Рабочий цикл и индикаторная программа двигателя. Построение индикаторных диаграмм Индикаторная диаграмма дизельного двигателя

Так же, как и диаграмму термодинамического цикла, можно изобразить в координатах р-V и действительный цикл двигателя внутреннего сгорания. Полученная при этом диаграмма называется индикаторной.

Диаграмма четырехтактного дизеля. Вначале рассмотрим рабочий цикл четырехтактного дизеля, не имеющего наддува.

Первый такт - наполнение. Когда поршень дизеля двигается слева направо, открывается впускной клапан 3 (рис. 19) и воздух из атмосферы поступает в цилиндр. В двигателях без наддува процесс наполнения цилиндра происходит вследствие разрежения

Рис. 19. Диаграмма рабочего цикла четырехтактного дизеля и схема его устройства:

1 - поршень; 2 - цилиндр; 3 - впускной клапан; 4 - форсунка; 5 - выпускной клапан в нем, а давление воздуха в цилиндре достигает 0,085-0,09 МПа, поэтому линия наполнения цилиндра располагается ниже атмосферной (0,1 МПа). В действительности линия наполнения не прямая, так как на нее оказывают влияние неравномерность скорости движения поршня, фазы открытия и закрытия клапанов, конструкция входного патрубка и другие факторы. Для более полной зарядки цилиндра воздухом принимаются меры к снижению сопротивления проходу воздуха в цилиндр. Качество зарядки цилиндра оценивается коэффициентом наполнения ц„, который обычно равен0,8-0,88. Это значит, что цилиндр дизеля наполняется воздухом только на 80-88 % по сравнению с тем количеством воздуха, которое поместилось бы в рабочем объеме цилиндра при нормальных условиях окружающей среды. Коэффициент наполнения зависит главным образом от температуры и давления воздуха в точке а (см. рис. 19). Чем выше давление и чем ниже температура воздуха в точке а, тем больше коэффициент наполнения (рис. 20).

Второй такт - сжатие. Поршень движется справа налево, впускной клапан закрывается, воздух в цилиндре сжимается. При этом температура его в точке с повышается до 500-750 °С, а давление может возрастать до 5- 7 МПа. Процесс сжатия на диаграмме изображен линией ас (см. рис. 19). Когда поршень еще не дошел до верхней мертвой точки (в.м.т.) на 18-30° угла поворота коленчатого вала, через форсунку 4 в цилиндр впрыскивается жидкое топливо, которое в точке с воспламеняется и начинает гореть. Подача топлива прекращается после того, как поршень уже пройдет в.м.т. на 10-15° и снова начнет двигаться слева направо. Поступившее в цилиндр топливо перемешивается с воздухом и начинает гореть. На диаграмме процесс горения изображен ломаной линией сг"г.

Третий такт - расширение газа. В начале третьего хода поршня происходит сгорание топлива, которое теоретически заканчивается в точке г. Давление в точке г возрастает до 8-13 МПа, а температура до 1750- 2100 К. После точки г происходит расширение газов, которое продолжается до тех пор, пока не откроется выпускной клапан. Последний открывается в точке е" на 40-55° до нижнего положения поршня, когда давление в цилиндре достигает 0,5-0,8 МПа, а температура 1000-1100 К- Предварение открытия выпускного клапана способствует уменьшению сопротивления выходу отработавших газов через выпускную систему и, следовательно, лучшей очистке цилиндра от отработавших


Рис. 20. Изменение коэффициента наполнения цилиндров г), в зависимости от давления и температуры воздуха в цилиндре в начале сжатия

Рис. 21. Индикаторная диаграмма четырехтактного дизеля с газотурбинным наддувом:

ря - давление в период наполнения; рг давление в цилиндре в период выпуска; рк - давление воздуха в наддувочном коллекторе; V, объем камеры сжатия: объем, описываемый поршнем, V* - полный объем цилиндра газов. Ход расширения является полезным рабочим ходом, так как в этот период газы с большим давлением действуют на поршень дизеля в направлении его движения и совершают полезную работу, отдавая ее нагрузочному агрегату.

Четвертый такт - выпуск газов. Поршень движется справа налево, вы-


Рис. 22. Диаграмма рабочего цикла двухтактного дизеля и схема его устройства:

А - продувочное окно; В - выпускное окно. 1 - цилиндр; } - поршень; ,3 - форсунка пускной клапан 5 открыт и газы выталкиваются из цилиндра. Процесс выпуска газов на диаграмме изображен линией e"er. Удаление газов происходит при давлении 0,11-0,12 МПа, поэтому линия выпуска газов располагается выше атмосферной линии. Температура газов за выпускным клапаном равна 700-900 К-

Для более совершенной продувки и зарядки цилиндра воздухом впускной и выпускной клапаны на протяжении 50-100° поворота кривошипа коленчатого вала открыты одновременно. Это так называемое «перекрытие» клапанов обеспечивает хорошую очистку цилиндров от продуктов сгорания топлива и более полное заполнение рабочего объема воздухом, а также охлаждение днища поршня и выпускных клапанов потоком холодного воздуха. Качество очистки цилиндра от отработавших газов оценивается коэффициентом остаточных газов у, который представляет собой отношение количества оставшихся в цилиндре от предыдущего цикла газов к величине поступившего в цилиндр свежего воздушного заряда. Обычно у - = 0,024-0,1.

