее высокие значения номинального КПД наблюдаются при 110.125 %.

Изменение только длины сердечника и, как следствие, уменьшение потерь в стали, несмотря на некоторое увеличение КПД, не является наиболее эффективным путем совершенствования асинхронного двигателя. Более рациональным будет изменение длины и обмоточных данных двигателя (число витков обмотки и сечение провода обмотки статора). При рассмотрении данного варианта значения длины сердечника статора для расчетов принимались в диапазоне /=100.130 % . Диапазон изменения витков обмотки статора принимался равным №=60.110 %. У базового двигателя значение №=108 витков и п»=0,875. На рис. 2 представлен график изменения значения КПД при изменении обмоточных данных и активной длины двигателя. При изменении количества витков обмотки статора в сторону уменьшения, происходит резкое падение значений КПД до 0,805 и 0,819 у двигателей с длиной 100 и 105 % соответственно.

Двигатели в диапазоне изменения длины /=110.130 % имеют значения КПД выше, чем у базового двигателя, например №=96 ^»=0,876.0,885 и №=84 при 1=125.130 % имеют п»=0,879.0,885. Целесообразно рассматривать двигатели с длиной в диапазоне 110.130 %, и при снижении количества витков обмотки статора на 10 %, что соответствует №=96 витков. Экстремум функции (рис. 2), выделенный темным цветом, соответствует данным значениям длины и витков. Значение КПД при этом возрастает на 0,7.1,7 % и составляет

Третий путь обеспечения энергосбережения мы видим в том, что можно применять асинхронный двигатель общепромышленного исполнения большей мощности . Значения длины сердечника статора для расчетов принимались в диапазоне /=100.170 %. Анализ полученных данных показывает, что у исследуемого двигателя АИР112М2 мощностью 7,5 кВт при увеличении его длины до 115 % максимальное значение КПД п,шх=0,885 соответствует мощности Р2ш„=5,5 кВт. Этот факт указывает на то, что можно использовать в регулируемом электроприводе двигатели серии АИР112М2 с увеличенной длиной мощностью 7,5 кВт, вместо базового двигателя мощностью 5,5 кВт серии АИР90М2. У двигателя мощностью 5,5 кВт стои-

мость потребляемой электроэнергии за год составляет 71950 р., что значительно выше аналогичного показателя у двигателя увеличенной длины (115 % от базового) мощностью 7,5 кВт при С=62570 р. Одной из причин этого факта является сокращение доли электроэнергии на покрытие потерь в АД за счет работы двигателя в области повышенных значений КПД.

Повышение мощности двигателя должно быть обосновано как технической, так и экономической необходимостью . При исследовании двигателей повышенной мощности взят ряд АД общепромышленного применения серии АИР в диапазоне мощностей 3.75 кВт. В качестве примера рассмотрим АД с частотой вращения 3000 об/мин, которые чаще всего применяются в насосных агрегатах ЖКХ, что связано со спецификой регулирования насосного агрегата.

Рис. 3. Зависимость экономии за средний срок службы от полезной мощности двигателя: волнистая линия построена по результатам расчета, сплошная - аппроксимирована

Для обоснования экономической выгоды применения двигателей повышенной мощности были проведены расчеты и сравнение двигателей требуемой для данной задачи мощности и двигателей, имеющих мощность на ступень выше. На рис. 3 представлены графики экономии за средний срок службы (Э10) от полезной мощности на валу двигателя. Анализ полученной зависимости показывает

экономическую эффективность использования двигателей повышенной мощности, несмотря на увеличение стоимости самого двигателя. Экономия электроэнергии за средний срок службы составляет для двигателей со скоростью вращения 3000 об/мин 33.235 тыс. р.

Заключение

Огромный потенциал энергосбережения в России определяется большими затратами электрической энергии в народном хозяйстве. Системный подход при разработке асинхронных регулируемых электроприводов и организация их серийного производства может обеспечить эффективное энергосбережение, в частности, в жилищно-коммунальном хозяйстве. При решении проблемы энергосбережения следует применять асинхронный регулируемый электропривод, альтернативы которому в настоящее время нет.

