Кто такой мехатроник? Что такое мехатроника Преимущество мехатронного подхода при решении реальных задач.

Это новая специальность в перечне рабочих профессий. Как правило, новые профессии – это потребность нового времени. Они с одной стороны возбуждают к ним интерес молодежи, а с другой – настороженность. Что является следствием недостаточной информированности о перспективах, которую отрывает новая специальность, как о возможности трудоустройства, так и о степени востребованности их на рынке, от чего собственно зависит заработная плата, а значит уровень жизни представителей этих новых профессий.

Работа мехатроником, как уже упоминалось, является такой новой сферой деятельности, которая связана с эксплуатацией машин, а также оборудования, которые оснащены компьютеризированным управлением в процессе их эксплуатации. Для того, чтобы получить профессию мехатроника необходимы знания в областях механики, электроники, техники, основанной на микропроцессорах, гидро-, пневмотехники, автоматики. Кроме этого необходимо получить знания, которые относятся к сфере компьютерного регулирования движением, как машин в целом, так и отдельных их агрегатов в виде обособленного оборудования.

Вот такая она, новая, довольно интересная, востребованная сегодня профессия мехатроник!

Где учится этой специальности, чтобы стать высококвалифицированным рабочим, имеющим среднее специальное образование? Для этого существуют как училища, так и колледжи профессионального технического обучения, где с недавнего времени (примерно с 2010-го года) появилась специальность «Мехатроника».

Мехатроник профессия

Квалификация мехатроник – это комплекс нескольких профессий, причем в каждой из них на уровне высококвалифицированного рабочего:

  • для технического сопровождения тех или иных технологических процессов, с умением определять актуальное состояние станочного оборудования с его паспортными параметрами;
  • осуществлять выбор и регулировку технологической оснастки, а также различных инструментов станков с ЧПУ. Знать, как составлять простейшие для них программы;
  • осуществлять диагностирование и ремонт систем типа «Станок ЧПУ – робот» при помощи программ тестирования и наладки и прочие, в том числе, также монтажные работы.

Из этого, даже беглого перечня видно, что в профессии мехатроник инструкция требует освоения немалого количества сопутствующих специальностей, как знаний, так и практических навыков или так называемого интегрированного профессионального образования. Заказчиками профессиональных рабочих кадров являются, как правило, крупные машиностроительные заводы и компании, а также другие отрасли производства, в том числе и такие высокотехнологичные как авио- и космическая промышленность, а также производство умных автомобилей и бытовых машин с компьютерной начинкой. Вот собственно, почему мехатроника является новой профессией, в которой заинтересованы современные производства.

Обязанности мехатроника

Мехатроники в своей профессиональной деятельности могут совмещать функции операторов станков с ЧПУ, слесарей по их ремонту, наладчиков этих станков, а также различных манипуляторов. Должностная инструкция мехатроника содержит требования по разработке, как программ управления, так и настройки параметров, так называемых мехатронных систем.

Кроме этого в обязанности должностные мехатроника, могут входить как диагностика, так и ремонтные, а также монтажные работы разнообразных систем:

  • механических, включая электромеханические системы;
  • гидро-, а также пневматических сетей;
  • компьютерных систем и программ управления, основанных как на аналоговых, так и на цифровых технологиях автоматики.

Мехатроник: обучение

Механики оборудования разнообразных сфер промышленности в совокупности со специальностями, связанными с электронными системами автоматизации, иначе говоря, мехатроники – это интересное, а главное успешное будущее на поприще профессиональной деятельности.

Что касается программы, а также продолжительности обучения, то помимо всего перечисленного она включает и обучение обработки металлов и различных материалов, как под давлением, так и резанием. Поэтому такие обширные знания, профессиональные навыки невозможно получить за короткое время обучение.

Полный курс обучения составляет не менее трех с половиной лет.

Относительно условий приема, то абитуриент должен обладать коммуникабельностью, умением работать в составе команды, при этом получать удовольствие от своей профессиональной деятельности. Впрочем, данные требования относятся ко всем без исключения профессиям.

После окончания училища или колледжа любой выпускник имеет возможность поступить в ВУЗ по специальности «Инженер мехатроник».

Современную жизнь невозможно представить без автомобилей, а движение в городском режиме должно происходить максимально комфортно для водителя. Удобство управления автомобилем обеспечивается при помощи различных трансмиссий (АКПП, роботизированной КПП).

Значительной популярностью пользуется роботизированная коробка из-за плавности движения и экономичного расхода топлива, наличия ручного режима, позволяющего подстроить манеру вождения под нужды водителя.

Принцип работы КПП ДСГ

DSG – механическая КПП, оснащенная автоматическим приводом для смены ступеней, и имеющая в составе две корзины сцепления.

Коробка ДСГ связана с двигателем через два сцепления, располагающихся поосно. Нечетные и задняя ступени функционируют через одно сцепление, а четные – через другое. Такое устройство обеспечивает плавную смену ступеней без снижения и прерывания мощности, осуществляя непрерывную передачу вращающего момента от мотора к ведущей оси колес.