Особенности рабочего цикла четырехтактного дизеля с газотурбинным наддувом. В дизелях с наддувом процесс зарядки цилиндра происходит иначе, чем у двигателей без наддува. Турбокомпрессор засасывает воздух из атмосферы при давлении р0 (рис. 21) и сжимает до давления рк- Сжатый в турбокомпрессоре воздух прежде, чем попасть в цилиндр, проходит через охладитель, впускной коллектор и выпускные клапаны; на пути от турбокомпрессора до цилиндра его давление снижается от рк до р„. Поэтому линия давления впуска расположена ниже линии рк и выше атмосферной линии (Ро).

После заполнения цилиндра воздухом поршень, двигаясь от точки а налево, сжимает воздух. Процесс сжатия изображен кривой ас. В конце сжатия в цилиндр впрыскивается топливо, которое воспламеняется в точке с. Процесс сгорания показан линиями cz" и г"г. Расширение газов происходит по кривой ге. В точке е открываются выпускные клапаны, и отработавшие газы выталкиваются в газовую турбину (при давлении рт), а затем выбрасываются в атмосферу. Таким образом, линия выпуска газа из цилиндра расположена выше атмосферной и ниже линии наполнения. В четырехтактных двигателях энергии отработавших газов вполне достаточно, чтобы нагнетатель сжимал воздух до давления рк, более высокого, чем рг. В результате наддува площадь индикаторной диаграммы, а следовательно, и мощность дизеля значительно возрастают.

Следует отметить, что в действительности процесс сгорания происходит не по прямым линиям с г" и г"г, а по штриховой линии (см. рис. 21).

Диаграмма двухтактного дизеля. Сжатие воздуха в цилиндре при движении поршня справа налево начинается в точке а и продолжается до точки с (рис. 22). За 16-25° угла поворота коленчатого вала до крайнего левого положения поршня через форсунку 3 в цилиндр при высоком давлении подается жидкое топливо (в мелкораспыленном виде), которое, соприкасаясь с нагретым до высокой температуры сжатым воздухом, воспламеняется. Образовавшиеся газы, стремясь расшириться, перемещают поршень вправо. Движущийся поршень через шатун вращает коленчатый вал. Не доходя до крайнего правого положения, поршень 2 своей кромкой открывает выпускное окно Б, давая выход отработавшим газам через глушитель наружу. Двигаясь дальше вправо, поршень открывает продувочное окно Л, через которое в цилиндр \стремляется свежий воздух, имеющий повышенное давление. Воздух вытесняет отработавшие газы и заполняет цилиндр. Когда поршень изменит направление и начнет двигаться справа налево, он вначале закроет продувочное окно А, а затем выпускное Б, после чего начнется сжатие оставшегося в цилиндре воздуха. Таким образом, полный рабочий процесс (цикл) в двухтактном дизеле совершается за два кода поршня (такта), при этом коленчатый вал совершает один оборот.

В двухтактных дизелях продувочный воздух подается в цилиндры нагнетателем, приводимым в движение от вала дизеля, или турбокомпрессором. От качества продувки цилиндров зависит мощность и к.п.д. дизеля. Чтобы обеспечить хорошую продувку цилиндров воздухом и снизить тепловое напряжение деталей дизеля, соприкасающихся с горячими газами, в цилиндры подается значительно больше воздуха, чем требуется для горения топлива; во время продувки часть воздуха уходит через выпускные окна. Учитывая это, подача продувочного воздушного нагнетателя должна быть на 30-40 % больше, чем это необходимо для обеспечения полного сгорания топлива. При проектировании двухтактных двигателей конструкторы стремятся к тому, чтобы при наименьшей потере сжатого воздуха получалась бы наилучшая продувка и зарядка цилиндров. В двухтактных дизелях обычно энергии отработавших газов недостаточно для сжатия наддувочного воздуха до требуемого давления, так как давление это должно быть больше, чем давление в выпускном трубопроводе для качественной очистки цилиндров, а энергия выпускных газов (при прочих равных условиях) ниже, чем в четырехтактных двигателях, из-за разбавления газов холодным продувочным воздухом. Поэтому в двухтактных дизелях используется комбинированный наддув, при котором часть энергии, необходимой для сжатия наддувочного воздуха, отбирается от коленчатого вала двигателя (см. выше).