1. Задачу создания энергоэффективных асинхронных двигателей, отвечающих конкретным условиям эксплуатации и энергосбережения, необходимо решать для конкретного регулируемого электропривода, используя системный подход. В настоящее время применяется новый подход к проектированию асинхронных двигателей. Определяющим фактором является повышение энергетических характеристик.

2. Рассмотрена возможность создания энергоэффективных асинхронных двигателей без изменения геометрии поперечного сечения при увеличении длины сердечника статора до 130 % и снижении числа витков обмотки статора до 90 % для регулируемых электроприводов, что позволяет обеспечить реальное энергосбережение.

3. Показаны пути обеспечения энергосбережения за счет использования асинхронных двигателей повышенной мощности в насосных агрегатах сферы жилищно-коммунального хозяйства. Например, при замене двигателя АИР90М2 мощностью 5,5 кВт двигателем АИР112М2 экономия электроэнергии составляет до 15 %.

4. Проведенные экономические расчеты и анализ результатов показывают экономическую эффективность использования двигателей повышенной мощности, несмотря на увеличение стоимости самого двигателя. Экономия электроэнергии за средний срок службы выражается в десятках и сотнях тыс. р. в зависимости от мощности двигателя и составляет 33.325 тыс. р. для асинхронных двигателей с частотой вращения 3000 об/мин.

СПИСОК ЛИТЕРАТУРЫ

1. Энергетическая стратегия России на период до 2020 г. // ТЭК.

2003. - № 2. - С. 5-37.

2. Андронов А.Л. Энергосбережение в системах водоснабжения средствами частотного регулирования электропривода // Электроэнергия и будущее цивилизации: Матер. научн.-техн. конф. - Томск, 2004. - С. 251-253.

3. Сидельников Б.В. Перспективы развития и применения бесконтактных регулируемых электродвигателей // Энергосбережение. - 2005. - № 2. - С. 14-20.

4. Петрушин В.С. Системный подход при проектировании регулируемых асинхронных двигателей // Электромеханика, электротехнологии и электроматериаловедение: Труды 5-ой Меж-дунар. конф. МКЭЭЭ-2003. - Крым, Алушта, 2003. - Ч. 1. -С. 357-360.

5. ГОСТ Р 51677-2000 Машины электрические асинхронные мощностью от 1 до 400 кВт включительно. Двигатели. Показатели эффективности. - М.: Изд-во стандартов, 2001. - 4 с.

6. Muraviev O.P., Muravieva O.O. Induction variable speed drive as the basis of efficient energy saving // The 8th Russian-Korean Intern. Symp. Science and Technology KORUS 2004. - Tomsk: TPU, 2004.

V. 1. - P. 264-267.

7. Muraviev O.P., Muravieva O.O., Vekhter E.V. Energetic Parameters of Induction Motors as the Basis of Energy Saving in a Variable Speed Drive // The 4th Intern. Workshop Compatibility in Power Electronics Cp 2005. - June 1-3, 2005, Gdynia, Poland, 2005. -P. 61-63.

8. Muravlev O.P., Muravleva O.O. Power Effective Induction Motors for Energy Saving // The 9th Russian-Korean Intern. Symp. Science and Technology KORUS 2005. - Novosibirsk: Novosibirsk State Technical University, 2005. - V. 2. - P. 56-60.

9. Вехтер Е.В. Выбор асинхронных двигателей повышенной мощности для обеспечения энергосбережения насосных агрегатов в ЖКХ // Современная техника и технологии: Труды 11-ой Междунар. научн.-практ. конф. молодежи и студентов. -Томск: Изд-во ТПУ, 2005. - Т. 1. - С. 239-241.

УДК 621.313.333:536.24

МОДЕЛИРОВАНИЕ РАБОТЫ МНОГОФАЗНЫХ АСИНХРОННЫХ ДВИГАТЕЛЕЙ В АВАРИЙНЫХ РЕЖИМАХ ЭКСПЛУАТАЦИИ

Д.М. Глухов, О.О. Муравлёва

Томский политехнический университет E-mail: [email protected]

Предложена математическая модель тепловых процессов в многофазном асинхронном двигателе, которая позволяет рассчитать превышение температурыы обмотки при аварийных режимах. Адекватность модели проверена экспериментально.