Во время разгона на первой ступени, шестеренки второй передачи уже находятся в зацеплении. Когда блок управления передает команду смены ступеней, гидравлические приводы КПП осуществляют отпускание одного сцепления и зажим второго, производя переход вращающего момента от мотора с одной ступени на другую.

Таким образом, процесс происходит до крайней ступени. При снижении скорости и изменении других условий процедура осуществляется в обратном порядке. Смена ступеней происходит с помощью синхронизаторов.

Смена ступеней в коробке ДСГ осуществляется с высокой скоростью, недоступной даже профессиональным гонщикам.

Что такое мехатроник в АКПП

Управление обоими сцеплениями и сменой ступеней происходит при помощи блока управления, состоящего из гидравлического и электронного узлов, датчиков. Этот блок называется Мехатроник и располагается в картере КПП.

Датчики встроенные в Мехатроник, осуществляют контроль состояния КПП и отслеживают работу основных деталей и узлов.

Параметры, контролируемые датчиками Мехатроника:

  • количество оборотов на входе и выходе коробки;
  • давление масла;
  • уровень масла;
  • температура рабочей жидкости;
  • расположение вилок включения ступеней.

На последних моделях коробок ДСГ устанавливается ЕСТ (электронная система, управляющая сменой ступеней).

Помимо вышеперечисленных параметров ЕСТ контролирует:

  • скорость транспортного средства;
  • степень открытия дросселя;
  • температуру мотора.

Считывание этих параметров продляет срок службы КПП и двигателя.

Виды трансмиссии прямого переключения

В настоящий момент существует две разновидности коробок ДСГ:

  • шестиступенчатая (DSG-6);
  • семиступенчатая (DSG-7).

DSG 6

Первой преселективной (роботизированной) КПП являлась шестиступенчатая DSG, которая была разработана в 2003г.

Конструкция DSG-6:

  • два сцепления;
  • два ряда ступеней;
  • картер;
  • Мехатроник;
  • дифференциал КПП;
  • главная передача.

В DSG-6 используется два сцепления мокрого типа, которые неизменно находятся в трансмиссионной жидкости, обеспечивающей смазывание механизмов и охлаждение дисков сцепления, тем самым продляя эксплуатационный период КПП.

Два сцепления передают вращающий момент на ряды ступеней коробки. Ведущий диск КПП соединяется с муфтами маховиком специальной ступицы, объединяющей ступени.

Основные компоненты Мехатроника (электрогидравлического модуля), расположенного в корпусе КПП:

  • золотники распределения КПП;
  • мультиплексор, вырабатывающий управляющие команды;
  • электромагнитные и регулировочные клапана КПП.

При изменении положения селектора включаются распределители КПП. Ступени изменяются при помощи электромагнитных клапанов, а корректирование положения фрикционных муфт происходит при помощи клапанов давления. Эти клапаны являются «сердцем» КПП, а Мехатроник – «мозгом».

Мультиплексор КПП осуществляет управление гидравлическими цилиндрами, которых в такой КПП 8 штук, но одновременно функционирует не более 4-х клапанов КПП. В различных режимах КПП работают разные цилиндры, в зависимости от необходимой ступени.

Передачи в DSG-6 сменяются циклически. Одновременно задействованы два ряда ступеней, только один из них не используется – находится в режиме ожидания. При изменении передаточного момента сразу задействуется второй ряд, переходя в активный режим. Такой механизм функционирования КПП обеспечивает смену передач менее чем за доли секунды, движение транспорта при этом происходит плавно и равномерно, без медлительности и рывков.

DSG-6 является более мощной роботизированной КПП. Крутящий момент мотора автомобиля с такой КПП порядка 350 Нм. Весит такая коробка под 100 килограмм. Трансмиссионного масла для DSG-6 требуется более 6 литров.

На данный момент DSG-6 в основном устанавливается на следующие транспортные средства:

  • Seat (Alhambra, Toledo);
  • Skoda (Octavia, SuperB);
  • Audi (TT, Q3, А3);

Коробки ДСГ оснащаются Типтроником, осуществляющим перевод коробки в режим ручного управления.

DSG 7

DSG-7 была разработана в 2006 году специально для автомобилей эконом-класса. Коробка DSG весит 70-75 кг. и содержит объем масла менее 2-х литров. Данная КПП устанавливается на бюджетные машины с крутящим моментом двигателя не более 250 Нм.

На сегодняшний момент DSG-7 в основном устанавливается на следующие автомобили:

  • Audi (TT, Q3, А3);
  • Seat (Leon, Ibiza, Altea);
  • Skoda (Octavia, Fabia, SuperB);
  • Volkswagen (Tiguan, Golf, Jetta, Passat).

Основным отличием ДСГ-7 от ДСГ-6 является присутствие 2-х сухих дисков сцепления, не находящихся в трансмиссионной жидкости. Такие изменения позволили уменьшить расход топлива, снизить стоимость сервисного обслуживания.

Достоинства и недостатки роботизированной АКПП

Роботизированная КПП имеет свои достоинства и недостатки в сравнении с другими трансмиссиями.