Схемы продувки двухтактных дизелей. Наиболее простая, но вместе с тем и наиболее несовершенная схема- так называемая поперечно-щелевая продувка, при которой в цилиндре может оставаться 15-20% отработавших газов (рис. 23,а). Такая продувка применяется в маломощных дизелях, для которых простота конструкции, а не экономичность, имеет решающее значение. Схема продувки, показанная на рис. 23,6, более совершенна. Благодаря обратному клапану 3 эта конструкция обеспечивает некоторый наддув цилиндров. Такая схема продувки применяется на тихоходных судовых двигателях.

Более совершенна прямоточная кла-панно-щелевая продувка (рис. 23,в). Сжатый воздух из нагнетателя поступает в цилиндр через нижние окна, а отработавшие газы удаляются через выпускные клапаны 3, размещенные в крышке цилиндра. При такой продувке на дизеле устанавливают распределительный вал. Клапанно-щелевая продувка применяется в тепловозных дизелях 11Д45 и 14Д40.

Наиболее совершенна прямоточно-щелевая продувка (рис. 23,г), которую можно осуществить в двигателях со встречно движущимися поршнями. Сжатый воздух от нагнетателя поступает через верхние окна (продувочные), а отработавшие газы удаляются из цилиндра через нижние (выпускные) окна. Чтобы можно было полнее зарядить цилиндр, нижний поршень, перекрывающий выпускные окна, несколько опережает (на 10-12° угла поворота коленчатого вала) верхний поршень, перекрывающий впускные окна.

При таком способе продувки в цилиндре почти не остается отработавших газов. Прямоточно-щелевая продувка применяется в тепловозных дизелях 2Д100 и 1 ОД 100.

Исследование работы реального поршневого двигателя целесообразно производить по диаграмме, в которой дается изменение давления в цилиндре в зависимости от положения поршня за весь

цикл. Такую диаграмму, снятую с по­мощью специального прибора индикато­ра, называют индикаторной диаграммой. Площадь замкнутой фигуры индикатор­ной диаграммы изображает в определенном масштабе индикаторную работу газа за один цикл.

На рис. 7.6.1 изображена индикаторная диаграмма двигателя, работающего с быстрым сгоранием топлива при посто­янном объеме. В качестве горючего для этих двигателей применяют легкое топливо бензин, светильный или генераторный газ, спирты и др.

При ходе поршня из левого мертвого положения в крайнее правое через всасывающий клапан засасывается горючая смесь, состоящая из паров и мелких частиц топлива и воздуха. Этот процесс изображается на диаграмме кривой 0-1, которая называется линией всасывания. Очевидно, линия 0-1 не является термодинамическим процессом, так как в нем основные параметры не изменяются, а изменяются только масса и объем смеси в цилиндре. При обратном движении поршня всасывающий клапан закрывается, происходит сжатие горючей смеси. Процесс сжатия на диаграмме изображается кривой 1-2, которая называется линией сжатия. В точке 2, когда поршень еще немного не дошел до левого мертвого положения, происходит воспламенение горючей смеси от электрической искры. Сгорание горючей смеси происходит почти мгновенно, т. е. практически при постоянном объеме. Этот процесс на диаграмме изображается кривой 2-3. В результате сгорания топлива температура газа резко возрастает и давление увеличивается (точка 3). Затем продукты горения расширяются. Поршень перемещается в правое мертвое положение, и газы совершают полезную работу. На индикаторной диаграмме процесс расшире­ния изображается кривой 3-4, называемой линией расширения. В точке 4 открывается выхлопной клапан, и давление в цилиндре падает почти до наружного давления. При дальнейшем движении поршня справа налево из цилиндра удаляются продукты сгорания через выхлопной клапан при давлении, несколько превышающем атмосферное давление. Этот процесс изображается на диаграмме кривой 4-0 и называется линией выхлопа.

Рассмотренный рабочий процесс совершается за четыре хода поршня (такта) или за два оборота вала. Такие двигатели назы­ваются четырехтактными.

Из описания работы процесса реального двигателя внутрен­него сгорания с быстрым сгоранием топлива при постоянном объ­еме видно, что он не является замкнутым. В нем имеются все при­знаки необратимых процессов: трение, химические реакции в рабо­чем теле, конечные скорости поршня, теплообмен при конечной разности температур и т. д.

Рассмотрим идеальный термодинамический цикл двигателя с изохорным подводом количества теплоты (v=соnst), состоящий из двух изохор и двух адиабат.

На рис. 70.2 и 70.3 представлен цикл в - и – диаграммах, который осуществляется следующим образом.