Введение

Интенсивное развитие электроники и микропроцессорной техники приводит к созданию качественных регулируемых электроприводов переменного тока для замены электроприводов постоянного тока и нерегулируемого электропривода переменного тока благодаря большей надёжности электродвигателей переменного тока по сравнению с машинами постоянного тока .

Регулируемые электроприводы завоевывают области применения нерегулируемых как для обеспечения технологических характеристик, так и с целью энергосбережения. Причем предпочтение отдается именно машинам переменного тока, асинхронным (АД) и синхронным (СД), так как они имеют лучшие массогабаритные показатели, более высокую надежность и срок службы, проще в обслуживании и ремонте по сравнению с коллекторными машинами постоянного тока. Даже в такой традиционно «коллекторной» области, как электрический транспорт, машины постоянного тока уступают место частотно-регулируемым двигателям переменного тока . Все большее место в продукции электромашиностроительных заводов занимают модификации и специализированные исполнения электродвигателей.

Создать универсальный, подходящий для всех случаев жизни частотно-регулируемый двигатель нельзя. Оптимальным он может быть только для каждого конкретного сочетания закона и способа управления, диапазона регулирования частоты и характера нагрузки. Многофазный асинхронный двигатель (МАД) может являться альтернативой трёхфазным машинам при питании от преобразователя частоты.

Целью настоящей работы является разработка математической модели для исследования тепловых полей многофазных асинхронных двигателей как в установившихся, так и в аварийных режимах работы, которые сопровождаются отключением (обрывом) фаз (или одной фазы) для того, чтобы показать возможность работы асинхронных машин в составе регулируемого электропривода без применения дополнительных средств охлаждения.

Моделирование теплового поля

Особенности эксплуатации электрических машин в регулируемом электроприводе, а также высокие вибрации и шум, накладывая определённые требования к конструкции, требуют иные подходы при проектировании. Вместе с тем, особенности многофазных двигателей делают такие машины пригодными для применения в регулируемых при-

Номер в формате pdf (4221 kБ)

Д.А. Дуюнов , руководитель проекта, ООО «АС и ПП», г. Москва, Зеленоград

В России на долю асинхронных двигателей, по разным оценкам, приходится от 47 до 53% потребления всей вырабатываемой электроэнергии. В промышленности - в среднем 60%, в системах холодного водоснабжения - до 90%. Они осуществляют практически все технологические процессы, связанные с движением, и охватывают все сферы жизнедеятельности человека. С появлением новых, так называемых двигателей с совмещенными обмотками (ДСО) имеется возможность существенно улучшить их параметры без увеличения цены.

На каждую квартиру современного жилого дома приходится асинхронных двигателей больше, чем в ней жильцов. Ранее, поскольку задачи экономии энергоресурсов не было, при проектировании оборудования стремились «подстраховаться», и использовали двигатели с мощностью, превышающей расчетную. Экономия электроэнергии в проектировании отходила на второй план, и такое понятие как энергоэффективность не было столь актуальным. Энергоэффективные двигатели - это, скорее, чисто западное явление. Промышленность России такие двигатели не проектировала и не выпускала. Переход к рыночной экономике резко изменил ситуацию. Сегодня сэкономить единицу энергетических ресурсов, например 1 т топлива в условном исчислении, вдвое дешевле, чем ее добыть.

Энергоэффективные двигатели (ЭД), представленные на внешнем рынке, - это асинхронные ЭД с короткозамкнутым ротором, в которых за счет увеличения массы активных материалов, их качества, а также за счет специальных приемов проектирования удается поднять на 1-2% (мощные двигатели) или на 4-5% (небольшие двигатели) номинальный КПД при некотором увеличении цены двигателя. Этот подход может приносить пользу, если нагрузка меняется мало, регулирование скорости не требуется и параметры двигателя правильно выбраны.

Используя двигатели с совмещенными обмотками (ДСО), за счет улучшенной механической характеристики и более высоких энергетических показателей, стало возможным не только экономить от 30 до 50% потребления энергии при той же полезной работе, но и создавать регулируемый энергосберегающий привод с уникальными характеристиками, не имеющий аналогов в мире. Наибольший эффект достигается при использовании ДСО в установках с переменным характером нагрузки. Исходя из того, что в настоящее время мировой объем производства асинхронных двигателей различной мощности достиг семи миллиардов штук в год, эффект от внедрения новых двигателей трудно переоценить.