Достоинства коробки ДСГ:

  • уменьшенный расход топливной смеси (до 10-20%);
  • возможность ручного управления, похожее на ;
  • отсутствие потери мощности при смене ступеней;
  • плавность движения автомобиля;
  • высокие динамические характеристики автомобиля, оснащенного коробки ДСГ;
  • уменьшение времени, необходимого для разгона;
  • возможность автоматического и ручного выбора передач;
  • комфортное управление автомобилем, оснащенного такой КПП;
  • отсутствие педали сцепления и привычный рычаг селектора, что не вызывает сложностей при переходе с автомобиля с классической ;

Недостатки коробки ДСГ:

  • высокая стоимость автомобиля с ДСГ по сравнению с машинами, оборудованными другими видами трансмиссий;
  • эпизодически робот подтормаживает и не успевает за динамичным разгоном автомобиля, осуществляя смены ступеней с небольшой задержкой;
  • мехатроник является одним из слабых мест в коробке ДСГ, периодически возникает неисправности в этом блоке;
  • при возникновении неисправности в мехатронике требуется его замена, так как он не подлежит ремонту;
  • уменьшенный ресурс КПП;
  • неисправности мехатроника способствуют частые перепады температур, что особенно актуально в зимнее время;
  • срок службы ДСГ-7 и ее компонентов заметно меньше, чем в ДСГ-6;
  • повышенный нагрев коробки из-за непрерывной активности преселектора;
  • увеличение стоимости обслуживания роботизированной КПП;
  • сложность ремонта роботизированной коробки, который могут осуществить не многие СТО;
  • не устанавливается на внедорожники и другие мощные автомобили;
  • дороговизна ремонта, в некоторых случаях приходится полностью менять DSG.
  • своевременное техническое обслуживание КПП ДСГ (замена трансмиссионной жидкости по регламенту – не более 60000 километров, устранение неисправностей);
  • прогревание роботизированной КПП путем кратковременного нахождения автомобиля после запуска в стоящем положении;
  • плавность движения после прогрева на протяжении 1-5 километров с момента начала движения;
  • избегание пробуксовывания колес;
  • при остановках более 1 минуты рекомендуется переводить селектор коробки ДСГ в режим нейтрали;
  • при вождении по снегу и льду рекомендовано включение режима «снежинка», при его наличии;
  • при динамичной езде и быстрых разгонах желательно переводить рычаг селектора в положение «спорт»;
  • при прохождении каждого технического обслуживания необходимо проводить диагностику коробки ДСГ и производить инициализацию;
  • педаль акселератора необходимо выжимать плавно, даже на ручном режиме;
  • разгон желательно осуществлять в ручном режиме, а плавную езду и торможение – в автоматическом;
  • постановка автомобиля с коробки ДСГ на стоянку в положении селектора «нейтраль» с обязательным включением стояночного тормоза (ручника).

Роботизированная коробка является, по сути, усовершенствованной МКПП, переключение ступеней в которой происходит при помощи мехатроника на основании различных параметров, считываемых датчиками. При соблюдении определенных рекомендаций можно существенно продлить срок службы роботизированной коробки.

ХХ век был очень плодотворным на возникновение новых наук, одной из которых является мехатроника. Кем работать после освоения данной дисциплины? Что она представляет собой и чем занимается? Насколько она важна в современной жизни? Какие она открывает нам перспективы? Кем работают люди, которые изучают данную дисциплину в университетах и самостоятельно? Вот неполный список вопросов, на которые будет дан ответ в статье.

Что такое мехатроника?

Данный термин был получен при соединении слов «механика» и «электроника». Впервые он был применён в 1969 году. На данный момент времени мехатроника - это наука, которая посвящена созданию и целенаправленной эксплуатации машин и систем, движение которых определяется электронно-вычислительной техникой. Она базируется на знаниях механики, информатики, электроники и компьютерном управлении движения агрегатов и машин. Изучить основы мехатроники можно при желании, поскольку научно-образовательной литературы по этому направлению достаточно. Для большего придётся приложить значительные усилия, чтобы найти необходимый материал. Хотя можно, теоретически, и самому додуматься, что представляет собой мехатроника. Что это такое мы уже выяснили, давайте перейдём к отдельным аспектам.

Связь с робототехникой

Очень часто их можно встретить вместе. Почему так? Дело в том, что робототехника - это самое перспективное направление мехатроники, которое может развиваться исключительно в её рамках. Здесь необходимо сделать небольшое отступление. Дело в том, что сейчас мехатроника занимается автомобильной, авиационной, космической, бытовой, медицинской и спортивной техникой. Но чтобы изготавливать предметы этого типа существуют отдельные специальности. И специально, чтобы акцентировать внимание на том, что студенты будут заниматься проектированием роботов, станков с численно-программным управлением и подобных устройств, а также их созданием, направление подготовки и называется «мехатроника и робототехника».