Идеальный газ с начальными параметрами и сжимается по адиабате 1-2 до точки 2. По изохоре 2-3 рабочему телу сообща­ется количество теплоты . От точки 3 рабочее тело расширяется по адиабате 3-4. Наконец, по изохоре 4-1 рабочее тело возвращает­ся в первоначальное состояние, при этом отводится количество теплоты в теплоприемник. Характеристиками цикла являются степень сжатия и степень повышения давления .

Определяем термический КПД этого цикла, полагая, что теплоемкость и величина постоянны:

Количество подведенной теплоты , а количество отведенной теплоты .

Тогда термический КПД цикла

Рис. 7.6.2 Рис. 7.6.3

Термический КПД цикла с подводом количества теплоты при постоянном объеме

. (7.6.1) (17:1)

Из уравнения (70.1) следует, что термический КПД такого цикла зависит от степени сжатия и показателя адиабаты или от при­роды рабочего тела. КПД увеличивается с возрастанием и . От степени повышения давления , термический КПД не зависит.

С учетом – диаграммы (рис. 70.3) КПД определяем из соотношения площадей:

= (пл. 6235-пл. 6145)/пл. 6235 = пл. 1234/пл. 6235.

Очень наглядно можно проиллюстрировать зависимость КПД от увеличения на – диаграмме (рис. 7.70.3).

При равенстве площадей подведенного количества теплоты в двух циклах (пл. 67810=пл. 6235), но при разных степенях сжатия КПД будет больше у цикла с большей степенью сжатия, так как в теплоприемник отводится меньшее количество теплоты, т. е. пл. 61910<пл. 6145.

Однако увеличение степени сжатия ограничивается возможностью преждевременного самовоспламенения горючей смеси, нарушающего нормальную работу двигателя. Кроме того, при высоких степенях сжатия скорость сгорания смеси резко возрастает, что может вызвать детонацию (взрывное горение), которая резко снижает экономичность двигателя и может привести к поломке его деталей. Поэтому для каждого топлива должна применяться определенная оптимальная степень сжатия. В зависимости от рода топлива степень сжатия в изучаемых двигателях изменяется от 4 до 9.

Таким образом, исследования показывают, что в двигателях внутреннего сгорания с подводом количества теплоты при постоянном объеме нельзя применять высокие степени сжатия. В связи с этим рассматриваемые двигатели имеют относительно низкие КПД.

Теоретическая полезная удельная работа рабочего тела зависит от взаимного расположения процессов расширения и сжатия рабочего тела. Увеличение средней разности давлений между линиями расширения и сжатия позволяет уменьшить размеры цилиндра двигателя. Если обозначить среднее давление через то теоретическая полезная удельная работа рабочего тела составит

Давление называют средним индикаторным давлением (или средним цикловым давлением), т. е. это условное постоянное давление, под действием которого поршень в течение одного хода совершает работу, равную работе всего теоретического цикла.

Цикл с подводом количества теплоты в процессе

Изучение циклов с подводом количества теплоты при постоянном объеме показало, что для повышения экономичности двигателя, работающего по этому циклу, необходимо применять высокие степени сжатия. Но это увеличение ограничивается температурой самовоспламенения горючей смеси. Если же производить раздельное сжатие воздуха и топлива, то это ограничение отпадает. Воздух при большом сжатии имеет настолько высокую температуру, что подаваемое в цилиндр топливо самовоспламеняется без всяких специальных запальных приспособлений. И наконец, раздельное сжатие воздуха и топлива позволяет использовать любое жидкое тяжелое и дешевое топливо – нефть, мазут, смолы, каменноугольные масла и пр.

Такими высокими достоинствами обладают двигатели, работающие с постепенным сгоранием топлива при постоянном давлении. В них воздух сжимается в цилиндре двигателя, а жидкое топливо распыляется сжатым воздухом от компрессора. Раздельное сжатие позволяет применять высокие степени сжатия (до ) и исключает преждевременное самовоспламенение топлива. Процесс горения топлива при постоянном давлении обеспечивается соответствующей регулировкой топливной форсунки. Создание такого двигателя связывают с именем немецкого инженера Дизеля, впервые разработавшего конструкцию подобного двигателя.

Рассмотрим идеальный цикл двигателя с постепенным сгоранием топлива при постоянном давлении, т. е. цикл с подводом количества теплоты при постоянном давлении. На рис. 70.4 и 70.5 изображен этот цикл в и диаграммах. Осуществляется он следующим образом. Газообразное рабочее тело с начальными параметрами , , сжимается по адиабате 1-2; затем телу по изобаре 2-3 сообщается некоторое количество теплоты . От точки 3 рабочее тело расширяется по адиабате 3-4. И наконец, по изохоре 4-1 рабочее тело возвращается в первоначальное состоя­ние, при этом в теплоприемник отводится теплота .

Характеристиками цикла являются степень сжатия и степень предварительного расширения .

