Камера сгорания схема. Камеры сгорания двигателей

Независимо от конструктивных схем основных камер сгорания, для всех их общими являются следующие конструктивные элементы:

– диффузор;

– жаровая труба;

– стабилизаторы горения (завихрители);

– смесители;

– пусковые воспламенители;

– дренажные клапаны;

– топливные коллекторы с топливными форсунками.

Для трубчатых и трубчато-кольцевых камер, кроме того, используются пламяперебрасывающие патрубки и газосборники.

Диффузор устанавливается на входе в камеру сгорания и служит для понижения скорости воздуха на входе в камеру сгорания со 120…180 м/с до 30…50 м/с для обеспечения устойчивого горения топлива. На диффузоры приходится основная доля гидравлических потерь, поэтому их профилированию уделяется особое внимание.

Возможны несколько конструкций диффузоров: бессрывный, с разделением потоков, с запланированным срывом.

Бессрывный диффузор представляет собой плавный канал с углом раскрытия 18-25 0 и обеспечивает выравнивание потока, безотрывное течение воздуха и небольшие гидравлические потери. Однако он имеет значительный осевой размер, что увеличивает расстояние между опорами ротора и длину всего двигателя.

С целью уменьшения осевых размеров диффузора он может заканчиваться внезапным увеличением площади проходного сечения – запланированным срывом (АЛ-21, ТВ3-117, Р-29). В месте резкого перехода сечений могут устанавливаться специальные гребешки – провокаторы срыва потока.

Возможна также конструкция бессрывного диффузора с большим углом раскрытия (до 35-40 0). Для обеспечения бессрывного течения, поток в таком диффузоре делится на два или три канала, имеющих небольшие углы раскрытия.

Жаровая труба ограничивает зону горения топливо-воздушной смеси. В современных камерах она выполняется вальцовкой и сваркой тонкостенных колец, что снижает температурные напряжения в ее конструкции. Снаружи жаровая труба охлаждается вторичным воздухом, изнутри обеспечивается пленочное заградительное охлаждение.

Жаровая труба для обеспечения свободы температурных деформаций крепится в корпусе камеры как двухопорная балка, при этом обеспечивается ее фиксация только в одном поясе крепления, а во втором поясе – свобода перемещения.

Стабилизаторы горения (завихрители) обеспечивают устойчивость горения топливо-воздушной смеси, создавая зону обратных токов и интенсифицируя процессы смесеобразования путем увеличения турбулентности потока. Находят применение лопаточные (Р-11), струйные (щелевые, терочные – Д-25В, Д-20П) и срывные (АИ-20, АИ-25) стабилизаторы, а также их комбинации.

Смесители осуществляют подвод вторичного воздуха внутрь жаровой трубы для снижения температуры газа перед турбиной до заданного значения. Чтобы холодный воздух не попал в зону обратных токов и не нарушил процесса сгорания топлива из-за местного охлаждения газов, вторичный воздух вводят постепенно через систему отверстий или смесительных патрубков различного сечения. Струи вторичного воздуха должны иметь большую глубину проникания в поток горячего газа, чтобы снизить температуру газа не только у стенок, но и в ядре потока.




Величина глубины проникновения струй вторичного воздуха в жаровую трубу камеры рассчитывается по зависимости

где – глубина проникновения струи;

– диаметр отверстия;

и – скорость вторичного воздуха в отверстии и скорость сносящего газового потока;

– текущая длина жаровой трубы.

Пусковые воспламенители обеспечивают начальное воспламенение топливо-воздушной смеси при запуске двигателя. Они могут быть выполнены в виде электрической свечи у низковысотных двигатетелей (Д-25В, ТВ3-117) или при малом объеме камеры сгорания (РД-33) или в сочетании с пусковой топливной форсункой (АЛ-7, Р-11). Свечи применяют низковольтные (с рабочим напряжением 1500-2500 В, полупроводниковые, поверхностного разряда). Охлаждение пускового воспламенителя при запуске двигателя – емкостное, за счет нагрева собственной массы. Для облегчения высотного запуска и запуска в зимнее время в воспламенителе может применяться кислородная подпитка от бортовых кислородных баллонов (Р-25).

Дренажные клапаны располагаются в нижней части камеры сгорания и соединяются трубопроводом с дренажной системой двигателя. Они необходимы для слива остатков топлива из камеры при расконсервации двигателя, неудавшемся или ложном запуске.

Пламяперебрасывающие патрубки осуществляют передачу пламени в трубчатых или трубчато-кольцевых камерах сгорания из одной жаровой трубы в другую и несколько выравнивают давление в головках жаровых труб.

Газосборник необходим для плавного перевода потока газа от круглого сечения жаровой трубы трубчатой или трубчато-кольцевой камеры сгорания к кольцевому сечению перед сопловым аппаратом турбины.


В настоящее время в энергетических ГТУ используются различные газообразные и жидкие топлива, основными горючими которых являются углеводороды.

Природные газы состоят главным образом из метана (); в попутных нефтяных газах могут содержаться значительные количества , , , .

Нефтяные жидкие топлива для ГТУ состоят из различных по строению сложных молекул. Обычно массовая доля водорода составляет в них 11 – 13,5, углерода 86 – 87,5%. Во многих случаях в топливах содержатся соединения серы, кислорода, азота, влага и негорючие составляющие: в газообразных , , и др., в жидких – образующие золу соединения металлов.


В энергетических ГТУ используются КС с расположением жаровых труб вокруг вала ГТУ и выносные камеры сгорания. Каждый из этих типов имеет свои преимущества и недостатки.

В трубчато-кольцевых камерах сгорания и индивидуальных камерах сгорания, расположенных концентрически вокруг вала ГТУ, вследствие небольших диаметров жаровых труб струи воздуха, вытекающего из отверстий в их стенках, проникают в ядро факела при приемлемых перепадах давления, обеспечивая быстрое перемешивание с воздухом и полное сгорание топлива без образования сажи в переобогащенных топливом зонах. Высокая турбулентность факела при горении в струях снижает также излучение на стенки. Обеспечить требуемую прочность, жесткость и температурное состояние металла небольших камер сгорания конструктивно проще. На их характеристики легче влиять с помощью тех или иных конструктивных изменений. Все это позволяет интенсифицировать процессы горения, уменьшить массу и габариты КС и всей ГТУ. Имеющиеся при небольших размерах жаровых труб возможности строгого дозирования потоков воздуха позволяет организовать процесс горения с минимальным количеством вредных выбросов (окислов азота, сажи, угарного газа, несгоревших углеводородов) и управлять полем температур на выходе. Жаровые трубы легче обслуживать и заменять для ремонта.

Важным преимуществом трубчато-кольцевых и индивидуальных камер сгорания является возможность отработки и доводки отдельных жаровых труб на стендах при натурных параметрах (давлении) и умеренных, практически доступных расходах воздуха и топлива. Аналогичные исследования крупных выносных камер сгорания возможны только в составе ГТУ,

В выносных камерах сгорания горелки расположены дальше от турбины и отделены от неё трактами с поворотом газового потока. Неравномерность температурного поля на входе в турбину и опасность проскоков пламени и повреждения турбины при неисправности горелок при этом меньше. Потери давления также обычно уменьшаются, так как при больших объемах затраты на перемешивание могут быть уменьшены (скорости движения воздуха меньше).

Вследствие значительного времени пребывания топливовоздушной смеси в зоне горения потери с недожогом и концентрации в продуктах сгорания угарного газа и несгоревших углеводородов могут быть невелики даже при сжигании тяжелых жидких топлив с повышенным содержанием углерода или низкокалорийных газов. При больших размерах факела его коэффициент теплового излучения близок к единице и мало изменяется в зависимости от характеристик жидких топлив. Это также облегчает сжигание их тяжелых сортов.

Рис.15.? Выносная КС ГТ-25-700-2.

1 – наружный корпус; 2 – жаровая труба; 3 – фронтовое устройство; 4 – горелки; 5 – сопла смесителя; 6 – подвод воздуха из КВД.

Выносные камеры создают возможность осмотра и ремонта изнутри их деталей и газового тракта, а также сопловых лопаток I ступени турбины.