Известно, что средняя загрузка электродвигателя (отношение мощности, потребляемой рабочим органом машины, к номинальной мощности электродвигателя) в отечественной промышленности составляет 0,3-0,4 (в европейской практике эта величина составляет 0,6). Это значит, что обычный двигатель работает с КПД значительно ниже номинального. Завышенная мощность двигателя часто приводит к незаметным на первый взгляд, но очень существенным отрицательным последствиям в обслуживаемом электроприводом оборудовании, например, к излишнему напору в гидравлических сетях, связанному с ростом потерь, снижению надежности и т.п. В отличие от стандартных, ДСО обладают низким уровнем шумов и вибраций, более высокой кратностью моментов, имеют КПД и коэффициент мощности близкий к номинальному в широком диапазоне нагрузок. Это позволяет поднять среднюю нагрузку на двигатель до 0,8 и повысить характеристики обслуживаемого приводом технологического оборудования, в частности, существенно понизить его энергопотребление.

Экономия, окупаемость, прибыль

Вышеуказанное касается энергосбережения в приводе и призвано сократить потери на преобразование электрической энергии в механическую и повысить энергетические показатели привода. ДСО при широкомасштабном внедрении дают широкие возможности по энергосбережению вплоть до создания новых энергосберегающих технологий.

По данным сайта федеральной службы государственной статистики (http://www.gks.ru/
wps/wcm/connect/rosstat/rosstatsite/main/) потребление электроэнергии в 2011 г. в целом по России составило 1 021,1 млрд кВт·ч.

Согласно приказу Федеральной службы по тарифам от 06.10.2011 г. № 239-э/4 минимальный уровень тарифа на электрическую энергию (мощность), поставляемую покупателям на розничных рынках в 2012 году, составит 164,23 коп/кВт·ч (без НДС).

Замена стандартных асинхронных двигателей позволит экономить от 30 до 50% энергии при той же полезной работе. Экономический эффект от повсеместной замены составит минимум:

1021,1·0,47·0,3·1,6423 = 236,4503 млрд руб. в год.

По Московской области эффект составит минимум:

47100,4·0,47·0,3·1,6423 = 10906,771 млн руб. в год.

Учитывая предельные уровни тарифов на электрическую энергию на периферийных и других проблемных территориях, максимальный эффект и минимальный период окупаемости достигается в регионах с максимальными тарифами - Иркутская область, Ханты-Мансийский автономный округ, Чукотский автономный округ, Ямало-Ненецкий автономный округ и др.

Максимальный эффект и минимальный период окупаемости может быть достигнут при замене двигателей с непрерывным режимом работы, например - насосные агрегаты водоснабжения, вентиляторные установки, прокатные станы, а также высоконагруженных двигателей, например - лифты, эскалаторы, транспортеры.

Для расчета периода окупаемости за основу приняты цены ОАО «УралЭлектро». Полагаем, что с предприятием заключен энергосервисный контракт по замене двигателя АДМ 132 M4 насосного агрегата на условиях лизинга. Цена двигателя 11 641 руб. Стоимость работ по его замене (30% стоимости) 3 492,3 руб. Дополнительные расходы (10% стоимости) 1 164,1 руб.

Всего затрат:

11 641 + 3 492,3 + 1 164,1 = 16 297,4 руб.

Экономический эффект составит:

11 кВт·0,3·1,6423 руб./кВт·ч·1,18·24 = = 153,48278 руб. в сутки (с НДС).

Период окупаемости:

16 297,4 / 153,48278 = 106,18 суток или 0,291 года.

Для остальных мощностей расчет дает аналогичные результаты. Учитывая, что время работы двигателей на промышленных предприятиях может не превышать 12 часов, период окупаемости может составлять не более 0,7-0,8 года.

Предполагается, что по условиям лизингового контракта предприятие, заменившее двигатели на новые, после уплаты лизинговых платежей выплачивает в течение трех лет 30% от экономии электроэнергии. В этом случае доход составит: 153,48278·365·3 = 168 063,64 руб. Следовательно, замена одного двигателя малой мощности позволяет получить доход от 84 до 168 тыс. руб. В среднем от замены двигателей с одного небольшого коммунального предприятия можно получить доход не менее 4,8 млн руб. Внедрение новых двигателей при модернизации стандартных позволит в коммунальной сфере и на транспорте во многих случаях отказаться от дотаций на электроэнергию без роста тарифов.