Определим термический КПД цикла, полагая, что теплоемкости и и их отношение постоянны:

Количество подведенной теплоты

количество отведенной теплоты

Термический КПД цикла

Рис. 7.6.4 Рис. 7.6.5

Среднее индикаторное давление в цикле с подводом теплоты при определяется из формулы

Среднее индикаторное давление увеличивается с возрастанием и .

Цикл с подводом количества теплоты в процессе при и , или цикл со смешанным подводом количества теплоты.

Двигатели с постепенным сгоранием топлива при имеют некоторые недостатки. Одним из них является наличие компрессора, применяемого для подачи топлива, на работу которого расходуется 6–10% от общей мощности двигателя, что усложняет конструкцию и уменьшает экономичность двигателя. Кроме того, необходимо иметь сложные устройства насоса, форсунки и т. д.

Стремление упростить и улучшить работу таких двигателей привело к созданию бескомпрессорных двигателей, в которых топливо механически распыляется при давлениях 50–70 МПа. Проект бескомпрессорного двигателя высокого сжатия со смешанным подводом количества теплоты разработал русский инженер Г. В. Тринклер. Этот двигатель лишен недостатков обоих разобранных типов двигателей. Жидкое топливо топливным насосом подается через топливную форсунку в головку цилиндра в виде мельчайших капелек. Попадая в нагретый воздух, топливо само­воспламеняется и горит в течение всего периода, пока открыта форсунка: вначале при постоянное объеме, а затем при постоян­ном давлении.

Идеальный цикл двигателя со смешанным подводом количества теплоты изображен в – и – диаграммах на рис. 70.6 и 70.7.

.

Определим термический КПД цикла при условии, что теплоемкости , и показатель адиабаты постоянны:

Первая доля подведенного количества теплоты

Вторая доля подведенного количества теплоты

Количество отведенной теплоты

Лекция 4

ДЕЙСТВИТЕЛЬНЫЕ ЦИКЛЫ ДВС

1. Отличие действительных циклов четырехтактных двигателей от теоретических

1.1. Индикаторная диаграмма

2. Процессы газообмена

2.1. Влияние фаз газораспределения на процессы газообмена

2.2. Параметры процесса газообмена

2.3. Факторы, влияющие на процессы газообмена

2.4. Токсичность отработавших газов и пути предотвращения загрязнения окружающей среды

3. Процесс сжатия

3.1. Параметры процесса сжатия

4. Процесс сгорания

4.1. Скорость сгорания

4.2. Химические реакции при сгорании

4.3. Процесс сгорания в карбюраторном двигателе

4.4. Факторы, влияющие на процесс сгорания в карбюраторном двигателе

4.5. Детонация

4.6. Процесс сгорания топливной смеси в дизеле

4.7. Жесткая работа дизеля

5. Процесс расширения

5.1. Назначение и протекание процесса расширения

5.2. Параметры процесса расширения


Отличие действительных циклов четырехтактных двигателей от теоретических

Наибольший КПД можно теоретически получить только в результате использования термодинамического цикла, варианты которого были рассмотрены в предыдущей главе.

Важнейшие условия протекания термодинамических циклов:

· неизменность рабочего тела;

· отсутствие всяких тепловых и газодинамических потерь, кроме обязательного отвода теплоты холодильником.

В реальных поршневых ДВС механическая работа получается в результате протекания действительных циклов.

Действительным циклом двигателя называется совокупность периодически повторяющихся тепловых, химических и газодинамических процессов, в результате которых термохимическая энергия топлива преобразуется в механическую работу.

Действительные циклы имеют следующие принципиальные отличия от термодинамических циклов:

Действительные циклы являются разомкнутыми, и каждый из них осуществляется с использованием своей порции рабочего тела;

Вместо подвода теплоты в действительных циклах происходит процесс сгорания, который протекает с конечными скоростями;

Изменяется химический состав рабочего тела;

Теплоемкость рабочего тела, представляющего собой реальные газы изменяющегося химического состава, в действительных циклах постоянно меняется;

Идет постоянный теплообмен между рабочим телом и окружающими его деталями.

Все это приводит к дополнительным потерям теплоты, что в свою очередь ведет к снижению КПД действительных циклов.

Индикаторная диаграмма

Если термодинамические циклы изображают зависимость изменения абсолютного давления (р ) от изменения удельного объема (υ ), то действительные циклы изображаются как зависимости изменения давления (р ) от изменения объема (V ) (свернутая индикаторная диаграмма) или изменения давления от угла поворота коленчатого вала (φ), которая называется развернутой индикаторной диаграммой.


На рис. 1 и 2 показаны свернутая и развернутая индикаторные диаграммы четырехтактных двигателей.

Развернутая индикаторная диаграмма может быть получена экспе­риментально с помощью специального прибора - индикатора давления. Индикаторные диаграммы можно получить и расчетным путем на основе теплового расчета двигателя, но менее точные.