Вместе с тем в больших выносных КС труднее организовать смешение и контролировать температуры факела, так чтобы выбросы были минимальными. Такие камеры транспортируются отдельно и присоединяются к турбогруппе при монтаже. Для вывода воздуха и ввода горячих газов в турбомашину необходимы крупногабаритные газоходы, ослабляющие корпус турбомашины. Прочность и газоплотность их внутреннего тракта обеспечить трудно. См.2.2. -2.4.

Несмотря на имеющийся опыт проектирования и отработку конструкций камер сгорания на моделях для обеспечения их работоспособности на промышленных ГТУ приходится выполнять доводку КС в составе ГТУ и вносить в конструкцию существенные изменения.

Из-за возникновения вихрей и зон пониженного давления в кольцевом канале между жаровой трубой и наружным корпусом в выносных КС наблюдались отложения кокса, перегрев и трещины на жаровой трубе, протечки газов через отверстия в ней и вынос кокса на внутреннюю стенку корпуса, а также увеличение неравномерности температур на выходе. Для упорядочения течения воздуха в кольцевом зазоре устанавливаются направляющие лопатки.

Обеспечение требуемого уровня температур и прочности деталей горячего тракта вызывает наибольшие трудности. Причинами трещин и поломок ненагруженных деталей жаровых труб КС часто бывают усталость под действием знакопеременных напряжений, особенно в тех случаях, когда КС работает неустойчиво, или термоусталость в результате теплосмен при пусках и остановах ГТУ. Трещины образуются в местах сварки и у отверстий и щелей в жаровых трубах для прохода воздуха, а также на газосборниках, соединяющих жаровые трубы с проточной частью турбины.

На ГТУ М7001 (Дженерал Электрик), например, из-за акустического резонанса в газосборниках возникали повышенные вибрационные напряжения, приводившие к образованию трещин, а затем щелей и отверстий. Уменьшение расхода воздуха через неисправную ЖТ и попадание отделившихся кусков металла в проточную часть турбины создавали опасность серьезных аварий. Для повышения прочности газосборников было введено гибкое соединение между ними и обоймой сопловых лопаток турбины; выполнены дополнительные отверстия для подвода охлаждающего воздуха и снижены температуры в зоне наибольших напряжений; скорректировано управление ВНА компрессора для изменения резонансных характеристик при частичных нагрузках; толщина стенок газосборников увеличена в 1,5 раза, а форма улучшена. Для уменьшения износа в местах механического контакта введена подвеска газосборников. Качество их изготовления улучшено путем совершенствования технологии и автоматизации сварки, проведения термообработки и рентгеноскопии швов.

На ГТУ М7001 были случаи смятия ЖТ из-за резкого повышения перепадов давления на них (до 130 – 150 кПа) при отключении топлива в момент внезапных остановов ГТУ. Прочность ЖТ была повышена установкой специальных жестких колец и устройством дополнительных решеток для прохода охлаждающего воздуха, облегчавших его доступ в зону горения, а процесс отключения ГТУ был растянут с 5- 10 до 15о мс, чтобы уменьшить перепад давления на ЖТ до 80 кПа. Радикальное снижение температуры и повышение прочности было достигнуто, однако, лишь после изменения конструкции, укорочения ЖТ и использования щелевого охлаждения

Рис.15.?. Модернизированная КС ГТУ М7001.

а) – конструктивная схема; б) – щелевое охлаждение: 1 – наружный корпус индивидуальной КС; 2- жаровая труба; 3- газосборник; 4 - фронтовое устройство; 5 – подвод топлива; 6 – свеча зажигания (одна из двух на 10 индивидуальных КС; 7 – экран; 8 – опора ЖТ; 9 – подвод воздуха из компрессора; 10 – вторичный воздух; 11 – приваренное точечной сваркой и опаянное кольцо; 12 – отверстия для ударного охлаждения; 13 – выходящая из щели непрерывная защитная пелена воздуха.

Перегрев деталей КС может вызывать несимметричность факела пламени. В ГТУ мощностью 35 – 85 МВт фирмы Броун Бовери (типы 9 и 13) с КС, установленной над ГТУ, выгорание металла наблюдалось в нижней части ЖТ при образовании очагов горения на выходящих из смесителя струях воздуха. причинами изменения положения факела в пространстве и соприкосновения его со стенками, вызывающего деформации и прогар ЖТ, могут быть также нарушение работы форсунок (газораздающих насадков), повреждение завихрителей и усталостные ли термоусталостные повреждения ЖТ или газосборников, нарушающие осевую симметрию потоков топлива и воздуха.

Ухудшение качества распыла жидкого топлива или наличие в газообразном топливе горючих конденсатов, в результате которых капли топлива попадают на стенки ЖТ и догорают на них, также могут вызвать перегрев и выгорание металла. Попадание в КС больших количеств газового конденсата приводит к очень тяжелым авариям. Вблизи фронтового устройства происходит переобогащение смеси и срыв факела, а горение стабилизируются на лопатках турбины, которые вследствие этого перегреваются и разрушаются.

Неравномерность температур на выходе из КС определяется конструкцией смесителя и может возрастать при затягивании горения и несимметричности подвода топлива или воздуха. На установке ГТ-100, например, коэффициент неравномерности температур газов и характер полей температуры на выходе из отдельных ЖТ, несимметричны из-за не вполне одинакового их положения относительно статорных элементов, не зависит от режима работы и вида топлива. Снижение неравномерности и благоприятное профилирование температуры по радиусу на входе в проточную часть были достигнуты путем несимметричного расположения и изменения числа и размеров сопл смесителя.

В некоторых выносных КС для выравнивания поля температур на выходе и определения в наладочный период оптимальных сечений сопл смесителя применялось их ручное регулирование с помощью заслонок. В эксплуатационной практике это нецелесообразно. При ограниченной информации о температуре газов изменение их неравномерности свидетельствует о возможном дефекте, который необходимо выявить и устранить, а не скрыть, устранив регулированием смесителя признак его появления.

Выравнивание температур происходит на некоторой длине после смесителя >1 – 2. Наличие поворотов между Кс и турбиной способствует некоторому уменьшению неравномерности температур, в угловых входных патрубках турбин их неравномерность уменьшается в 3 – 5 раз.

Серьезные неполадки могут быть вызваны неудовлетворительной работой форсунок жидкого топлива. На некоторых ГТУ наблюдался износ рабочих каналов форсунок из-за наличия в топливе и распыливающем воздухе твердых частиц. Чтобы избежать его, элементы форсунок выполняют из твердых материалов или упрочняют, топливо и распыливающий воздух фильтруют, а при конструировании трактов избегают повышенной турбулентности и прямого удара потока о стенки. Чтобы избежать неплотностив соединениях и протечек топлива с образованием кокса или даже очагов горения на форсунках, тщательность их изготовления и сборки контролируют на стендах перед установкой на ГТУ.

Перегрев, коксование и повреждения форсунок и горелок при работе предотвращают, охлаждая и защищая их постоянной продувкой воздухом, коксование форсунок после остановов и прекращения подачи топлива - быстро сливая его и продувая внутренние тракты форсунок воздухом для удаления остатков топлива. В ГТУ, предназначенных для работы на двух видах топлива, продувку форсунок жидкого топлива при работе на природном газе производят обычно тем же газом, который очищают от пыли, воды и солей, чтобы избежать забивания и коррозии форсунок.

Изменения, которые вносятся для улучшения процесса горения, охлаждения деталей, уменьшения неравномерности поля температур на выходе из КС и т.д., могут неблагоприятно влиять на другие характеристики камер. Так, например, на ГТУ типа V93 фирмы Крафтверкунион наблюдавшееся первоначально дымление было уменьшено путем повышения скоростей первичного воздуха и увеличения его количества подачей через дополнительные отверстия. Частичное закрытие регулируемых отверстий смесителя, которым сопровождались эти мероприятия, и повышение скоростей в них привели к нарушениям течения газа и вызвали поломки лопаток турбины. Надежная работа КС была обеспечена после переделки смесителя; закрытия регулируемых отверстий и устройства 12 конических сопл для ввода воздуха и 4 отверстий постоянного сечения.