Общее описание практической составляющей

Что нам даёт мехатроника? Что это такое с точки зрения практики создания? Давайте рассмотрим общую схему построения машин, которые имеют компьютерное управление и ориентированы на то, чтобы автоматизировать производственные и бытовые задачи. Внешней средой для них является технологическое окружение, с которым будет происходить взаимодействие. Когда мехатронная система выполняет свои функции, то это происходит благодаря рабочим органам. Следует отметить, что данное научное направление является довольно молодым, в нём много неточностей и расплывчатых формулировок даже в научной литературе, поэтому со временем некоторые теоретические принципы могут поменяться. Мехатронные системы формируются из трех частей, которые связаны между собой информационными и энергетическими потоками:

  1. Электромеханической. Сюда относят механические звенья, передачи, электродвигатели, сенсоры, рабочий орган, дополнительные электротехнические элементы, сенсоры. Все составляющие применяются для того, чтобы обеспечить необходимые движения. Особую важность для корректного выполнения поставленных задач имеют сенсоры. Они собирают данные про состояние объекта работ и внешней среды, непосредственно мехатронного устройства и его составляющих.
  2. Электронный. Сюда относят микроэлектронные устройства, силовые преобразователи и измерительные цепи.
  3. Компьютерной. Сюда относятся микроконтроллеры и высшего уровня.

Основные функции мехатронных систем

На данный момент времени их выделяют 4:

  1. Управление процессом механического движения в режиме реального времени с одновременной обработкой информации, что поступают с их сенсоров.
  2. Соорганизация своих действий с внешними источниками влияния.
  3. Взаимодействие с человеком посредством специального интерфейса в или в реальном времени.
  4. Организация обмена данными между сенсорами, и другими составляющими элементами системы.

Задача мехатроники

Они должна решать проблему преобразования входной информации, что поступает с верхнего уровня управления в необходимые При этом, как правило, используется принцип обратной связи. В проектировании эта задача выражается в том, что происходит интеграция в один функциональный модуль нескольких элементов, что имеют разную природу - в этом специфичность, которую имеет мехатроника. Специальность людей, которые занимаются выполнением данных целей может быть самой разной. В идеале при предоставлении планируемой информации будет получаться желаемый результат. Помочь в этой аппаратной составляющей должно программное обеспечение.

Преимущество мехатронного подхода при решении реальных задач

Сравнение будет проводиться с традиционными средствами автоматизации:

  1. Относительно низкая стоимость систем, что достигается благодаря значительной интеграции, стандартизации и унификации всех составляющих интерфейсов и элементов.
  2. Возможность реализации точных и сложных движений благодаря методам интеллектуального управления.
  3. Высокий уровень надежности, долговечности и помехозащищенности.
  4. Компактность используемых модулей, что позволяет обходиться меньшей площадью. Также их можно относительно легко совмещать для достижения возможности выполнения конкретных задач.
  5. Благодаря упрощению кинематических цепей машины обладают хорошими динамическими и массогабаритными характеристиками.

Вот благодаря чему развивается мехатроника и робототехника. Специальность в данном случае позволяет получить уже отобранные и готовые у изучению данные, тогда как при самообразовании придётся всё искать самому.

Примеры мехатроники в реальной жизни

Где можно найти подобные системы около нас? Для этого предлагаю взглянуть на такие области людской деятельности:

  1. Станкостроение и изготовление оборудования для проведения автоматизации технологических процессов.
  2. Робототехника.
  3. Военная, космическая и
  4. Автомобилестроение (так, мехатронными системами является стабилизация движения, автоматическая парковка и подобные разработки).
  5. Различные нестандартные средства передвижения и транспортировки (электророллеры, грузовые тележки, электровелосипеды).
  6. Контрольно-измерительные машины и устройства.
  7. Офисная техника (факсимильные и копировальные аппараты).
  8. Медицинское оборудование (реанимационное, реабилитационное, клиническое).
  9. Бытовая техника (швейные, посудомоечные, стиральные и иные машины подобного типа).
  10. Тренажеры для подготовки операторов, водителей, пилотов.
  11. Системы светового и звукового оформления.
  12. Микромашины (активно применяются в медицине, биотехнологиях, средствах телекоммуникации).

Продолжать этот список можно ещё очень долго.

Высшее образование: мехатроника и робототехника

Вузы предлагают возможность обучения широкому спектру профессиональных умений. Этот список может быть очень длинным, но постараемся сделать его как можно короче:

  1. Проводить оценку актуальности, перспективности и значимости проектов.
  2. Разрабатывать информационные, электромеханические, электрогидравлические, электронные и микропроцессорные макеты модулей систем.
  3. Создавать программное обеспечение, чтобы при необходимости осуществлять управление мехатронными приборами.
  4. Составлять проектные документы, в которых будет описываться конструкция и процесс изготовления отдельных деталей.
  5. Контролировать разработки на предмет соответствия стандартам.
  6. Изготавливать, собирать и испытывать проектируемую технику.
  7. Составлять патентные и лицензионные паспорта.
  8. Делать модернизацию и отладку мехатронных систем.
  9. Подготавливают инструкцию по использованию устройства.

Вот что может предоставить своим студентам любой лицензированный министерством образования факультет мехатроники и робототехники. Их мало, в основном существуют отдельные кафедры, но и на них можно получить необходимое образование.

