Что такое топливная форсунка. Как работает инжектор и система впрыска топлива? Форсунки впрыска: общие сведения

В случае с системой впрыска топлива Ваш двигатель все ещё ​сосёт, но вместо того, чтобы полагаться только на всасываемое количество топлива, система впрыска топлива стреляет точно правильное количество топлива в камеру сгорания. Системы впрыска топлива прошли уже несколько ступеней эволюции, в них была добавлена электроника - это, пожалуй, было самым большим шагом в развитии этой системы. Но идея таких систем осталась та же: электрически активируемый клапан (инжектор) распыляет отмеренное количество топлива в двигатель. На самом деле основное различие между карбюратором и инжектором именно в электронном управлении ЭБУ - именно бортовой компьютер подаёт точно нужное количество топлива в камеру сгорания двигателя.

Давайте посмотрим, как работает система впрыска топлива и инжектор в частности.

Так выглядит система впрыска топлива

Если сердце автомобиля - это его двигатель, то его мозг - это блок управления двигателем (ЭБУ). Он оптимизирует работу двигателя с помощью датчиков, чтобы решить, как управлять некоторыми приводами в двигателе. Прежде всего, компьютер отвечает за 4 основные задачи:

  1. управляет топливной смесью,
  2. контролирует обороты холостого хода ,
  3. несёт ответственность за угол опережения зажигания,
  4. управляет фазами газораспределения.

Прежде чем мы поговорим о том, как ЭБУ осуществляет свои задачи, давайте о самом главном - проследим путь бензина от бензобака до двигателя - это и есть работа системы впрыска топлива. Первоначально после того, как капля бензина покидает стенки бензобака, она всасывается с помощью электрического топливного насоса в двигатель. Электрический топливный насос, как правило, состоит из непосредственно насоса, а также фильтра и передающего устройства.

Регулятор давления топлива в конце топливной направляющей с вакуумным питанием гарантирует, что давление топлива будет постоянным по отношению к давлению всасывания. Для бензинового двигателя давление топлива, как правило, составляет порядка 2-3,5 атмосферы (200-350 кПа, 35-50 PSI (фунтов на квадратный дюйм)). Топливные форсунки инжектора подключены к двигателю, но их клапаны остаются закрытыми до тех пор, пока ЭБУ не разрешит отправить топливо в цилиндры.

Но что же происходит, когда двигателю требуется топливо? Здесь в работу вступает инжектор . Обычно инжекторы имеют два контакта: один вывод подключен к аккумулятору через реле зажигания, а другой контакт проходит в ЭБУ. ЭБУ посылает пульсирующие сигналы в инжектор. За счёт магнита, на который и подаются такие пульсирующие сигналы, открывается клапан инжектора, и в его сопло подаётся некоторое количество топлива. Поскольку в инжекторе очень высокое давление (значение приведено выше), открывшийся клапан направляет топливо с высокой скоростью в сопло распылителя инжектора. Продолжительность, с которой открыт клапан инжектора, влияет на то, какое количество топлива подаётся в цилиндр, а продолжительность эта, соответственно зависит от ширины импульса (т.е. от того, сколько времени ЭБУ посылает сигнал к инжектору).

Когда клапан открывается, топливная форсунка передаёт топливо через распылительный наконечник, который, распыляя, превращает жидкое топливо в туман, непосредственно в цилиндр. Такая система называется системой с непосредственным впрыском . Но распылённое топливо может подаваться не сразу в цилиндры, а сначала в впускные коллекторы.


Как работает инжектор

Но как ЭБУ определяет, сколько на данный момент топлива нужно подать в двигатель? Когда водитель нажимает педаль акселератора, то на самом деле он открывает дроссельную заслонку на величину нажима педали, через которую в двигатель подаётся воздух. Таким образом, мы с уверенностью можем назвать педаль газа "регулятором подачи воздуха" в двигатель. Так вот, компьютер автомобиля руководствуется в том числе величиной открытия дроссельной заслонки, но не ограничивается этим показателем - он считывает информацию с множества датчиков, и давайте узнаем о них всех!

Датчик массового расхода воздуха

Перво-наперво датчик массового расхода воздуха (MAF) определяет, сколько воздуха входит в корпус дроссельной заслонки и посылает эту информацию в ЭБУ. ЭБУ использует эту информацию, чтобы решить, сколько топлива впрыснуть в цилиндры, чтобы держать смесь в идеальных пропорциях.