Таблица параметров топлив

Вид топлива Топливо Плотность, кг/и3 Стехиометрическое количество воздуха, кг/кг Низшая теплотворная способность, кДж/кг
Для реактивных двигателей Т-1 ГОСТ 10227-02 14,78
ТС-1 ГОСТ 10227-02
Т-2 ГОСТ 10227-02
Т-8 ТУ 38-1-257-69
РТ ГОСТ 16564-71
Т-6 ГОСТ 12308-80
Топливо дизельное Л ГОСТ305-82
З ГОСТ305-82
А ГОСТ305-82
Моторное топливо ДТ ГОСТ 1667-68
ДМ ГОСТ 1667-68
Для ГТУ ТГВК ГОСТ 10433-75
ТГ ГОСТ 10433-75
Дистиллят сернистый Ново-Уфимского НПЗ
Дистиллят малосернистый Волгоградского НПЗ
Природный газ Ставропольское месторождение 0,73 16,72
Саратовское 0,765 16,8
Водород Жидкий водород 34,2

Рис. 9.3. Типы основных камер сгорания

Основные камеры сгорания авиационных ГТД могут иметь раз­нообразные формы проточной части и различное конструктивное выполнение. Применяются практически камеры сгора­ния трех основных типов (рис. 9.3): а трубчатые (индивиду­альные), б  трубчато-кольцевые и в кольцевые.

Трубчатая (вверху на рис. 9.3) ка­мера сгорания состоит из жаровой трубы 1, внутри которой органи­зуется процесс горения, и корпуса (кожуха) 2. На двигателях обыч­но устанавливалось несколько таких камер. В современных авиационных ГТД трубчатые камеры сгорания практически не используются.

В трубчато-кольцевой камере все жаровые трубы заключены в общий корпус, имеющий внутреннюю и наружную поверхности, охватывающие вал двигателя.

В кольце­вой камере сгорания (внизу на рис. 9.3) жаровая труба имеет в сечении форму коль­ца, также охватывающего вал двигателя.

Расположение и тип форсунок, используемых для подачи топли­ва в камеры сгорания, также могут быть различными. Однако, не­смотря на большое разнообразие схем и конструктивных форм ос­новных камер сгорания, процесс горения в них организуется практически одинаково.

Одной из важнейших особенностей организации процесса горения в основных камерах сгорания ГТД является то, что он должен протекать при сравнительно больших коэффициентах избытка воздуха . При реализуемых в настоящее время температурах газа перед турбиной порядка = 1800...1600 К и ниже, как уже отмечалось, значение коэффициента избытка воздуха (среднее для всей камеры) должно составлять 2,0…3,0 и более. При таких значенияходнородная топливо-воздушная смесь, как было указано выше, не воспламеняется и не горит. При резком уменьше­нии подачи топлива в двигатель, которое может иметь место в ус­ловиях эксплуатации, коэффициент избытка воздуха может достигать еще существенно больших зна­чений (до 20…30 и более).

Вторая важная особенность этих камер состоит в том, что ско­рость потока воздуха или топливо-воздушной смеси в них (выбираемая с учетом требований к габаритным размерам двигателя) су­щественно превышает скорость распространения пламени. И, если не принять специальных мер, пламя будет унесено по­током за пределы камеры сгорания

Поэтому организация процесса горения топлива в основных ка­мерах ГТД основывается на следующих двух принципах, позволя­ющих обеспечить устойчивое горение топлива при больших значениях и вы­соких скоростях движения потока в них:

1. Весь поток воздуха, поступающий в камеру сгорания, разделяешься на две части , из которых только одна часть (обычно меньшая) подается непосредственно в зону горения (где за счет этого создается необходимый для устой­чивого горения состав смеси). А другая часть направляется в об­ход зоны горения (охлаждая снаружи жаровую трубу) в так называемую зону смешения (пе­ред турбиной), где смешивается с продуктами сгорания, понижая в нуж­ной мере их температуру;

2. Стабилизация пламени в зоне горения обеспечивается путем создания в ней зоны обратных токов , заполненной горячими продуктами сгорания, непрерывно поджига­ющими свежую горючую смесь.

Рис. 9.4. Схема основной камеры сгорания

Для примера на рис. 9.4 показана схема одного из вариантов трубчато-кольцевой камеры сгорания. Камера состоит из жаро­вой трубы 1 и корпуса 2. В передней части жаровой трубы, кото­рую называют фронтовым устройством , размещаются форсунка 3 для подачи топлива и лопаточный завихритель 5. Для уменьшения скорости воздуха в камере на входе в нее (за компрессором) выполняется диффузор 4 , благодаря которому скорость воздуха перед фронтовым устройством обычно не превышает 50 м/с.

Воздух, поступающий в камеру сгорания из компрессора, делится на две части. Одна часть направляется в зону горения, а вторая часть  в зону смешения. Часть воздуха, поступающая в зону горения, в свою очередь де­лится еще на две части. Первая часть, так называемый первичный воздух
(см. рис. 9.4), поступает непосредственно через фронтовое устройство к месту расположения факела распыла топ­ливной форсунки и используется для формирования богатой топливной смеси такого состава, который обеспечивал бы на всех режимах достаточно быстрое и устойчивое сгорание.

Вторая его часть (так называемый вторичный воздух
) через боковые отверстия в жаровой трубе поступает в камеру для завершения процесса горения (первичного воздуха для этого недостаточно). Общее количество воздуха, поступающего в зоны горения (т.е.
) обеспечивает в ней коэффициент избытка воздуха порядка= 1,6…1,8, что соответствует устойчивому горению, полному сгоранию и температуре порядка 1800…1900 К.

Если допустимая температура газов перед турбиной ниже этой величины, необходимый для её уменьшения третичный (или смесительный ) воздух поступает в жаровую трубу через задние ряды отверстий или щелей, быстро снижая их температуру до допустимой. При этом важно подчеркнуть, что, если какая-то часть топлива не успеет сгореть до попадания в зону смешения, то дальнейшее ее догора­ние практически уже не произойдет, так как коэффициент избытка воздуха возрастает до значений, превы­шающих предел устойчивого горения.

Число, расположение и форма отверстий для подвода третично­го воздуха подбираются таким образом, чтобы обеспечить жела­емое поле температур газа перед турбиной.

Подвод первичного и вторичного воздуха в жаровую трубу дол­жен быть организован так, чтобы в зоне горения создавалась нуж­ная структура потока. Эта структура должна обеспечить хорошее смешение топлива с воздухом и наличие мощных обратных то­ков, обеспечивающих надежное воспламенение свежей смеси на всех режимах работы камеры.

Рис. 9.5. Зона обратных токов

в основной камере сгорания

Структура потока в передней части жаровой трубы камеры сго­рания с так называемым лопаточным завихрителем показана схематично на рис. 9.5. Воздух поступает сюда через завихритель 1 , лопатки которого закручивают поток (подобно лопаткам входного направляющего аппарата компрессора). Далее воздух движется вдоль поверхности жаровой трубы в виде конической вихре­вой струи. Вихревое движения воз­духа приводит к пони­жению давления в области за завихрителем, вследствие чего в эту область устремляется газ из расположенных дальше от фрон­тового устройства участков жаровой трубы. В результате здесь возникает зона обратных токов, граница которой показана на рисунке линией 5. Топливо-воздушная смесь, образовавшаяся за фронтовым устройством, при за­пуске двигателя поджигается огненной струей, создава­емой пусковым воспламенителем 6 (см. рис. 9.4). Но в последую­щем горячие продукты сгорания вовлекаются в зону обратных то­ков и обеспечивают непрерывное поджигание свежей смеси. Кроме того, горячие газы, циркулирующие в этой зоне, являются источником теплоты, необходимой для быстрого испарения топлива.

Могут использоваться и другие схемы основных камер сгорания  с несколькими форсунками (несколькими рядами форсунок), с другими способами создания зоны обратных токов и т.д. Но общие принципы организации рабочего процесса в них остаются такими же.