Рис. 1. Свернутая индикаторная диаграмма четырехтактного двигателя
с принудительным воспламенением

Рис. 2. Развернутая индикаторная диаграмма четырехтактного дизеля

Индикаторные диаграммы используются для изучения и анализа процессов, протекающих в цилиндре двигателя. Так, например, площадь свернутой индикаторной диаграммы, ограниченная линиями сжатия, сгорания и расширения, соответствует полезной или индикаторной работе L i действительного цикла. Величиной индикаторной работы характеризуется полезный эффект действительного цикла:

, (3.1)

где Q 1 - количество подведенной в действительном цикле теплоты;

Q 2 - тепловые потери действительного цикла.

В действительном цикле Q 1 зависит от массы и теплоты сгорания топлива, вводимого в двигатель за цикл.

Степень использования подводимой теплоты (или экономичность действительного цикла) оценивают индикаторным КПД η i , который представляет собой отношение теплоты, преобразованной в полезную работу L i , к теплоте подведенного в двигатель топлива Q 1 :

, (3.2)

С учетом формулы (1) формулу (2) индикаторного КПД можно записать так:

, (3.3)

Следовательно, теплоиспользование в действительном цикле зависит от величины тепловых потерь. В современных ДВС эти потери составляют 55 –70 %.

Основные составляющие тепловых потерь Q 2 :

Потери теплоты с отработавшими газами в окружающую среду;

Потери теплоты через стенки цилиндра;

Неполнота сгорания топлива из-за местного недостатка кислорода в зонах горения;

Утечка рабочего тела из рабочей полости цилиндра из-за неплотности прилегающих деталей;

Преждевременный выпуск отработавших газов.

Для сравнения степени использования теплоты в действительных и термодинамических циклах используют относительный КПД

В автомобильных двигателях η o от 0,65 до 0,8.

Действительный цикл четырехтактного двигателя совершается за два оборота коленчатого вала и состоит из следующих процессов:

Газообмена - впуск свежего заряда (см. рис. 1, кривая frak ) и выпуск отработавших газов (кривая b"b"rd );

Сжатия (кривая аkс"с" );

Сгорания (кривая c"c"zz" );

Расширения (кривая z z"b"b" ).

При впуске свежего заряда поршень движется, освобождая над собой объем, который заполняется смесью воздуха с топливом в карбюраторных двигателях и чистым воздухом в дизелях.

Начало впуска определяется открытием впускного клапана (точка f ), конец впуска - его закрытием (точка k ). Начало и конец выпуска соответствуют открытию и закрытию выпускного клапана соответственно в точках b" и d .

Не заштрихованная зона b"bb" на индикаторной диаграмме соответствует потере индикаторной работы вследствие падения давления в результате открытия выпускного клапана до прихода поршня в НМТ (предварение выпуска).

Сжатие фактически осуществляется с момента закрытия впускного клапана (кривая k-с" ). До закрытия впускного клапана (кривая а-k ) давление в цилиндре остается ниже атмосферного (p 0 ).

В конце процесса сжатия топливо воспламеняется (точка с" ) и быстро сгорает с резким нарастанием давления (точка z ).

Так как воспламенение свежего заряда происходит не в ВМТ, и сгорание протекает при продолжающемся перемещении поршня, расчетные точки с и z не соответствуют реально протекающим процессам сжатия и сгорания. В результате площадь индикаторной диаграммы (заштрихованная зона), а значит и полезная работа цикла меньше термодинамической или расчетной.

Воспламенение свежего заряда в бензиновых и газовых двигателях осуществляется от электрического разряда между электродами искровой свечи.

В дизелях топливо воспламеняется за счет теплоты нагретого от сжатия воздуха.

Образовавшиеся в результате сгорания топлива газообразные продукты создают давление на поршень, вследствие чего совершается такт расширения или рабочий ход. При этом энергия теплового расширения газа преобразуется в механическую работу.

По результатам исследований строят графики зависимости дебита скважины от забойного давления Р заб или от депрессии (Р пл -Р заб), называемые индикаторными диаграммами (ИД).

Индикаторные диаграммы (ИД) добывающих скважин располагаются ниже оси абсцисс, а водонагнетательных - выше этой оси.

Обе индикаторные диаграммы (Q = f(Р заб) и Q = f()) строят в тех случаях, когда скважины эксплуатируются при сравнительно больших депрессиях (более 0,5…1,0 МПа). Ошибки измерений при этом обычно не приводят к большому разбросу точек при построении ИД в координатах Q = f(Р заб) (тем более для Q = f()).