Самореализация человека, которому известна мехатроника и робототехника: кем работать?

Где можно будет трудоустроиться после получения образования? Специалисты данного профиля создают и конструируют робототехнические системы промышленного и бытового использования. Также они могут разрабатывать программное обеспечение, чтобы обеспечить управление ими и удобную эксплуатациею. После получения образования обычно начинают работать на должности помощников конструкторов, программистов и техников, хотя перспективы дальнейшего места работы очень широкие, ведь облегчение труда человека и улучшение его результата - вот конечная задача, которую имеет мехатроника. Что это такое, мы уже изучили. И напоследок хотим сообщить, что потенциально можно будет заниматься одним из таких видов деятельности:

  1. Научно-исследовательской.
  2. Проектно-конструкторской.
  3. Эксплуатационной.
  4. Организационно-управленческой.

Особенностью данной специальности является то, что ощущается значительная нехватка кадров. Поэтому не редкостью являются факты трудоустройства даже самоучек, которые смогли продемонстрировать значительный уровень умений и практических навыков.

Заключение

Все профессии важны, все они нужны. Не преувеличивая, можно сказать, что описанная нами - одна из специальностей будущего. Спрос на работников умственного труда такого профиля постоянно растёт. Этот факт, а также хороший уровень денежного обеспечения позволяет говорить нам о том, что в это направление станет значительно популярней в ближайших десятилетиях. Возможно, что специальности юристов, экономистов и управленцев отойдут на задний план, и вперёд выйдет мехатроника. Что это такое, мы уже знаем, а с пониманием важности данной научной дисциплины будет приходить и согласие с данными словами.

], область науки и техники, основанная на синергетическом объединении узлов точной механики с электронными, электротехническими и компьютерными компонентами, обеспечивающая проектирование и производство качественно новых модулей, систем и машин с интеллектуальным управлением их функциональными движениями. Термин «Мехатроника» (англ. «Mechatronics», нем. «Mechatronik») был введён японской фирмой « Yaskawa Electric Corp. » в 1969 году и зарегистрирован как торговая марка в 1972 году. Отметим, что в отечественной технической литературе ещё в 1950-х гг. использовался подобным же образом образованный термин – «механотроны» (электронные лампы с подвижными электродами, которые применялись в качестве датчиков вибраций и т. п.). Мехатронные технологии включают проектно-конструкторские, производственные, информационные и организационно-экономические процессы, которые обеспечивают полный жизненный цикл мехатронных изделий.

Предмет и метод мехатроники

Главная задача мехатроники как направления современной науки и техники состоит в создании конкурентоспособных систем управления движением разнообразных механических объектов и интеллектуальных машин, которые обладают качественно новыми функциями и свойствами. Метод мехатроники заключается (при построении мехатронных систем) в системной интеграции и использовании знаний из ранее обособленных научных и инженерных областей. К их числу относятся прецизионная механика, электротехника, гидравлика, пневматика, информатика, микроэлектроника и компьютерное управление. Мехатронные системы строятся путём синергетической интеграции конструктивных модулей, технологий, энергетических и информационных процессов, начиная со стадии их проектирования и заканчивая производством и эксплуатацией.

В 1970–80-х гг. три базисных направления – оси мехатроники (точная механика, электроника и информатика) интегрировались попарно, образовав три гибридных направления (на рис. 1 показаны боковыми гранями пирамиды). Это электромеханика (объединение механических узлов с электротехническими изделиями и электронными блоками), компьютерные системы управления (аппаратно–программное объединение электронных и управляющих устройств), а также системы автоматизированного проектирования (САПР) механических систем. Затем – уже на стыке гибридных направлений – возникает мехатроника, становление которой как нового научно-технического направления начинается с 1990-х гг.

Элементы мехатронных модулей и машин имеют различную физическую природу (механические преобразователи движений, двигатели, информационные и электронные блоки, управляющие устройства), что определяет междисциплинарную научно-техническую проблематику мехатроники. Междисциплинарные задачи определяют и содержание образовательных программ по подготовке и повышению квалификации специалистов, которые ориентированы на системную интеграцию устройств и процессов в мехатронных системах.

Принципы построения и тенденции развития

Развитие мехатроники является приоритетным направлением современной науки и техники во всём мире. В нашей стране мехатронные технологии как основа построения роботов нового поколения включены в число критических технологий РФ.

К числу актуальных требований к мехатронным модулям и системам нового поколения следует отнести: выполнение качественно новых служебных и функциональных задач; интеллектуальное поведение в изменяющихся и неопределённых внешних средах на основе новых методов управления сложными системами; сверхвысокие скорости для достижения нового уровня производительности технологических комплексов; высокоточные движения с целью реализации новых прецизионных технологий, вплоть до микро- и нанотехнологий; компактность и миниатюризация конструкций на основе применения микромашин; повышение эффективности многокоординатных мехатронных систем на базе новых кинематических структур и конструктивных компоновок.

Построение мехатронных модулей и систем основывается на принципах параллельного проектирования (англ. – concurrent engineering), исключения многоступенчатых преобразований энергии и информации, конструктивного объединения механических узлов с цифровыми электронными блоками и управляющими контроллерами в единые модули.