    ФОРСАЖНЫЕ КАМЕРЫ СГОРАНИЯ И ОРГАНИЗАЦИЯ ПРОЦЕССА

ГОРЕНИЯ В НИХ

Рис. 9.6. Схема форсажной камеры сгорания

Состав горючей смеси в форсажной камере отличается от такового в основных камерах сгорания прежде всего тем, что на расчетном режиме их работы температура газа на выходе из неё составляет 2000…2300 К, что может быть достигнуто только при суммарном коэффициенте избытка воздуха
, уже не требующем снижения для организации процесса горения. Поэтому в форсажной камере отпадает необходимость разделения её на зону горения и зону смешения. Кроме того, температура среды, в которую впрыскивается топливо, здесь выше, чем в основных камерах сгорания, что облегчает процесс испарения топлива и последующего воспламенения смеси. Но скорость потока газа в форсажных камерах по габаритным соображениям приходится иметь значительно более высокой, чем в основных камерах (порядка нескольких сотен м/с). Поэтому для стабилизации процесса горения в них также организуются зоны обратных токов. Кроме того, в связи с тем, что коэффициент избытка воздухав форсажной камере на её расчетном режиме близок к единице, необходимо обеспечит такое распределение впрыскиваемого топлива по пространству камеры, при котором по возможности было бы исключено местное переобогащение смеси, ведущее к неполному сгоранию.

На рис. 9.6 показана типичная схема форсажной камеры сгорания, уста­новленной за турбиной ТРД. На входе в камеру имеется небольшой диффузор 7 . За ним расположено фронтовое устройство, состоящее из нескольких стабилизаторов пламени 5 (пластин или колец vобразного сечения) и большого числа (часто нескольких десятков) форсунок 1 , объединенных в несколько топливных коллекторов (на рис. 9.6 их два). Большое число форсунок обеспечивает равномерность состава смеси по объему камеры, а наличие нескольких коллекторов позволяет путем их частичного отключения сохранить на пониженных режимах (т.е. при сниженном общем расходе топлива) необходимый для устойчивого горения состав смеси около тех форсунок, которые еще не отключены.

Интересно хотя бы вкратце проанализировать соображения, которыми обычно руководствуются при выборе конфигурации и основных размеров традиционных камер сгорания. Такого рода данные позволяет понять, как определяются конструктивные основные характеристики, обеспечивающие работу камеры сгорания.

На рис. 3.2(а) показана схе­ма простейшей камеры сгорания - прямой цилиндрический канал, со­единяющий компрессор с турбиной. К сожалению, такое простое устройство непригодно из-за недопустимо больших потерь давления. Потери давления пропорциональна квадрату скорости воздушного потока. Поскольку скорость воздуха на выходе из компрессора близка к 150 м/с, потери давления при этом могут достигать четвертой части общего повышения давления в компрессоре. Для снижения по­терь давления до приемлемого уровня используют, как показано на рис. 3.2(б) диффузор, с по­мощью которого скорость воздуха уменьшают приблизительно в 5 раз.

Рис. 3.2. Стадии развития схемы традиционной камеры сгорания га­зотурбинного двигателя Однако этого недостаточно, так как для предотвращения срыва пламени и поддержания устойчиво­го процесса горения необходимо с помощью обратных токов создать зону малых скоростей. На рис. 3.2(в) показано, как этого можно достичь посредством простой пластины. Такое устройство имеет, однако, один недостаток, кото­рый заключается в том, что необходимое для получения заданной величины повышения температуры отношение топливо-воздух сущест­венно превышает предел воспламеняемости смесей углеводородов с воздухом. В идеальном случае коэффициент избытка воздуха a близок к 1,25, хотя, например, при желании снизить выбросы оки­слов азота, эта величина может быть увеличена до = 1,6. Указанный недостаток может быть устранен, если простой стабилизатор заменить, как показано на рис. 3.2(г), перфорированной жаровой трубой. В жаровой трубе создается зона малых скоростей, в которой процесс горения поддерживается циркуляционным потоком продуктов сгорания, непрерывно поджигающим поступающую в камеру свежую топливовоздушную смесь.

Избыточная (ненужная для горения) часть воздуха вводится в жаровую трубу за зоной горения, где она перемешивается с горячими продуктами сгорания, понижая, таким образом, их температуру до приемлемого для турбины уровня.

Существующие камеры сгорания можно разделить на следующие основные типы: а) индивидуальные; б) секционные (многотрубчатые); в) кольцевые; г) трубчато-кольцевые.

Кроме того, камеры сгорания делятся на прямоточные и противоточные. В прямоточных камерах охлаждающий (вторичный) воздух движется в кольцевом канале между пламенной трубой и корпу­сом в том же направлении, что и продукты сгорания. В противоточных камерах поток охлаждающего воздуха направлен навстречу по­току продуктов сгорания в пламенное трубе. Применение противоточных камер в ряде случаев упрощает общую компоновку ГТУ и поз­воляет сократить длину камеры, но потери давленая в них обычно больше, чем в прямоточных камерах.

Индивидуальные камеры, в свою очередь, бывают выносными во встроенными. Выносная камера в отдельного скомпонованном корпусе устанавливается в ГТУ рядом с турбокомпрессором. Применяют эти камеры в основном в стационарных и значительно реже в передвижных установках. У встроенных камер корпус опирается непосредственно на общий корпус турбокомпрессора или конструктивно с ним совмещён.

Существуют две разновидности индивидуальных камер сгорания:

цилиндрические и угловые. В цилиндрической камера сгорания (рис. 3.3) воздух разделяется на два потока: первичный и вторич­ный. Первичный воздух поступает через воздухо-направляющее уст­ройство 1 в пламенную трубу 4, куда через форсунку 2 (или горел­ку) подается топливо. Расход первичного воздуха регулируется в зависимости от расхода топлива поворотом лопаток воздухо-направляющего устройства 1, что осуществляется посредством специальных рычагов управления. Вторичный (охлаждающий) воздух пропускается через кольцевое пространство между пламенной трубой 4 и корпусом 3 камеры сгорания. При движении он интенсивно охлаждает стенки труби и корпуса. Выходя из кольцевого пространства, вторичный воздух попадает в объем А, где он смешивается с продуктами сго­рания, понижая тем самым их температуру до заданного значения.

Для уменьшения закрутка газового потока на выходе из каме­ры и для лучшего перемешивания вторичного воздуха с продуктами сгорания к пламенной трубе приварены лопатки 5, закручивающие поток вторичного воздуха в направлении, обратном тому, которое придается первичному воздуху.

В цилиндрических камерах можно установить не одну, а нес­колько форсунок, что увеличивает надёжность работы и позволяет регулировать тепловую мощность камеры сгорания изменением числа работающих форсунок. Объемная теплонапряженность этих камер со­ставляет (20-30) · 10 3 кВт/м 3 при давлений 0,4-0,45 МПа, а теп­ловая мощность камеры сгорания достигает 3000 кДж/ч, расход воздуха - 2,5 10 5 м 3 /ч.

Рис. 3.3 Схема цилиндрической камеры сгорания

К преимуществам индивидуальных цилиндрических камер сгора­ния относятся простота конструкции и сравнительно малые потери давления, достигающие 1,5-3,0 %. Основными недостатками этих камер являются большие массы а габариты.

Секционные (многотрубчатые) камеры сгорания представляют собой конструкцию, в которой объединено несколько (6-16) парал­лельно работающих цилиндрических камер (секций), часто связанны между собой пламяпередающими патрубками.

Секция многотрубчатой камеры сгорания (рис. 3.4) состоит из пламенной труби и кожуха 8. Пламенная труба включает в себя го­ловку, состоящую из лопаточного завихрителя 3, тарелки 2 и ко­нуса 4, и корпус, состоящий из цилиндрической части 5 и двух ко­нических участков, соединенных между собой конусным кольцом 6.