При малых депрессиях (порядка 0,2…0,3 МПа) разброс точек может быть настолько большим, что индикаторную диаграмму в координатах Q = f(Р заб) построить не удается. В этих случаях на каждом режиме следует измерять и Р заб, и Р пл, а индикаторную диаграмму строить в координатах Q = f(). Депрессия, определяемая на каждом режиме, имеет меньшую относительную ошибку, чем Р заб, т.к. при измерениях за один спуск прибора абсолютные ошибки Р пл и Р заб примерно одинаковы и поэтому на разность =Р пл -Р заб почти не влияют. Либо используют не глубинные манометры, а глубинные дифференциальные манометры.

Если процесс фильтрации жидкости в пласте подчиняется линейному закону, т. е. индикаторная линия имеет вид прямой, зависимость дебита гидродинамически совершенной скважины от депрессии на забое описывается формулой Дюпюи

где Q -- объемный дебит скважины в пластовых условиях; Р пл -- среднее давление на круговом контуре радиуса R к.

Рис. 5.2. Индикаторная диаграмма Q=f(Р заб)

Считается, что давление на забое через некоторое время после остановки скважины становится примерно равным среднему пластовому давлению, установившемуся на круговом контуре с радиусом, равным половине среднего расстояния между исследуемой скважиной и соседними, ее окружающими.

Q=f(Р заб ) предназначена для оценки величины пластового давления, которое можно определить путем продолжения индикаторной линии до пересечения с осью ординат (Рис. 5.2). Это соответствует нулевому дебиту, т. е. скважина не работает и Р заб Р пл =Р к.

Индикаторная диаграмма Q=f() строит-ся для определения коэффициента продуктивности скважин К.

В пределах справедливости линейного зако-на фильтрации жидкости, т. е. при линейной зависимости Q=f(),коэффициент продуктивности является величиной постоянной иРис. 5.3 Индикаторная диаграмма Q = f()

численно равен тангенсу угла наклона индикаторной линии к оси дебитов (оси абсцисс). По коэффициенту продуктивности скважин, определенному методом установившихся отборов, можно вычислить также другие параметры пласта.

Откуда коэффициент гидропроводности

И проницаемость пласта в призабойной зоне

Приведенные выше формулы справедливы для случая исследования гидродинамически совершенной скважины (вскрывшей пласт на всю его толщину и имеющей открыты забой) и измеряемые величны (дебит, динамическая вязкость и др.) приведены к пластовым условиям.

Реальные индикаторные диаграммы не всегда получаются прямолинейными (Рис 5.4). Искривление индикаторной диаграммы характеризует характер фильтрации жидкости в призабойной зоне пласта.

Рис. 5.4. Индикаторные кривые при фильтрации по пласту однофазной жидкости: 1 - установившаяся фильтрация по линейному закону Дарси; 2- неустановившаяся фильтрация или фильтрация с нарушением линейного закона Дарси при больших Q ; 3 - нелинейный закон фильтрации.

Искривление индикаторной линии в сторону оси P (рис. 5.4, кривая 2) означает увеличение фильтрационных сопротивлений по сравнению со случаем фильтрации по закону Дарси. Это объясняется тремя причинами:

1. Превышение скорости фильтрации в ПЗП критических скоростей при котрых линейный закон Дарси нарушается (V>V кр)

2. Образованием вокруг скважины области двухфазной (нефть+газ) фильтрации при Р заб <Р нас. Чем меньше Р заб, тем больше радиус этой области.

3. Изменения проницаемости и раскрытости микротрещин в породе при изменении внутрипластового давления вследствие изменения Рзаб.

Искривление ИД в сторону оси Q (рис. 5.4, кривая 3) объясняется двумя причинами:

1) некачественные измерения при проведении исследований;

2)неодновременным вступлением в работу отдельных прослоев или пропластков.

Продуктивные пласты, как правило, неоднородны. Глубинные дебитограммы для них:

Площадь заштрихованного прямоугольника прямо пропорциональна дебиту каждого пропластка. С уменьшением Р заб (т.е. с ростом P=Р пл -Р заб) растет работающая толщина пласта (h эф.), откуда по формуле Дюпюи растет Q (рис 5.4, кривая 3). Ошибка в определении пластового давления может привести к искривлению начального участка индикаторной диаграммы, построенной в координатах Q=f().

Рис. 5.5. Индикаторная диаграмма: 2 - замеренное пластовое давление соответствует фактическому; 1, 3 - замеренное пластовое давление соответственно завышено и занижено против фактического.

Очевидно, если замеренное пластовое давление окажется выше фактического, то построенная индикаторная диаграмма (рис. 5.5, кривая 1) будет располагаться ниже фактической. При этом фактические точки будут располагаться параллельно, но выше построенных по замеренным значениям. Экстраполяция в начало координат создает видимость искривления индикаторной кривой к оси депрессии.