Датчик положения дроссельной заслонки

Компьютер постоянно использует этот датчик, чтобы проверить положение дроссельной заслонки и узнать таким образом, сколько воздуха проходит через воздухозаборник для того, чтобы регулировать импульс, отправленный к форсункам, гарантируя, что соответствующее воздуху количество топлива входит в систему.

Кислородный датчик

Кроме того, ЭБУ использует датчик O2, чтобы выяснить, сколько кислорода содержится в выхлопных газах автомобиля. Содержание кислорода в выхлопных газах обеспечивает индикацию того, насколько хорошо топливо сгорает. Используя связанные данные от двух датчиков: кислородного и массового расхода воздуха, ЭБУ также контролирует насыщенность топливо-воздушной смеси, подаваемой в камеру сгорания цилиндров двигателя.

Датчик положения коленвала

Это, пожалуй, главный датчик системы впрыска топлива - именно от него ЭБУ узнаёт о количестве оборотов двигателя в данный момент времени и корректирует количество подаваемого топлива в зависимости от числа оборотов и, конечно же, положения педали газа.

Это три основных датчика, которые прямо и динамически влияют на количество подаваемого в инжектор и в последующем в двигатель топлива. Но есть ещё ряд датчиков:

  • Датчик напряжения в электрической сети машины - нужен для того, чтобы ЭБУ понимал, насколько разряжен аккумулятор и требуется ли повысить обороты, чтобы зарядить его.
  • Датчик температуры охлаждающей жидкости - ЭБУ повышает количество оборотов, если двигатель холодный и наоборот, если двигатель прогрелся.

Как правило, на сегодня, большое количество автомобилей оборудуются специальными системами впрыска горючего. Интересно будет узнать, о том что идея о внедрении такой системы в автомобильный мир появилась уже в далеких 50-х годах. Так, 1951 год стал годом рождения первой системы впрыска топлива, именно в этом году компания Bosch укомплектовала ею 2-х тактный двигатель купе Goliath 700 Sport.

Последователем Bosch стал Mercedes-Benz 300 SL, который подхватил эстафету в 1954 году. И вот, уже в конце 70-х годов началось массовое, серийное введение инжекторных систем впрыска топлива. Как оказалось на практике, впрыск топлива имеет множество достоинств и отличных характеристик, по которым такая система превосходит карбюраторную подачу топлива. От карбюраторного принципа смесеобразования система впрыска топлива отличается более безошибочной дозировкой топлива, а следовательно, и большей экономичностью и приемистостью автомобильного транспорта. Также система впрыска топлива славится меньшей токсичностью выхлопных газов. Можно сделать такой вывод, что переоценить работу системы впрыска топлива практически невозможно.

Форсунка является одной из аниболее важных частей системы впрыска топлива, поэтому она во многом и определяет эффективность и надежность работы движка. Однако, именно она работает в наиболее тяжелых условиях. Каждому автолюбителю важно знать что это за деталь и как она работает, дабы в случае какой-либо неисправности системы впрыска топлива произвести правильную диагностику поломки, ведь именно от состоянии форсунки зависит хорошая работоспособность самой системы. В данной статье мы акцентируем внимание именно на строении форсунки, ее видах и принципе работы. Итак, начнем.

1. Типы инжекторных форсунок

Для начала давайте разберемся, что такое форсунка и какое ее предназначение. Деталь форсунки (по-другому можно назвать инжектором) представляет собой конструктивный элемент системы впрыска горючего. Главными тремя функциями, которые выполняет форсунка являются дозированная подача топлива, распыление данной топливной жидкости в камере сгорания (другими словами – впускной коллектор), а также возникновение топливно-воздушной смеси.

Как правило, форсунка приводится в эксплуатацию в системах впрыска топлива как дизельных, так и двигателей, работающих на бензине. Если говорить о современных двигателях, установленные в них форсунки руководствуются электронным управлением впрыска. Данную деталь принято разделять на три типа, в зависимости от способа произведения впрыска.

Итак, существуют такие три вида форсунки:

1. Электрогидравлическая

2. Электромагнитная

3. Пьезоэлектрическая

Теперь о каждом виде поподробнее.