Рис. 3.4 Секция многотрубчатой камеры сгорания

Первичный воздух поступает через входной кожух 1 в головку пла­менной трубы. Часть его направляется в зону горения через лопа­точный завихритель 3, а оставшаяся часть идет туда через много­численные отверстия в тарелке 2 и конусе 4. Кроме того, на цилиндрической части пламенной труба 5 имеется еще два ряда от­верстий, через которые дополнительно поступает воздух, необхо­димый для горения при полной нагрузке ГТУ. Вторичный воздух идет по кольцевому пространству между пламенное трубой и кожухом 8 и затем поступает в зону смешения через четыре ряда от­верстий в конической части пламенной трубы 7. Наибольшая часть охлаждаемого воздуха входит внутрь пламенной трубы через большое число отверстий малого диаметра в конусном кольце 6.

Секционные камеры сгорания выполняют обычно в виде единого моноблока, в котором все секции заключены в общий корпус. Каж­дая секция имеет одну форсунку, впрыскивающую топливо по направлению потока. Секционные камеры сгорания отличаются компактностью, обеспечивают высокую полноту сгорания топлива и устой­чиво работают в различных эксплуатационных условиях. Недостат­ком их является сравнительно большие потери давления (2,5-7,5%). Тепловая мощность отдельной секции составляет в среднем (0,7-1,7) · 10 3 кВт, а иногда достигает 3,5 · 10 3 кВт. Объемная теплонапряженность у камер этого типа высокая - (100-160) · 10 3 кВт/м 3 .

В кольцевых камерах сгорания (рис. 3.5) зона горения I имеет форму кольцевой полости обычно шириной 150-200 м, кото­рая образуется цилиндрами 1 в 2. Два других соосно расположенных цилиндра (9 и 8) составляют кожух камеры. Первичный воздух через воздухопроводящее устройство 4 поступает в зону горения I. Вторичный воздух направляется по кольцевым зазорам 6 и 7 к смесительным насадкам 5, через которые поступает в зону II, где смешивается о продуктами сгорания, понижая тем самым их температуру. В воздухоподводящем устройстве 4, на входе в зону горения I по всей окружности расположены форсунки 3. За счет этого обеспечивается хорошее перемешивание топлива с воздухом и горение по всему кольцевому пространству. Число форсунок может достигать 10-20, но иногда это бывает одна вращающаяся форсунка.

Объемная теплонапряженность у кольцевых камер примерно такая же, как и у секционных, а потери давления несколько больше (до 10 %). По сравнению с секционными камерами они имеют меньший рабочий объем и более равномерное поле температур газа на выходе. Зато кольцевые камеры сложнее в изготовлении и доводке, труднодоступны для осмотра в ходе эксплуатации.

Рис. 3.5 Схема кольцевой камеры сгорания

Трубчато-кольцевая камера сгорания представляет собой кон­структивное совмещение элементов секционной и кольцевой камер. Так же, как и у кольцевой камеры, кожух её образуется наружным и внутренним соосно расположенными цилиндрами. А в кольцевом пространстве между этими цилиндрами размещается ряд отдельных пламенных труб, снабженных форсунками. Трубы соединяются друг с другом пламяпередающими патрубками, которые предназначены для передача пламени, зажигания и выравнивания давления между трубами, Трубчато-кольцевые камеры имеют теплонапряженность и потери давления приблизительно такие же, как секционные камеры. Они ком­пактнее кольцевых камер и более просты в доводка. Небольшие раз­меры пламенных труб упрощают их изготовление и разборку.

Для работы на жидком топливе в камерах сгорания обычно при­меняют центробежные форсунки (рис. 3.6). Они просты по конструк­ции, надежны в работе и обеспечивают хорошее распиливание топлива. К форсунке топливо подаётся насосом 5 под давлением не менее 1,0-1,5 МПа. Поступает оно сначала в кольцевую полость 1, а за­тем через ряд тангенциально расположенных каналов 2 направляется в вихревую камеру 3, в которой приобретает вращательно-поступательное движение. При выходе из форсунка топливо распыляется под действием центробежных сил.

В центробежных форсунках регулировать расход топлива за счет изменения его давления можно не более чем в 2-2,5 раза, Для обеспечения более широкого диапазона регулирования применя­ют двухступенчатые форсунки и форсунки с перепуском топлива. У двухступенчатых (двухконтурных) форсунок на малых расходах работает лишь одна первая ступень. Для увеличения расхода топли­ва к ней подключается вторая ступень. У форсунок с перепуском топлива вихревая камера 3 соединена о регулируемым клапаном 4, который перепускает часть топлива обратно в подводящий трубо­провод или же в расходами бак 6.

Рис. 3.6 Центробежная форсунка с перепуском топлива

Камера сгорания . Назначение камеры сгорания заключается в повышения температуры рабочего тела за счет сгорания топлива в среде сжатого воздуха. Схема камеры сгорания показана на рис. 3.7.

Рис. 3.7 Камера сгорания

Сгорание топлива, впрыскиваемого через форсунку 1, происхо­дит в зоне горения камеры, ограниченной жаровой трубой 2. В эту зону поступает только такое количество воздуха, которое необхо­димо для полного и интенсивного сгорания топлива (этот воздух называемся первичным).

Поступающий в зону горения воздух проходит через завихритель 3, который способствует хорошему перемешиванию топлива с воздухом. В зоне горения температура газов достигает 1300...2000°С. По условиям прочности лопаток газовых турбин такая температура недопустима. Поэтому получающиеся в зоне горения камеры горячие газы разбавляются холодным воздухом, который на­зывается вторичным. Вторичный воздух протекает по кольцевому пространству между жаровой трубкой 2 и корпусом 4. Часть этого воздуха поступает к продуктам сгорания через окна 5, а осталь­ная часть смешивается с горячими глазами после жаровой трубы. Таким образом, компрессор должен подавать в камеру сгорания в несколько раз больше воздуха, чем необходимо для сжигания топли­ва, а поступающие в турбину продукты сгорания получаются сильно разбавленными воздухом и охлажденными.

У дизелей требования к форме камеры сгорания определяются процессом смесеобразования. Для создания рабочей смеси в них отводится очень малое время, так как почти сразу после начала впрыска топлива начинается сгорание, и остаток топлива подается уже в горящую среду. Каждая капля топлива должна войти в соприкосновение с воздухом как можно быстрее, чтобы выделение теплоты произошло в начале хода расширения.

Для удовлетворения этих требований необходимым является создание интенсивного направленного движения воздуха, но организовать этот процесс нужно так, чтобы с впрыскиваемым топливом смешалось необходимое для сгорания количество воздуха. Принципиально для этой цели существуют две возможности: направлять либо воздух к топливу, либо топливо к воздуху. У автомобильных дизелей используются оба способа.

В первом из них топливо впрыскивается непосредственно в цилиндр несколькими струями (факелами), которые обдуваются вращающимся потоком воздуха. Скорость потока должна обеспечивать прохождение воздухом пути от одной струи к другой за время сгорания .

Число струй, однако, ограничено, и поэтому необходимое количество топлива должно впрыскиваться с определенной скоростью, чтобы обеспечивалось, его хорошее распыливание. Если топливо хорошо распылено, то оно быстро прогревается после впрыска в горячий воздух, и время, проходящее до его воспламенения (так называемая задержка воспламенения), уменьшается. Малое время задержки воспламенения нужно для того, чтобы количество топлива, поданного в камеру сгорания за этот период, не было настолько большим, чтобы после воспламенения вызвать резкое нарастание давления и большую жесткость работы двигателя. Регулирование процесса, сгорания может быть обеспечено законом подачи топлива в уже воспламененную среду.

Если скорость, время и количество подаваемого топлива определены, то можно рассчитать диаметр силовых отверстий распылителя форсунки, задавшись их числом. Для устранения опасности закоксовывания и обеспечения технологичности изготовления распылителей форсунок минимальный диаметр отверстий ограничивается 0,25-0,3 мм. Поэтому их число в автомобильных дизелях не превышает 4-5. В соответствии с этим должна быть установлена интенсивность вращения воздуха. Вращательное движение воздуха в цилиндре можно создать с помощью впускного канала тангенциальной или винтовой формы. Так же, как и у бензиновых двигателей, дополнительную турбулизацию заряда в дизеле можно создать в конце хода сжатия вытеснением воздуха из пространства между днищем поршня и головкой цилиндра.