Ключевым принципом проектирования является переход от сложных механических устройств к комбинированным решениям, основанным на тесном взаимодействии более простых механических элементов с электронными, компьютерными, информационными и интеллектуальными компонентами и технологиями. Компьютерные и интеллектуальные устройства придают мехатронной системе гибкость, поскольку их легко перепрограммировать под новую задачу, и они способны оптимизировать свойства системы при изменяющихся и неопределённых факторах, действующих со стороны внешней среды. Важно отметить, что за последние годы цена таких устройств постоянно снижается при одновременном расширении их функциональных возможностей.

Тенденции развития мехатроники связаны с появлением новых фундаментальных подходов и инженерных методов решения задач технической и технологической интеграции устройств различной физической природы. Компоновка нового поколения сложных мехатронных систем формируется из интеллектуальных модулей («кубиков мехатроники»), объединяющих в одном корпусе исполнительные и интеллектуальные элементы. Управление движением систем осуществляется с помощью информационных сред для поддержки решений мехатронных задач и специального программного обеспечения, реализующего методы компьютерного и интеллектуального управления.

Классификация мехатронных модулей по структурным признакам представлена на рис. 2.

Модуль движения – конструктивно и функционально самостоятельный электромеханический узел, включающий в себя механическую и электрическую (электротехническую) части, который можно использовать как сепаратный блок, так и в различных комбинациях с другими модулями. Главным отличием модуля движения от общепромышленного электропривода является использование вала двигателя в качестве одного из элементов механического преобразователя движения. Примерами модулей движения являются мотор-редуктор, мотор-колесо , мотор-барабан, электрошпиндель станка.

Мотор-редукторы являются исторически первыми по принципу своего построения мехатронными модулями, которые стали серийно выпускать, и до настоящего времени находят широкое применение в приводах различных машин и механизмов. В мотор-редукторе вал является конструктивно единым элементом для двигателя и преобразователя движения, что позволяет исключить традиционную соединительную муфту, добиваясь таким образом компактности; при этом существенно уменьшается количество присоединительных деталей, а также затраты на установку, отладку и запуск. В мотор-редукторах в качестве электродвигателей наиболее часто используют асинхронные двигатели с короткозамкнутым ротором и регулируемым преобразователем частоты вращения вала, однофазные двигатели и двигатели постоянного тока. В качестве преобразователей движения применяются зубчатые цилиндрические и конические, червячные, планетарные, волновые и винтовые передачи. Для защиты от действия внезапных перегрузок устанавливают ограничители вращающего момента.

Мехатронный модуль движения – конструктивно и функционально самостоятельное изделие, включающее в себя управляемый двигатель, механическое и информационное устройства (рис. 2). Как следует из данного определения, по сравнению с модулем движения, в состав мехатронного модуля движения дополнительно встроено информационное устройство. Информационное устройство включает датчики сигналов обратных связей, а также электронные блоки для обработки сигналов. Примерами таких датчиков могут служить фотоимпульсные датчики (энкодеры), оптические линейки, вращающиеся трансформаторы, датчики сил и моментов и т. д.

Важным этапом развития мехатронных модулей движения стали разработки модулей типа «двигатель-рабочий орган». Такие конструктивные модули имеют особое значение для технологических мехатронных систем, целью движения которых является реализация целенаправленного воздействия рабочего органа на объект работ. Мехатронные модули движения типа «двигатель-рабочий орган» широко применяют в станках под названием мотор-шпиндели.

Интеллектуальный мехатронный модуль (ИММ) – конструктивно и функционально самостоятельное изделие, построенное путём синергетической интеграции двигательной, механической, информационной, электронной и управляющей частей.

Таким образом, по сравнению с мехатронными модулями движения, в конструкцию ИММ дополнительно встраиваются управляющие и силовые электронные устройства, что придаёт этим модулям интеллектуальные свойства (рис. 2). К группе таких устройств можно отнести цифровые вычислительные устройства (микропроцессоры, сигнальные процессоры и т. п.), электронные силовые преобразователи, устройства сопряжения и связи.

Применение интеллектуальных мехатронных модулей даёт мехатронным системам и комплексам ряд принципиальных преимуществ: способность ИММ выполнять сложные движения самостоятельно, без обращения к верхнему уровню управления, что повышает автономность модулей, гибкость и живучесть мехатронных систем, работающих в изменяющихся и неопределённых условиях внешней среды; упрощение коммуникаций между модулями и центральным устройством управления (вплоть до перехода к беспроводным коммуникациям), что позволяет добиваться повышенной помехозащищённости мехатронной системы и ее способности к быстрой реконфигурации; повышение надёжности и безопасности мехатронных систем благодаря компьютерной диагностике неисправностей и автоматической защите в аварийных и нештатных режимах работы; создание на основе ИММ распределённых систем управления с применением сетевых методов, аппаратно-программных платформ на базе персональных компьютеров и соответствующего программного обеспечения; использование современных методов теории управления (адаптивных, интеллектуальных, оптимальных) непосредственно на исполнительном уровне, что существенно повышает качество процессов управления в конкретных реализациях; интеллектуализация силовых преобразователей, входящих в состав ИММ, для реализации непосредственно в мехатронном модуле интеллектуальных функций по управлению движением, защите модуля в аварийных режимах и диагностики неисправностей; интеллектуализация сенсоров для мехатронных модулей позволяет добиться более высокой точности измерения, программным путём обеспечив в самом сенсорном модуле фильтрацию шумов, калибровку, линеаризацию характеристик вход/выход, компенсацию перекрёстных связей, гистерезиса и дрейфа нуля.