Особое социальное значение проект приобретает в связи со вступлением России в ВТО. Отечественные производители асинхронных двигателей не в состоянии конкурировать с ведущими мировыми производителями. Это может привести к банкротству многих градообразующих предприятий. Освоение производства двигателей с совмещенными обмотками позволит не только снять эту угрозу, но и составить серьезную конкуренцию на внешних рынках. Поэтому реализация проекта имеет для страны и политическое значение.


Новизна предлагаемого подхода

В последние годы в связи с появлением надежных и приемлемых по цене преобразователей частоты широкое распространение стали получать регулируемые асинхронные приводы. Хотя цена преобразователей и остается достаточно высокой (в два-три раза дороже двигателя), они позволяют в ряде случаев снизить потребление электроэнергии и улучшить характеристики двигателя, приблизив их к характеристикам менее надежных двигателей постоянного тока. Надежность частотных регуляторов также в разы ниже, чем электродвигателей. Не каждый потребитель имеет возможность вложить такие огромные деньги на установку частотных регуляторов. В Европе к 2012 году лишь 15% регулируемых электроприводов укомплектовано двигателями постоянного тока. Поэтому актуально рассматривать проблему энергосбережения главным образом применительно к асинхронному электроприводу, в том числе частотно-регулируемому, оснащенному специализированными двигателями с меньшей материалоемкостью и себестоимостью.

В мировой практике сложилось два основных направления решения указанной проблемы.

Первый - энергосбережение средствами электропривода за счет подачи конечному потребителю в каждый момент времени необходимой мощности. Второй - производство энергоэффективных двигателей, удовлетворяющих стандарту IE-3. В первом случае усилия направлены на снижение стоимости частотных преобразователей. Во втором случае - на разработку новых электротехнических материалов и оптимизацию основных размеров электрических машин.

По сравнению с известными методами повышения энергоэффективности асинхронного привода, новизна предлагаемого нами подхода заключается в изменении основополагающего принципа конструкции классических обмоток двигателя. Научная новизна заключается в том, что сформулированы новые принципы конструирования обмоток двигателей, а так же выбора оптимальных соотношений чисел пазов ротора и статора. На их основе разработаны промышленные конструкции и схемы однослойных и двухслойных совмещенных обмоток, как для ручной, так и для автоматической укладки. На технические решения с 2011 года получено 7 патентов РФ. Несколько заявок находятся на рассмотрении в Роспатенте. Готовятся заявки на патентование за рубежом.

По сравнению с известными, частотно-регулируемый привод может быть выполнен на базе ДСО с повышенной частотой питающего напряжения. Это достигается за счет меньших потерь в стали магнитопровода. Себестоимость такого привода получается существенно ниже, чем при использовании стандартных двигателей, в частности, значительно снижаются шумность и вибрации.

В ходе испытаний, проведенных на стендах Катайского насосного завода, штатный двигатель мощностью 5,5 кВт был заменен на двигатель мощностью 4,0 кВт нашей конструкции. Насос обеспечил все параметры в соответствии с требованиями ТУ, при этом двигатель практически не нагрелся.

В настоящее время ведутся работы по внедрению технологии в нефтегазовом комплексе (компании Лукойл, ТНК-ВР, Роснефть, Бугульминский электронасосный завод), в предприятиях метрополитенов (Международная ассоциация метрополитенов), в горнодобывающей отрасли (Лебединский ГОК) и ряде других отраслей.

Сущность предлагаемой разработки

Сущность разработки вытекает из того, что в зависимости от схемы подключения трехфазной нагрузки к трехфазной сети (звезда или треугольник) можно получить две системы токов, образующих между векторами индукции магнитных потоков угол в 30 электрических градусов. Соответственно, к трехфазной сети можно подключить электродвигатель, имеющий не трехфазную обмотку, а шестифазную. При этом часть обмотки должна быть включена в звезду, а часть в треугольник и результирующие вектора индукции полюсов одноименных фаз звезды и треугольника должны образовывать между собой угол в 30 электрических градусов.