Образование смеси с помощью второго способа - подвода топлива к воздуху - затруднено, если нельзя использовать большое число форсунок. У дизелей с разделенными камерами сгорания (предкамерных и вихрекамерных) впрыск осуществляется так, что все топливо подается во вспомогательную камеру малого объема, содержащую лишь часть воздуха, поступившего в цилиндр. При воспламенении топлива в этой камере давление повышается и вытесняет еще не сгоревшее топливо в объем основной камеры сгорания над поршнем, где сгорание завершается.

Таким образом, по способу смесеобразования различают дизели с непосредственным впрыском топлива в цилиндр и дизели с разделенной камерой сгорания. При непосредственном впрыске камера сгорания образована в поршне, который имеет более высокую температуру, чем охлаждаемая головка цилиндра. Это уменьшает потери теплоты горячих газов в стенки камеры сгорания. Камера сгорания должна быть компактной с тем, чтобы потери теплоты при сжатии воздуха также не были большими и, следовательно, для достижения необходимой для воспламенения топлива температуры не требовалась слишком высокая степень сжатия. Величина степени сжатия дизеля сверху ограничена нагрузкой на кривошипный механизм и потерями на трение, а снизу - условиями обеспечения так называемого холодного пуска. При непосредственном впрыске степень сжатия ε лежит в пределах от 15 до 18. При холодном пуске дизели этого типа не требуют дополнительных мер для обеспечения воспламенения топлива.

У дизеля с разделенной камерой сгорания воздух во время такта сжатия поступает во вспомогательную камеру через соединительный канал с большой скоростью и при этом значительно охлаждается. Поэтому для обеспечения необходимой температуры к моменту воспламенения требуется более высокая степень сжатия - от 20 до 24, но, несмотря на это, при холодном пуске двигателя воздух во вспомогательной камере должен предварительно подогреваться с помощью специальной свечи накаливания, выключаемой после пуска двигателя.

Площадь поверхности основной и вспомогательной камер сгорания весьма велика, скорость движения воздуха около их стенок также достигает высоких значений. Это означает повышенную теплоотдачу в стенки, т. е. рост тепловых потерь. В связи с этим дизели с раздельной камерой сгорания имеют более высокие удельные расходы топлива, чем дизели с непосредственным впрыском.

Итак, дизели с непосредственным впрыском топлива более экономичны. Недостаток их состоит в значительном шуме при сгорании, однако у последних конструкций этот недостаток практически устранен. Главной причиной шума является высокая скорость нарастания давления в начальной фазе горения. Для устранения этого явления необходимо сократить период задержки воспламенения и управлять дальнейшим протеканием процесса сгорания посредством закона подачи топлива.

Хорошие результаты по снижению жесткости работы достигнуты в дизелях фирмы «МАН» с помощью сферической камеры сгорания, расположенной в поршне.

Форсунка в этих дизелях имеет только два отверстия, через одно из которых основная масса топлива впрыскивается на стенку камеры сгорания, а через другое - меньшая, запальная порция направляется в середину камеры, где воздух имеет наиболее высокую температуру. Воздуху в камере придано интенсивное вращение. Топливо, находящееся на стенке камеры, относительно холодное и поэтому воспламенения всей его массы сразу не происходит. Топливные пары поступают в поток воздуха со стенок камеры постепенно, смешиваются с ним, и образовавшаяся после этого топливовоздушная смесь воспламеняется. При этом обеспечивается мягкая и достаточно экономичная работа двигателя, в связи с чем возникло несколько близких по принципиальной схеме вариантов этого рабочего процесса.

В частности, в камере сгорания цилиндрической формы фирмы «Дойц» (ФРГ) одна струя впрыскивается параллельно оси камеры в пространство вблизи стенки. Полученные при этом способе результаты также можно оценить положительно. Следует отметить, что при таком смесеобразовании многое зависит от температуры стенок камеры сгорания.

При затягивании процесса сгорания теплота, выделяющаяся в течение хода расширения, используется не полностью (см. рис. 3 в статье «Влияние степени сжатия на индикаторный КПД двигателя »), из-за чего увеличивается удельный расход топлива, т. е. преимущества непосредственного впрыска топлива фактически теряются. В наиболее широко применяемых камерах сгорания тороидальной формы топливо впрыскивается по радиусу камеры на ее стенку несколькими симметричными струями, расположенными под большим углом к вертикальной оси. При сгорании вначале реагирует часть топлива, смешиваемая с воздухом прямо у стенки. Газы, образующиеся при горении, имеют высокую температуру и небольшую плотность. При сильном вращении заряда на стенки камеры за счет центробежной силы попадает холодный воздух из центральной части камеры, оттесняя к центру легкие продукты сгорания. Непосредственно вблизи стенок воздух смешивается с топливом. В лаборатории фирмы «Рикардо» (Англия) этот процесс был зарегистрирован на кинопленку.

В дизелях с разделенными камерами сгорания вспомогательную камеру довольно просто создавать и при небольших диаметрах цилиндра. Это весьма важно при конвертировании бензинового двигателя в дизель. Такая задача с успехом была решена под руководством П. Хофбауэра на двигателе автомобиля «Фольксваген Гольф» (рис. 1).

В алюминиевой головке цилиндра была образована небольшая вихревая камера сгорания с форсункой и свечой накаливания. Выемка в днище поршня и выходное отверстие канала, соединяющего вихревую камеру с цилиндром, выполнены обычным способом. Объем вихревой камеры составлял 48 % объема всей камеры сгорания. Рабочий объем двигателя был увеличен с 1100 см 3 до 1500 см 3 , степень сжатия ε = 23,5 . Мощность этого дизеля при 5000 мин -1 составила 37 кВт.

Удельный расход топлива при частоте вращения n = 2500 мин -1 дизельного и бензинового двигателей автомобиля «Фольксваген Гольф» показан на рис. 2.

При среднем эффективном давлении p e = 0,2 МПа удельный расход топлива у дизеля ниже на 25 %. С повышением нагрузки разница в топливной экономичности бензинового двигателя и дизеля уменьшается, а при работе в режиме полной нагрузки она равна нулю. Снижение удельного расхода топлива при частичной нагрузке является очень важным, так как для легковых автомобилей именно эти режимы являются наиболее типичными при движении в городских условиях.

Варианты конструкции дизеля «Фольксваген», отличающиеся размещением форсунки и свечи накаливания, показаны на рис. 1. Изменение местоположения свечи накаливания принесло уменьшение удельного расхода топлива и снижение дымности отработавших газов, что отражено на графиках, приведенных на рис. 3, а. Влияние нагрузки, т. е. среднего эффективного давления p e на те же показатели при работе двигателя в режиме постоянной частоты вращения, равной 3000 мин -1 , показано на рис. 3, б. Улучшение отчетливо видно на всех режимах работы двигателя. Вариант Б (см. рис. 1) отличается расположением свечи накаливания относительно направления вращения воздуха в вихревой камере. Эта конструкция, однако, достаточно сложна при ее реализации в производстве.

Энергетический кризис подтолкнул многих конструкторов автомобильных бензиновых двигателей к конвертированию их в дизельные с целью повышения индикаторного КПД . Конструктор и исследователь из ФРГ Л. Эльсбетт при конвертировании бензиновых двигателей достиг до 20 %. В его дизелях «ЭЛКО» используется непосредственный впрыск топлива односопловой форсункой в сферическую камеру сгорания, расположенную в днище поршня. Ось струи делит радиус камеры пополам в точке пересечения с ним. Организация рабочего процесса использует эффект перемещения горячих продуктов сгорания малой плотности в центр вращающегося в камере сгорания воздушного заряда. Вследствие этого происходит хорошее перемешивание горящей смеси с воздухом, и так как сгорание происходит в основном в центре камеры, то тепловые потери в ее стенки относительно невелики.

Поршень состоит из двух частей, причем верхняя с размещенной в ней камерой сгорания и поршневыми кольцами стальная. Сталь обладает большой термической прочностью и худшей, чем алюминий, теплопроводностью, и поэтому поверхность камеры сгорания имеет более высокую температуру, что, в свою очередь, уменьшает теплопередачу от горячих газов в стенки камеры.