Форсунка электромагнитная

Данную форсунку, как правило, принято устанавливать именно на бензиновых движках, в том числе укомплектованных системой непосредственного впрыска. Сама по себе электромагнитная форсунка имеет довольно обычное строение и состоит непосредственно из электромагнитного клапана с иглой и сопла. Работает такая форсунка по своеобразному принципу. В соотношении с заложенным алгоритмом, установленный электронный блок управления способен обеспечить в нужный момент передачу напряжения прямиком на обмотку возбуждения клапана. В этот момент создается своеобразное электромагнитное поле, которое может преодолевать усилие пружины, втянуть якорь с иглой и отпустить сопло. После проделанной операции осуществляется впрыск топлива. После того момента, как напряжение исчезнет, пружина возвращает иглу форсунки обратно на седло.

Форсунка электрогидравлическая

Как правило, электрогидравлическую форсунку принято приводить в действие на двигателях использующих дизель, в том числе и таких, которые укомплектованы системой впрыска Common Rail. Сама по себе электрогидравлическая форсунка состоит из впускной и сливной дроссели, камеры управления, а также электромагнитного клапана. Такая форсунка приводится в эксплуатацию по принципу применения в процессе работы давления топлива, как при произведении впрыска, так и при его окончании.

Как правило, на начальной позиции электромагнитный клапан обесточен и находится в закрытом состоянии, игла форсунки прислоняется к седлу благодаря мощности давления топлива на поршень, которое имеет место в камере управления. В этом случае впрыск топлива не производится. В этот момент давление топлива на иглу ввиду несоответствии площадей контакта порядка меньше чем давление на поршень.

посылает сигнал и по его команде в работу включается электромагнитный клапан, который осуществляет открытие сливной дроссели. В свою очередь, топливо, которое выходит из камеры управления, начинает проходить через дроссель прямиком в сливную магистраль. В таком случае, дроссель способна воспрепятствовать скорой стабилизации давлений в камере управления и впускной магистрали. Таким образом, происходит снижение давления на поршень, но давление топлива на иглу остается на прежнем уровне. Под воздействием давления игла двигается вверх и происходит впрыск топлива.

Форсунка пьезоэлектрическая

Пьезоэлектрическая форсунка является самым совершенным и надежным устройством, которое способно обеспечить впрыск горючего. Такую форсунку, как правило, устанавливают на двигателях, использующих дизель, которые укомплектованы системой впрыска Common Rail. Такой вид форсунки имеет много достоинств, среди которых имеет место быстрота срабатывания Данная форсунка превосходит всех своих оппоненток и является самым надежным устройством, обеспечивающим впрыск горючего.

Преимуществом пьезофорсунки является быстрота срабатывания, которая в четыре раза превышает быстроту электромагнитного клапана. Из этого следует осуществимость многократного впрыска горючего в период одного цикла, а также безошибочная дозировка впрыскиваемого горючего.

Вся операция происходит благодаря использованию пьезоэффекта в руководстве форсункой, который был основан на изменении показателей длины пьезокристалла под воздействием напряжения. Вся конструкция пьезоэлектрической форсунки состоит из пьезоэлемента, переключающего клапана, толкателя, а также иглы, которые умещаются в корпусе. Пьезофорсунка приводится в работу по такому же принципу как и электрогидравлическая, а именно по гидравлическому. В связи с высоким давлением горючего, игла, находящаяся на исходной позиции, посажена на седло.

Во время подачи электрического сигнала на пьезоэлемент, производится увеличение его длины, при этом это позволяет пьезоэлементу толкать усилие непосредственно на поршень толкателя. В этот момент, переключающий клапан приходит в открытое состояние и топливо проходит в сливную магистраль. При этом падает давление, которое находится выше иглы. При этом, за счет давления в нижней части игла идет вверх и происходит впрыск горючего. Как правило, количество впрыскиваемого топлива может определяться длительностью воздействия на пьезоэлемент, а также уровнем давления горючего в топливной рампе.

2. Принцип работы форсунки инжектора

Для того, чтобы разобраться в принципе работы форсунки, нужно в общем понять работу всей системы впрыска топлива. Итак, данная система производит подачу горючего в цилиндр двигателя либо во впускной коллектор по принципу прямого впрыска благодаря форсунке, или как принято называть еще, инжектора. Исходя из этого, все автомобили, которые комплектуются такой системой, получают название инжекторных.