Мехатронные системы

Мехатронные системы и модули вошли как в профессиональную деятельность, так и в повседневную жизнь современного человека. Сегодня они находят широкое применение в самых различных областях: автомобилестроение (автоматические коробки передач, антиблокировочные устройства тормозов, приводные модули «мотор-колесо», системы автоматической парковки); промышленная и сервисная робототехника (мобильные, медицинские, домашние и другие роботы); периферийные устройства компьютеров и офисная техника: принтеры, сканеры, CD-дисководы, копировальные и факсимильные аппараты; производственное, технологическое и измерительное оборудование; домашняя бытовая техника: стиральные, швейные, посудомоечные машины и автономные пылесосы; медицинские системы (например, оборудование для робото-ассистированной хирургии, коляски и протезы для инвалидов) и спортивные тренажёры; авиационная, космическая и военная техника; микросистемы для медицины и биотехнологии; лифтовое и складское оборудование, автоматические двери в отелях аэропортах, вагонах метро и поездов; транспортные устройства (электромобили, электровелосипеды, инвалидные коляски); фото- и видеотехника (проигрыватели видеодисков, устройства фокусировки видеокамер); движущиеся устройства для шоу-индустрии.

Выбор кинематической структуры является важнейшей задачей при концептуальном проектировании машин нового поколения. Эффективность её решения во многом определяет главные технические характеристики системы, её динамические, скоростные и точностные параметры.

Именно мехатроника дала новые идеи и методы для проектирования движущихся систем с качественно новыми свойствами. Эффективным примером такого решения стало создание машин с параллельной кинематикой (МПК) (рис. 3).

В основе их конструктивной схемы лежит обычно платформа Гью-Стюарта (разновидность параллельного манипулятора, имеющая 6 степеней свободы; используется октаэдральная компоновка стоек). Машина состоит из неподвижного основания и подвижной платформы, которые соединены между собой несколькими стержнями с управляемой длиной. Стержни соединены с основанием и платформой кинематическими парами, которые имеют соответственно две и три степени подвижности. На подвижной платформе устанавливается рабочий орган (например, инструментальная или измерительная головка). Программно регулируя длины стержней с помощью приводов линейного перемещения, можно управлять перемещениями и ориентацией подвижной платформы и рабочего органа в пространстве. Для универсальных машин, где требуется перемещение рабочего органа как твёрдого тела по шести степеням свободы, необходимо иметь шесть стержней. В мировой литературе такие машины называются «гексаподы» (от греч. ἔ ξ – шесть).

Основными преимуществами машин с параллельной кинематикой являются: высокая точность исполнения движений; высокие скорости и ускорения рабочего органа; отсутствие традиционных направляющих и станины (в качестве несущих элементов конструкции используются приводные механизмы), отсюда и улучшенные массогабаритные параметры, и низкая материалоёмкость; высокая степень унификации мехатронных узлов, обеспечивающая технологичность изготовления и сборки машины и конструктивную гибкость.

Повышенные точностные показатели МПК обусловлены следующими ключевыми факторами:

в гексаподах, в отличие от кинематических схем с последовательной цепью звеньев, не происходит суперпозиции (наложения) погрешностей позиционирования звеньев при переходе от базы к рабочему органу;

стержневые механизмы обладают высокой жесткостью, так как стержни не подвержены изгибающим моментам и работают только на растяжение-сжатие;

применяются прецизионные датчики обратной связи и измерительные системы (например, лазерные), а также используются компьютерные методы коррекции перемещений рабочего органа.

Благодаря повышенной точности МПК могут применяться не только как обрабатывающее оборудование, но и в качестве измерительных машин. Высокая жёсткость МПК позволяет применять их на силовых технологических операциях. Так, на рис. 4 показан пример гексапода, выполняющего гибочные операции в составе технологического комплекса «HexaBend» для производства сложных профилей и труб.

Компьютерное и интеллектуальное управление в мехатронике

Применение ЭВМ и микроконтроллеров, реализующих компьютерное управление движением разнообразных объектов, является характерной особенностью мехатронных устройств и систем. Сигналы от разнообразных датчиков, несущие информацию о состоянии компонентов мехатронной системы и приложенных к этой системе воздействий, поступают в управляющую ЭВМ. Компьютер перерабатывает информацию в соответствии с заложенными в него алгоритмами цифрового управления и формирует управляющие воздействия на исполнительные элементы системы.