Такое решение, кроме того, предотвращает повышенный износ поршневых канавок, характерный для алюминиевых поршней дизелей.

Юбка поршня, служащая направляющей, изготовлена из алюминиевого сплава и соединяется с верхней частью через поршневой палец. Такая конструкция поршня обладает свойствами крейцкопфа, т. е. уменьшает действующие на стенку цилиндра боковые силы, возникающие при движении шатуна, и создает предпосылки для исключения, являющегося одним из источников шума при работе двигателя опрокидывающего момента, который действует на верхнюю часть поршня.

Для снижения удельного давления на поршневой палец верхняя головка шатуна и бобышки днища поршня имеют клиновидную форму в сечении по оси пальца. Благодаря этому площадь верхней части бобышки днища поршня больше нижней его части. Аналогично нижняя часть втулки шатуна имеет также большую площадь, чем верхняя. Края поршневого пальца воспринимают лишь незначительные силы от юбки поршня.

Водяные каналы в головке цилиндра дизеля «ЭЛКО» исключены. Теплота отводится только от наиболее важных мест, таких как межклапанные перемычки и отверстия для форсунок при помощи масла, циркулирующего по специально высверленным каналам диаметром 6-8 мм. С целью уменьшения отвода теплоты цилиндры охлаждаются таким образом, чтобы температура их верхней зоны не превышала температуру, необходимую для обеспечения смазывания.

При таком уменьшении теплоотвода в систему охлаждения большее количество теплоты отводится, однако с отработавшими газами, что, естественно, приводит к применению турбины для использования этой теплоты. Удельные расходы топлива дизелей «ЭЛКО» изображены на рис. 4, где представлены многопараметровые характеристики пятицилиндрового дизеля с рабочим объемом 2300 см 3 мощностью 80 кВт (рис. 4, а) и шестицилиндрового с рабочим объемом 13300 см 3 (рис. 4, б) . Оба дизеля имеют газотурбинный наддув без промежуточного охлаждения наддувочного воздуха.

Уменьшение теплоотдачи в систему охлаждения позволяет использовать радиатор меньшего объема и соответственно вентилятор меньшей мощности. Если учесть необходимость отапливания автомобиля в холодный период, для чего вполне достаточно теплоты, отводимой от двигателя, то радиатор для охлаждения двигателя в этот период может вообще не потребоваться.

При сравнении удельных расходов топлива нужно учитывать влияние целого ряда факторов. Так, чем больше диаметр цилиндра, тем более выгодные условия имеются для достижения малого удельного расхода топлива. Важным является также отношение диаметра цилиндра к величине хода поршня. Л. Эльсбетт называет свой дизель «теплоизолированным», что является определенным шагом вперед в направлении создания адиабатного двигателя , о котором будет сказано в следующих главах книги. Некоторые особенности конструкции дизеля «ЭЛКО» показаны на рис. 5.

Дизели непосредственного впрыска по сравнению с дизелями с разделенными камерами сгорания имеют лучшие условия для уменьшения тепловых потерь в систему охлаждения. Выше уже говорилось о менее интенсивном охлаждении поверхности камеры сгорания и снижении скорости движения горячих газов около стенок. Однако и при непосредственном впрыске могут создаваться различные условия для отвода теплоты. В качестве примера на рис. 6 показан процесс совершенствования камеры сгорания дизеля «Татра 111А» (ЧССР).

В первом варианте этого дизеля воздушного охлаждения была использована камера сгорания полусферической формы. Таким путем при помощи больших клапанов стремились получить хорошее наполнение цилиндра и благодаря большому углу развала клапанов обеспечить возможности создания ребер охлаждения в зоне седла выпускного клапана. Для получения требуемой величины объема камеры сгорания днище поршня имело куполообразную форму, камера сгорания теряла компактность, и ее развитые поверхности охлаждения приводили к большим потерям теплоты и пониженным температурам в конце сжатия.

Уменьшив угол развала клапанов и применив почти параллельное их расположение, достигли почти плоского днища головки цилиндра и уменьшения поверхности охлаждения. Камера сгорания была размещена в днище поршня и стала более компактной. Температура стенок камеры сгорания в поршне выросла, и уменьшился отвод теплоты через них. Узкая горловина камеры сгорания обеспечила интенсивное завихривание воздуха при сжатии, что способствовало улучшению смесеобразования и регулирования процесса сгорания. Тем самым были снижены тепловые потери при сгорании, улучшены условия холодного пуска, уменьшен шум. Удельный расход топлива при этом снизился на 15 %. Сравнение начального и модернизированного вариантов камеры сгорания, показанных на рис. 6, является примером того, как с помощью конструкции камеры сгорания можно снизить расход топлива.

Конструкция корпуса камеры.

Конструкцию камеры двигателя (рис. 6.1) технологически можно разделить на две части: корпус 1 и смесительную (форсуночную) голов­ку 2.

Корпус состоит из цилиндрической части 3 и сопла 4.

Исходными данными для конструирования камеры являются преж­де всего геометрические размеры и газодинамический профиль (рис. 6.2), которые определяются при газодинамическом расчёте. Затем производит­ся расчет смесеобразования и форсунок, расчет тепловых потоков и решаются задачи теплозащиты стенки, выбираются основные материалы.

Большинство камер ЖРД имеет наружное охлаждение, при кото­ром осуществляется проток охладителя по охлаждающему тракту, об­разованному между внутренней и наружной оболочками или стенками камеры сгорания и сопла. С ростом давления в камере и повышением энергетических характеристик двигателя для обеспечения надежной теп­лозащиты стенок камеры требуется интенсификация наружного про­точного охлаждения. Это достигается увеличением скорости течения. охладителя, развитием теплоотдающей поверхности стенки с помощью её оребрения, турбулизацией потока, например путём создания искусственной шероховатости тракта. Кроме того, при интенсивном наружном охлаждении требуется, чтобы внутренняя стенка была достаточно тонкой и изготовлена из теплопроводных,материалов, например, из медных сплавов.

Однако с повышением давлений в камере и охлаждающем тракте, которые доходят до десятков мегапаскалей, очень сложно обеспечить высокую прочность конструкции при тонкой стенке из теплопроводных, как правило, малопрочных материалов.

Поэтому наиболее сложным этапом создания камеры является проек­тирование и разработка конструкции охлаждающего тракта, который име­ет много разных форм и силовых связей. Заметим, что от конструкции охлаждающего тракта зависит облик всей конструкции камеры, ee прочность, надежность охлаждения и массовые характеристики. Таким образом, самым главным элементом конструкции камеры сгорания является конструкция охлаждающего тракта. Наиболее простым является охлаждающий тракт, выполненный в виде гладкого щелевого канала, образованного зазором между внутренней и наружной оболочками (рис. 6.3, а и 6). Однако при малом количестве охладителя для обеспечения требуемой скорости те­чения необходимо иметь очень малый зазор щели – меньше 0,4…0,5 мм, что технически выполнить очень трудно. Кроме того, при большом давле­нии в охлаждающем тракте, тонкая внутренняя оболочка легко теряет ус­тойчивость - деформируется из-за недостаточной ее жесткости.

От этих недостатков избавлены охлаждающие тракты с так называ­емыми связанными оболочками, т.е. прочно скрепленными. Впервые их разработал известный советский конструктор А.М. Исаев в 1946 г. (двига­тели У-400 и У-1250). Конструктивных схем охлаждающих трактов со свя­занными оболочками имеется в настоящее время много.


На рис. 6.3, в показан тракт, образованный соединением оболочек электросваркой по специальным выштамповкам - круглым или овальным, выполненным на наружной оболочке.

На рис. 6.4 оболочки соединены пайкой либо через ребра, выфрезеро­ванные на внутренней оболочке (рис. 6.4, а), либо пайкой через специаль­ные гофрированные проставки (рис. 6,4, 6).