Совмещение двух схем в одной обмотке позволяет улучшить форму поля в рабочем зазоре двигателя и как следствие существенно улучшить основные характеристики двигателя. Поле в рабочем зазоре стандартного двигателя лишь условно можно назвать синусоидальным. На самом деле оно ступенчатое. В результате этого в двигателе возникают гармоники, вибрации и тормозящие моменты, которые оказывают отрицательное воздействие на двигатель и ухудшают его характеристики. Поэтому стандартный асинхронный двигатель обладает приемлемыми характеристиками только в режиме номинальной нагрузки. При нагрузке, отличной от номинальной, характеристики стандартного двигателя резко снижаются, снижается коэффициент мощности и КПД.

Совмещенные обмотки так же позволяют уменьшить уровень магнитной индукции полей от нечетных гармоник, что приводит к существенному снижению общих потерь в элементах магнитопровода двигателя и повышению его перегрузочной способности и удельной мощности. Это так же позволяет выполнять двигатели для работы на более высокие частоты питающего напряжения при использовании сталей, рассчитанных для работы на частоте 50 Гц. Двигатели с совмещенными обмотками обладают меньшей кратностью пусковых токов при более высоких пусковых моментах. Это имеет существенное значение для оборудования, работающего с частыми и затяжными пусками, а так же для оборудования, подключенного к протяженным и высоконагруженным сетям с высоким уровнем падения напряжения. Они генерируют меньше помех в сеть, и меньше искажают форму питающего напряжения, что имеет существенное значение для целого ряда объектов, оснащенных сложной электроникой и вычислительными системами.

На рис. 1 показана форма поля в стандартном двигателе 3000 об./мин в статоре 24 паза.

Форма поля аналогичного двигателя с совмещенными обмотками представлена на рис. 2.

Из приведенных графиков видно, что форма поля двигателя с совмещенными обмотками ближе к синусоидальной, чем у стандартного двигателя. В результате, как показывает имеющийся опыт, без увеличения трудоемкости, при меньшей материалоемкости, без изменения существующих технологий, при равных прочих условиях получаем двигатели, по своим характеристикам существенно превосходящие стандартные. В отличие от ранее известных методов повышения энергоэффективности, предлагаемое решение наименее затратное и реализуемо не только при производстве новых двигателей, но и при капитальном ремонте и модернизации существующего парка. На рис. 3 показано, как изменилась механическая характеристика от замены стандартной обмотки на совмещенную при капитальном ремонте двигателя.

Ни одним другим известным способом невозможно столь радикально и эффективно улучшить механические характеристики существующего парка двигателей. Результаты стендовых испытаний, проведенных Центральной заводской лабораторией ЗАО «УралЭлектро-К» г. Медногорск, подтверждают заявленные параметры. Полученные данные подтверждают и результаты, полученные при проведении испытаний в НИПТИЭМ г. Владимир.

Среднестатистические данные основных энергетических показателей КПД и cos, полученные при испытании партии модернизированных двигателей, превышают каталожные данные стандартных двигателей. В комплексе все вышеприведенные показатели обеспечивают двигателям с совмещенными обмотками характеристики, превосходящие лучшие аналоги. Это было подтверждено даже на первых опытных образцах модернизированных двигателей.

Конкурентные преимущества

Уникальность предлагаемого решения заключается в том, что очевидные на первый взгляд конкуренты, по сути, являются потенциальными стратегическими партнерами. Это объясняется тем, что освоить производство и модернизацию двигателей с совмещенными обмотками можно в кратчайшие сроки практически на любом профильном предприятии, занятом производством или ремонтом стандартных двигателей. При этом не требуется изменения существующих технологий. Для этого достаточно доработать существующую на предприятиях конструкторскую документацию. Ни один конкурирующий продукт не обладает такими преимуществами. При этом не возникает необходимости в получении специальных разрешений, лицензий и сертификатов. Показательным примером может служить опыт сотрудничества с ОАО «УралЭлектро-К». Это первое предприятие, с которым заключен лицензионный договор на право производства энергоэффективных асинхронных двигателей с совмещенными обмотками. По сравнению с частотными приводами, предлагаемая технология позволяет получить большую экономию электроэнергии при существенно меньших капитальных вложениях. В ходе эксплуатации затраты на обслуживание так же существенно ниже. По сравнению с другими энергоэффективными двигателями, предлагаемый продукт отличается более низкой ценой при тех же показателях.