Компьютеру отводится ведущая роль в мехатронной системе, поскольку компьютерное управление даёт возможность достичь высокой точности и производительности, реализовать сложные и эффективные алгоритмы управления, учитывающие нелинейные характеристики объектов управления, изменения их параметров и влияние внешних факторов. Благодаря этому мехатронные системы приобретают новые качества при увеличении долговечности и снижении размеров, массы и стоимости таких систем. Достижение нового, более высокого уровня качества систем благодаря возможности реализации высокоэффективных и сложных законов компьютерного управления позволяет говорить о мехатронике как о возникающей компьютерной парадигме современного развития технической кибернетики.

Характерным примером мехатронной системы с компьютерным управлением является прецизионный следящий привод на основе бесконтактной многофазной электрической машины переменного тока с векторным управлением. Наличие группы датчиков, в том числе высокоточного датчика положения вала двигателя, цифровых методов обработки информации, компьютерной реализации законов управления, преобразований, основанных на использовании математической модели электрической машины, и быстродействующего контроллера позволяет построить прецизионный быстродействующий привод, обладающий сроком службы до 30–50 тысяч часов и более.

Компьютерное управление оказывается весьма эффективным при построении многокоординатных нелинейных мехатронных систем. В этом случае ЭВМ анализирует данные о состоянии всех компонентов и внешних воздействиях, производит вычисления и формирует управляющие воздействия на исполнительные компоненты системы с учётом особенностей её математической модели. В результате достигается высокое качество управления согласованным многокоординатным движением, например, рабочего органа мехатронной технологической машины или мобильного робота.

Особую роль в мехатронике играет интеллектуальное управление, которое является более высокой ступенью развития компьютерного управления и реализует различные технологии искусственного интеллекта. Они дают возможность мехатронной системе воспроизводить в той или иной мере интеллектуальные способности человека и на этой основе принимать решения о рациональных действиях для достижения цели управления. Наиболее эффективными технологиями интеллектуального управления в мехатронике являются технологии нечёткой логики, искусственных нейронных сетей и экспертных систем.

Применение интеллектуального управления даёт возможность обеспечить высокую эффективность функционирования мехатронных систем при отсутствии подробной математической модели объекта управления, при действии различных неопределённых факторов и при опасности возникновения непредвиденных ситуаций в работе системы.

Преимущество интеллектуального управления мехатронными системами состоит и в том, что часто для построения таких систем не требуются их подробная математическая модель и знание законов изменения действующих на них внешних воздействий, а управление строится на основе опыта действий высококвалифицированных специалистов-экспертов.

Устройство любой роботизированной коробки, подразумевает наличие мехатроннного модуля.
Он по праву считается самым сложным и важным узлом трансмиссии.
Но чтобы понять, что такое мехатроник и какую роль он выполняет в КПП, сперва стоит ознакомиться с его конструкцией.

Разбираем устройство блока

Мехатрон размещается непосредственно в корпусе РКПП, и имеет довольно небольшие размеры.
Однако это не мешает агрегату объединять в себе:

  • Электронный блок управления (процессор, имеющий вид электронной платы);
  • Гидравлическую часть (гидроблок с отдельным масляным контуром);
  • Датчиковую аппаратуру;
  • Набор механических тяг и сервоприводов.

Эти компоненты образуют единую цепочку, и в случае неисправности любого из них, весь модуль начинает работать некорректно.

В процессе движения, более 10-ти входных датчиков фиксируют скорость вращения валов, обороты мотора, температуру масла, уровень давления и другие параметры.
Эти данные передаются на ЭБУ, где мгновенно обрабатываются.
Затем, процессор отправляет сигналы на приводы и гидравлический контур, определяя алгоритм работы.

Данный блок не имеет определенного эксплуатационного ресурса.
Некоторые водители сталкиваются с поломками спустя 30 000 - 40 000 км пробега, а другие не замечают неполадок даже после 200 000 км.
Но в среднем, сбои возникают уже на первой сотне тысяч пробега.

Электронный «мозг» КПП

Фактически, мехатроник полностью управляет трансмиссией.
Прибор определяет необходимость перехода на другую ступень, подключает сцепления, координирует работу других блоков.
Именно от его исправности зависит плавность и своевременность переключения передач, а также «поведение» коробки-робота.

В случае повреждения или сбоя, возможны задержки, рывки, вибрации по кузову, посторонние шумы и удары. Даже если машина остается на ходу, игнорировать проблему нельзя - это неизбежно приведет к поломке всех сопутствующих механизмов.

Чем отличаются мехатроники?

Mechatronic не является универсальным модулем. Для каждой модификации коробки-робота, разрабатывается своя версия мехатрона, и они не взаимозаменяемы.
Более того, даже машины одного года выпуска и с идентичным типом DSG, могут оснащаться приборами разных поколений.

Ключевое отличие кроется в программном обеспечении, которое адаптировано под специфику конкретной машины (объем двигателя, передаточные соотношения и т.д.).
Если же Вы хотите установить на свое авто «не родной» мехатрон - его необходимо перепрошить.
Специалисты нашей мастерской готовы оказать профессиональную помощь в этом вопросе. Также к нам можно обратиться как для замены, так и с целью ремонта (восстановления) модуля.



Поделиться