В американских двигателях распространены трубчатые конструкции камер. В них корпус камеры сгора­ния и сопла набирается из специальных тонкостенных (до 0,3…0,4 мм) профилированных трубок, изготовленных из теплопроводных материалов, часто на никелевой основе. Трубки соединяются между собой пайкой (рис. 6.5). Для обеспечения прочности трубчатых камер снаружи устанавливаются специальные силовые бандажи, как на отдельных участках, так и в виде сплошной силовой. В некоторых случаях трубки могут размещаться в два слоя. Разновидностью трубчатой конструкции может служить использование U-образных профилей, припаянных к силовой наружной оболочке.

В качестве охладителя в современных двигателях используются окис­литель или горючее, либо оба компонента. Кроме того, для удобства ком­поновки, уменьшения длины подводящих охладитель трубопроводов, а также снижения гидравлического сопротивления охлаждающего тракта охладитель иногда разделяют на несколько расходов, каждый из которых охлаждает какую-либо часть камеры сгорания или сопла. Особенно это характерно при использовании в качестве охладителя водорода. Причем часто для охлаждения камеры вполне достаточно только одной его части расхода. На рис. 6.6 показаны некоторые схемы подвода охладителя в охлаждающий тракт камеры.

Схема а - наиболее простая - весь расход охладителя проходит от среза сопла к головке камеры сгорания. В схеме б концевая часть сома охлаждается частью расхода, так как здесь более низкие тепловые потоки. Эта схема позволяет несколько снизить гидравлические потери в охлаж­дающем тракте, массу и габаритные размеры камеры уменьшением дли­ны подводящих трубопроводов и применением менее габаритного коллектора. Схемы в и г - конструктивно более сложные, но позволяют так­же уменьшить длину подводящих трубопроводов, снизить гидравлическое сопротивление охлаждающего тракта, подавать в области с наибольшими тепловыми потоками (дозвуковая и критическая части сопла) охлади­тель с более низкой температурой.

Схема д - Противоположна схеме а. Здесь охладитель поступает в охлаждающий тракт со стороны смесительной головки. Достоинство схе­мы - уменьшение длины подводящих трубопроводов. Эта схема особен­но хорошо компонуется при трубчатой конструкции камеры. В этом слу­чае охладитель по одной части трубок направляется к срезу сома, а по другой - возвращается к смесительной головке. .

Важным конструктивным элементом камеры является обеспечение равномерного втекания охладителя в охлаждающий тракт по его пери­метру. Для этого устраивают специальные входные коллекторы (рис. 6.7) .

Одно наружное проточное охлаждение камеры не всегда может обес­печить необходимый для надежной работы температурный режим стен­ки на всем ее протяжении. Поэтому, как правило, наряду с наружным охлаждением применяют и внутреннее охлаждение. Оно осуществляется созданием вблизи стенки низкотемпературного пристеночного слоя газа (заградительное охлаждение) или жидкой пленки (завесное охлаждение) на отдельных участках внутренней поверхности стенки.

Заградительное охлаждение стенки осуществляется соответствующим расположением и подбором расходных характеристик форсунок на перифе­рии головки. В этом случае в пристеночном слое создается избыток ка­кого-либо компонента (обычно горючего), что приводит к понижению температуры продуктов сгорания возле стенки. Завесное охлаждение реализуется подачей жидкого компонента (обычно горючего) непосред­ственно на внутреннюю поверхность стенки через отверстия и щели в спе­циальной конструкции - поясе завесы охлаждения. Жидкая пленка и продукты ее разложения, двигаясь по стенке, хорошо ее защищает от воздействия высокотемпературных продуктов сгорания.

Наиболее распространенной конструкцией охлаждающих трактов являются каналы, образованные ребрами (см. рис. 6.4, а) или гофрирован­ными проставками (см. рис. 6.4, б). При таких конструкциях трактов оболочки имеют большое число связей, которые обеспечивают повышен­ную жесткость и прочность камеры. Минимальный шаг между связями t min определяется технологией производства, а максимальный t max - проч­ностью. Уменьшение высоты охлаждающего тракта δ охл часто использу­ется для повышения скорости течения охладителя. Однако из техноло­гических соображений сделать высоту тракта δ охл меньше 1,5 ... 1,8 мм не рекомендуется, так как при пайке может произойти перекрытие сечения канала припоем. Поэтому для повышения скорости течения охладителя, чтобы не уменьшать высоты канала, применяют спиральные винтовые связи (рис. 6.8). Если θ - угол наклона ребер с осью камеры, то скорость течения охладителя W охл ≈ 1/cosθ. Подбирая угол наклона ребер, можно в определенных пределах влиять на скорость течения.

Учитывая, что в соответствии с газодинамическим профилем диаметр сечения сопла непрерывно изменяется, а число связей на определенном участке должно оставаться постоянным, то в соответствии с изменением диаметра сечения сопла будет изменяться на участке и шаг между связя­ми (рис. 6.9).

а) при тракте с ребрами t min = 2,5 мм, t max = 4 ... 6 мм - при пайке твердыми припоями. при диф­фузионной пайке tmin = 2 мм, при­чем допустимую высоту охлаждаю­щего тракта здесь можно снизить до 8 0х כ = 1,2 .. .1,5 мм. Минимальная толщина ребер 8 р = 1 мм;

б) при тракте с гофрами t min =3,5, t max = 5 ... 7 мм. Минимальная толщина гофра 8 г =0,3 мм.

Таким образом, число связей вдоль камеры постоянно будет Изменять­ся, причем при ребрах - ступенями (рис. 6.11, а), а при гофрах _ отдель­ными секциями (рис. 6. 11, б). Технология Изготовления ребер фрезеро­ванием требует удвоения числа ребер в каждой следующей секции: преды­дущие ребра не прерываются, а между ними фрезеруются новые. Число связей - гофр - в соседних секциях произвольное, лишь в начале каждой секции должно быть t ≥ t min , а в конце - t≤ t max.

Естественно, выбор максимальных значений шага между ребрами или гофрами на каждой секции или участке должен быть обоснован прочностными расчетами.

Для одновременного удовлетворения требований надежного охлажде­ния и Прочности внутреннюю стенку камеры сгорания часто приходится изготавливать из разных материалов. Например, на наиболее теплонапряженных участках дозвуковой и критической частей сопла для стенки применяют медные сплавы, а на остальных сталь.

Наконец, сравнивая два вида связей оболочек - с ребрами и гофра­ми, можно отметить следующее.

1. Ребра имеют только один спай - с наружной оболочкой, в то вре­мя как у гофров - два спая, с наружной и внутренней стенками. Учиты­вая, что последний спай "горячий", то, естественно, его прочность меньше "холодного". Следовательно, при использовании гофров прочность связи оболочек при прочих равных условиях будет меньше, чем при применении ребер.

2. Производство ребер путем их фрезерования на внутренней оболоч­ке много проще и надежнее, чем изготовление гофрированных секций.

З. Качество соединения стенки, спаянной с ребрами, легче проконтро­лировать (например, легче расшифровать снимки, полученные на рент­геновской установке). Это объясняется тем, что при гофрах эта работа сильно усложняется из-за накладки одного и другого рядов спаев, а также из-за деформации и перемещения гофров при сборке, вакуумировании, пайке и т.п.

4. При уменьшении шага между ребрами и гофрами гофры в большей степени загромождают проходное сечение охлаждающего тракта, чем реб­ра. Это хорошо видно из рис. 6.12. Заметим, что под коэффициентом загромождения понимается отношение площадей сечения "свободного" охлаждающего тракта, т.е. без загромождающих элементов, к реальному, т.е. загроможденному сечению данного тракта той же высоты.

Большое загромождение проходного сечения охлаждающего тракта требует для обеспечения заданной скорости течения охладителя соответ­ствующего увеличения высоты охлаждающего тракта, что, естественно, увеличит массу камеры. Кроме того, охлаждающий тракт с большим за­громождением будет иметь и повышенное гидравлическое сопротивление.

Все это приводит к тому, что большинство камер двигателей в настоя­щее время имеет в качестве связей фрезерованные ребра, в том числе у даже на сверхзвуковых участках сопла, изготавливаемых из стали.



Поделиться