Классифицирование инжекторного впрыска проводится в зависимости от того, какой принцип работы инжектора, а также по месту его установки и суммарному количеству инжекторов. Как правило, центральный впрыск топлива осуществляется по такому принципу: во всеобщий впускной трубопровод, с помощью форсунки впрыскивается топливо на все цилиндры двигателя.

Форсунку, как мы уже упоминали, принято устанавливать именно перед дроссельной заслонкой, в том месте, где должен находиться Она показывает низкое сопротивление обмотки электромагнита (до 4-5 Ом). Как же распределяется впрыск? С помощью отдельных форсунок происходит впрыск топлива во впускные трубопроводы каждого имеющегося цилиндра. Они занимают место у основания впускных трубопроводов (как правило, у корпуса головки блока цилиндров) и отличаются довольно-таки высоким сопротивлением обмоток электромагнитов (до 12-16 Ом). Он может быть и меньшим, но при условии наличия дополнительного блока сопротивлений.

Как известно, большинство современных автомобилей снабжаются системой именно распределенного впрыска топлива. Как мы уже говорили, она работает по принципу, что отдельная форсунка отвечает за свой цилиндр. Важно знать, что каждая система распределенного впрыска топлива делится на четыре разных типа:

1. Одновременный

2. Попарно-параллельный

3. Фазированный

4. Прямой

Теперь о каждом поподробнее. Одновременный тип характеризируется подачей горючего от всех форсунок системы одновременно во все цилиндры. Что ж, название говорит само за себя. Попарно-параллельный тип впрыска подразумевает парное открытие форсунок, при котором, одна открывается непосредственно пред циклом впуска, а вторая - перед циклом впуска. Главной отличительностью этого типа является применение попарно-параллельный принцип открытия форсунок в момент запуска двигателя, или же в период аварийного режима неисправности датчика положения распредвала. В период эксплуатации автомобиля, то есть во время движения, в работу включается фазированный впрыск топлива. Это тип впрыска. При котором каждый инжектор открывается перед тактом впуска. Наконец, прямой тип впрыска происходит непосредственно в камеру сгорания.

Некоторые автомобили новейшего поколения могут похвастаться подачей топлива непосредственно в камеру сгорания (это и есть непосредственный впрыск). Отличительной чертой форсунок таких двигателей является наличие высокого рабочего напряжения электромагнита, которое достигает до 100 В. Маркировки форсунок отражают фабричную, или торговую, марку либо название, а также каталожный номер, или наименование и номер серии.

Как правило, горючее подается к форсунке под определенным давлением, которое зависит от режима работы движка. Принцип действия инжектора предполагает использование сигналов микроконтроллера, который в свое время получает данные от датчиков. Поступившие на электромагнит электрические импульсы, которые исходят от блока управления, заставляют работать игольчатый клапан, который открывает и закрывает канал форсунки. Все количество топлива которое распыляется зависит от длительности импульса, которая задается непосредственно блоком управления. Если говорить о форме и направлении распыляемого факела очень важны при смесеобразовании и определяются количеством и расположением распылительных отверстий.

Как правило, если топливо впрыскивается во всеобщий трубопровод с помощью одной форсунки, то это называется системой моновпрыска. Такая система на сегодня не пользуется особым спросом среди автомобилестроителей. Большинство автопроизводств предпочитают использовать сразу две форсунки в системе впрыска.

Как ни крути, но как и любая другая система, инжекторная ситсема имеет и свои недостатки, среди которых достаточно высокая цена на узлы инжектора, низкая уровень ремонтопригодности, высокие запросы по поводу состава и качества горючего, крайняя необходимость использования специального оборудования для диагностики каких-либо поломок, и, конечно же, довольно высокие ценовые показатели стоимости ремонта.

3. Как устроена форсунка инжектора

А теперь давайте рассмотрим конструкцию форсунки, из чего же она состоит. Каждому автолюбителю известно, что подача топлива в форсунках происходит преимущественно сверху вниз. Если говорить в общих чертах, можно сказать, что форсунка состоит из одного, реже двух каналов. Как правило, по первому к выходу подходит распыляемая жидкость, а по второму проходят жидкость, пар, газ, который служит для распыления первой жидкости. Как показывает практика, чистая и качественная форсунка способна дать конусообразный распыл, а факел получается непрерывный и ровный.