Если замеренное пластовое давление окажется ниже фактического, то индикаторная диаграмма в своем начальном участке при экстраполяции его в начало координат может стать выпуклой к оси дебитов (рис. 5.5, кривая 3 ). Это может привести исследователя к выводу, что вся кривая имеет выпуклый к оси дебитов вид. Для случая искривления индикаторной линии в сторону оси депрессий (Рис. 5.6, а) при нарушении линейного закона фильтрации скорость фильтрации вблизи перфорационных отверстий становится настолько большой, что числа Рейнольдса превышают критические. Уравнение индикаторной линии записывают в виде:

а саму индикаторную диаграмму индикаторную линию для ее спрямления изображают в координатах

где а и b - постоянные численные коэффициенты.

Получим индикаторную прямую в координатах Др/Q=f(Q) отсекающую на оси ординат отрезок, равный а , с тангенсом угла наклона к оси Q , равным b (рис. 5.6, б). В этом случае коэффициент продуктивности К является величиной переменной, зависящей от дебита скважины.

Рис. 5.6 Индикаторная диаграмма при нелинейном законе фильтрации: а - ИД в координатах Др - Q; б - ИД в координатах Др /Q - Q.

Отрезок а , отсекаемый на оси ординат может быть выражен как

где, (с 1 и с 2 - фильтрационные сопротивления, обусловленные несовершенст-вом скважины по степени и характеру вскрытия).

По отрезку а , отсекаемому на оси Др/Q , находятся гидропроводность и проницаемость пласта

Коэффициент b зависит от конструкции забоя скважины.

Индикаторная диаграмма

графическое изображение изменения давления газа или пара в цилиндре поршневой машины в зависимости от положения поршня. И. д. вычерчивается обычно с помощью индикатора давления (См. Индикатор давления). По оси абсцисс откладывается объём, занимаемый газами в цилиндре, а по оси ординат - давление. Каждая точка на И. д. (рис. ) показывает давление в цилиндре двигателя при данном объёме, т. е. при данном положении поршня (точка r соответствует началу впуска; точка а - началу сжатия; точка с - концу сжатия; точка z - началу расширения; точка b - концу расширения).

И. д. даёт представление о значении работы, производимой двигателем внутреннего сгорания или насосом, и об их мощности. Рабочее тело совершает полезную работу только в течение рабочего хода. Поэтому для определения полезной работы необходимо из площади, ограниченной кривой расширения zb , вычесть площадь, ограниченную кривой сжатия ac. Различают теоретическую и действительную И. д. Теоретическая строится по данным теплового расчёта и характеризует теоретический цикл; действительная И. д. снимается с работающей машины при помощи индикатора и характеризует действительный цикл (см. рис. ).

Для удобства ведения расчётов и сопоставления между собой разных двигателей переменные по ходу поршня давления заменяются условным постоянным давлением, при котором за один ход поршня получается работа, равная работе газов за цикл с переменным давлением. Это постоянное давление называется средним индикаторным давлением и представляет собой работу газов, отнесённую к рабочему объёму поршневой машины.

Б. А. Куров.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Индикаторная диаграмма" в других словарях:

    Индикаторная диаграмма для различных поршневых механизмов графическая зависимость давления в цилиндре от хода поршня (или в зависимости от объёма, занимаемого газом или жидкостью в цилиндре). Индикаторные диаграммы строятся при исследовании … Википедия

    индикаторная диаграмма - Диаграмма зависимости давления в цилиндре поршневой машины от его переменного объема. [ГОСТ 28567 90] Тематики компрессор EN pressure volume diagram DE Indikatordiagramm … Справочник технического переводчика

    Графическое изображение зависимости давления рабочего тела (пара, газа) в цилиндре поршневой машины (двигателя, насоса) от перемещения поршня. Представляет собой замкнутую кривую, площадь внутри которой пропорциональна работе, совершенной рабочим … Большой Энциклопедический словарь

    Графическое изображение зависимости давления рабочего тела (пара, газа) в цилиндре поршневой машины (двигателя, насоса) от перемещения поршня. Представляет собой замкнутую кривую, площадь внутри которой пропорциональна работе, совершённой рабочим … Энциклопедический словарь

    Графич. изображение изменения давления пара или газа в цилиндре поршневой машины в зависимости от перемещения поршня или угла поворота коленчатого пала (см. рис.). Площадь И. д. пропорциональна работе, соверш. рабочим телом внутри цилиндра за… … Большой энциклопедический политехнический словарь

    Графич. изображение зависимости давления рабочего тела (пара, газа) в цилиндре поршневой машины (двигателя, насоса) от перемещения поршня. Представляет собой замкнутую кривую, площадь внутри к рой пропорциональна работе, совершённой рабочим телом … Естествознание. Энциклопедический словарь

    Индикаторная диаграмма - 97. Индикаторная диаграмма D. Indikalorcliagramm Е. Pressure volume diagram Диаграмма зависимости давления в цилиндре поршневой машины от его переменного объема



Поделиться