Заключение

Область применения асинхронных двигателей с совмещенными обмотками охватывает практически все сферы жизнедеятельности человека. Ежегодно в мире производится порядка семи миллиардов штук двигателей различной мощности и исполнений. На сегодня практически ни один технологический процесс невозможно организовать без использования электродвигателей. Последствия широкомасштабного использования данной разработки трудно переоценить. В социальной сфере они позволяют существенно снизить тарифы на основные виды услуг. В области экологии они позволяют достичь беспрецедентных результатов. Так, например, при той же полезной работе они позволяют в три раза снизить удельную выработку электроэнергии и как следствие резко сократить удельный расход углеводородов.

Современные трехфазные энергосберегающие двигатели позволяют существенно снизить затраты на электроэнергию благодаря более высокому коэффициенту полезного действия. Другими словами такие двигатели способны выработать большее количество механической энергии из каждого затраченного киловатта электрической энергии. Более эффективное расходование энергии достигается за счет индивидуальной компенсации реактивной мощности. При этом конструкция энергосберегающих электродвигателей отличается высокой надежностью и длительным сроком службы.


Универсальный трехфазный энергосберегающие электродвигатель Вesel 2SIE 80-2B исполнение IMB14

Применение трехфазных энергосберегающих двигателей

Использовать трехфазные энергосберегающие двигатели можно практически во всех отраслях. От обычных трехфазных двигателей они отличаются лишь малым потреблением энергии. В условиях постоянного роста цен на энергоносители энергосберегающие электродвигатели могут стать по-настоящему выгодным вариантом как для небольших производителей товаров и услуг, так и для крупных промышленных предприятий.

Деньги, потраченные на приобретение трехфазного энергосберегающего двигателя, достаточно быстро возвратятся к вам в виде экономии средств, направляемых на приобретение электричества. Наш магазин предлагает вам получить дополнительную выгоду, приобретя качественный трехфазный энергосберегающий двигатель по действительно невысокой цене. Замена устаревших морально и физически электродвигателей на новейшие высокотехнологичные энергосберегающие модели – ваш очередной шаг на новый уровень рентабельности бизнеса.

В недавнем прошлом в разных странах мира действовали собственные стандарты энергоэффективности. Например, в Европе руководствовались нормами СЕМЕР, Россия ориентировалась на ГОСТ Р 5167 2000, США - на стандарт EPAct.

В целях гармонизации требований к энергоэффективности электродвигателей Международной энергетической комиссией (МЭК) и Международной организацией по стандартизации (ISO) был принят единый стандарт IEC 60034-30. Данный стандарт классифицирует низковольтные асинхронные электродвигатели и унифицирует требования к их энергетической эффективности.

Классы энергоэффективности

Стандарт IEC 60034-30 2008 определяет три международных класса энергоэффективности:

  • IE1 – стандартный класс (Standard Efficiency). Примерно эквивалентен европейскому классу EFF2.
  • IE2 – высокий класс (High Efficiency). Примерно эквивалентен классу EFF1 и классу EPAct в США для 60 Гц.
  • IE3 – премиум. Идентичен классу NEMA Premium для 60 Гц.

Стандарт распространяется почти на все промышленные трехфазные асинхронные электродвигатели с короткозамкнутым ротором. Исключение составляют двигатели:

  • работающие от частотного преобразователя;
  • встроенные в конструкцию оборудования (например, в насосный агрегат или вентилятор), когда невозможно провести независимое испытание.

Соотношение единого международного стандарта с нормами различных стран мира.

Распределение мощностей по различным стандартам

Стандарт IEC 60034-30 охватывает электродвигатели мощностью от 0,75 до 375 кВт с числом пар полюсов 2р = 2, 4, 6.

Показатели СЕМЕР распределялись по КПД для электродвигателей мощностью до 90 кВт и полюсностью 2р = 2, 4.

Нормы Epact – величина мощности от 0,75 до 150 кВт с парным числом полюсов 2р = 2, 4, 6.

Особенности стандартизации

Благодаря единому стандарту IEC заказчики электродвигателей во всем мире могут легко распознать оборудование с необходимыми параметрами.

Классы энергетической эффективности IE, описываемые стандартом IEC/EN 60034-30, основываются на результатах испытаний, проводимых в соответствии с международным стандартом IEC/EN 60034-2-1-2007. Этот стандарт определяет энергоэффективность, основываясь на показателях потерь мощности и КПД.

Отметим, что у российского рынка электродвигателей есть свои особенности. Отечественных производителей условно можно разбить на две группы. Одна группа указывает в качестве главного показателя КПД, другая не указывает ничего. Таким образом формируется недоверие к электрооборудованию, что служит барьером к приобретению российской продукции.

Методы определения энергоэффективности

Существует два метода определения КПД: прямой и косвенный. Прямой метод основан на экспериментальном измерении мощности и отличается некоторой неточностью. Новый стандарт предполагает использование косвенного метода, который опирается на следующие параметры:

  • исходная температура
  • нагрузочные потери, которые определяются с помощью измерений, оценки и математического расчета

Показатели КПД сопоставимы только при одинаковом методе определения значений. Косвенный метод подразумевает:

1. Измерение потерь мощности, рассчитанных по результатам нагрузочных испытаний.
2. Оценка потерь подводимой мощности при номинальной нагрузке до 1000 кВт.
3. Математический расчет: используется альтернативный косвенный метод с расчетом потерь Р (мощности). Определяется по следующей формуле:

η = Р2 /Р1=1-ΔР/Р1

где: Р2 - полезная мощность на валу двигателя; Р1 – активная мощность из сети; ΔР – суммарные потери в электродвигателях.

Более высокое значение КПД уменьшает потери и потребление электроэнергии электродвигателя и повышает его энергоэффективность.

Ряд российских стандартов, например, ГОСТ Р 54413-2011, можно соотнести с международными стандартами.


Отличия российских стандартов от международных заключаются:

  • в некоторых особенностях математических расчетов для определения параметров оборудования;
  • в различиях в единицах измерения;
  • в процессах испытаний;
  • в параметрах испытательного оборудования;
  • в условиях выполнения испытаний;
  • в особенностях эксплуатации.

В России приняты те же классы энергоэффективности, что и в Европе. Информация о классах содержится в паспортных данных, технической документации, маркировке и на шильдиках.

Другие полезные материалы:

Энергосберегающие двигатели

Умные решения по экономии электроэнергии
Энергосберегающие двигатели Сименс выпускаются с классами эффективности „EFF1“ и „EFF2“ по CEMEP
  • Число полюсов 2 и 4
  • Диапазон мощностей 1.1...90 кВт
  • 50 Гц версия по IEC 34-2
  • EFF1 (Высокоэффективные двигатели)
  • EFF2 (Двигатели с улучшенной эффективностью)

Для уменьшения выброса CO 2 , производители двигателей обязались проводить маркировку двигателей по классам эффективности.

EPACT – двигатели для американского рынка

Всесторонняя линия двигателей по EPACT с IEC размерами

  • Число полюсов: 2,4 и 6
  • Диапазон мощностей: от 1 HP до 200 HP (0.75 кВт до 150 кВт)
  • 60 Гц версии в IEEE 112b

В соотвествии с актом от октября 97 по EPACT, кпд двигателей, ввезенных напрямую или другими путями в США, должны удовлетворять минимальным значениям.

Преимущества для покупателя и окружающей среды

Энергосберегающие двигатели с оптимальным кпд, потребляют меньше энергии при одной и той же выходной мощности. Увеличение в производительности достигнуто с помощью более высоко качества железа (чугун, медь и алюминий) и технического усовершенствования каждой детали. Потери энергии снижены на 45%. Покупатель получает огромную экономию средств, благодаря минимизации эксплуатационных расходов.

При использовании энергосберегающих двигателей снижается вред, наносимый окружающей среде. Возможность энергосбережения составляет до 20 ТВт в год, что эквивалентно мощности 8 тепловых электростанций и выбросам в атмосферу 11 миллионов тонн углекислого газа.



Поделиться