Если детализировать построение форсунки, можно сказать, что она, в первую очередь состоит из корпуса. В верхней части корпуса можно отыскать так называемый гидравлический разъем, который, в свою очередь, закрепляется к топливной рампе. Благодаря наличию насоса и обратного клапана в рампе непрерывно поддерживается установленное давление горючего. Известно, что форсунка прикрепляется к топливной рампе посредством специального зажимного устройства.

Нижнюю часть форсунки занимает распылительная пластина с отверстиями для впрыскивания топлива. Для того, чтобы обеспечить герметичность соединения сверху и снизу находятся специальные уплотнительные кольца. С одной стороны форсунки находится электрический разъем, который используется для управления соленоидом форсунки. Весь основной механизм находится внутри форсунки и состоит из фильтрующей сетки, электромагнитной обмотки, седлом клапана, пружины, игольчатого клапана с якорем соленоида и запорным сферическим элементом, а также распылительной пластины. Сопло принято считать самым важным элементом форсунки.

Топливная форсунка (ТФ), или инжектор, относится к деталям топливной системы впрыска. Она управляет дозированием и подачей ГСМ с его последующим разбрызгиванием в камере сгорания и соединением с воздухом в единую смесь.

ТФ выступают в роли главных исполнительных деталей, относящихся к системе впрыска. Благодаря им происходит разделение топлива на мельчайшие частицы путем разбрызгивания и его поступление в двигатель. Форсунки для любого типа моторов выполняют одинаковое назначение, однако различаются конструкционно и по принципу действия.

Данный вид изделий отличается индивидуальным изготовлением под конкретный тип силового агрегата. Иначе говоря, универсальной модели этого устройства не существует, поэтому переставлять их с бензинового мотора на дизельный нельзя. В качестве исключения можно привести пример гидромеханических моделей от BOSCH, устанавливаемых на механические системы, работающие на непрерывном впрыске. Они находят широкое применение для различных силовых агрегатов в качестве составного элемента системы «K-Jetronic», хотя и имеют несколько модификаций, не связанных между собой.

Расположение и принцип работы

Схематично форсунка – это электромагнитный клапан, управляемый программно. Она обеспечивает подачу топлива в цилиндры в установленных дозах, причем установленная система впрыска определяет вид используемых изделий.

Топливо в форсунку подается под давлением. При этом блок управления мотором посылает электроимпульсы на электромагнит инжектора, которые активируют работу игольчатого клапана, отвечающего за состояние канала (открыто/закрыто). Количество поступающего топлива определяется длительностью поступающего импульса, влияющего на промежуток нахождения игольчатого клапана в открытом состоянии.

Расположение форсунок зависит от конкретного типа системы впрыска:

Центральный – размещаются перед дроссельной заслонкой во впускном трубопроводе.

Распределенный –всем цилиндрам соответствует отдельная форсунка, размещаемая у основания впускного трубопровода и осуществляющая впрыск ГСМ.

Непосредственный –форсунки находятся вверху стенок цилиндра, что обеспечивает впрыск напрямую в камеру сгорания.

Форсунки для бензиновых моторов

Бензиновые моторы комплектуются следующими типами инжекторов:

Одноточечные – подают топливо, расположены до дроссельной заслонки.

Многоточечные – за подачу ГСМ на цилиндры отвечают несколько форсунок, располагаемых перед трубопроводами.

ТФ обеспечивают подачу бензина в камеру сгорания силовой установки, при этом конструкция таких деталей неразборная и не предусматривает ремонт. По стоимости они дешевле тех, что устанавливаются на дизельных моторах.

Как деталь, обеспечивающая нормальную работу топливной системы автомобиля, форсунки часто выходят из строя по причине загрязнения расположенных на них фильтрующих элементов продуктами сгорания. Подобные отложения перекрывают распылительные каналы, что нарушает работу ключевого элемента – игольчатого клапана и прерывает поступление топлива в камеру сгорания.

Форсунки для дизельных моторов

Правильную работу топливной системы дизельных двигателей обеспечивают два типа устанавливаемых на них форсунок:

Электромагнитные, за работу которых отвечает специальный клапан, регулирующий поднятие и опускание иглы.

Пьезоэлектрические, работающие за счет гидравлики.

Правильная настройка форсунок, а также степень их износа влияет на работу дизельного мотора, выдаваемую им мощность и объем расходуемого горючего.

Поломку или неисправность работы дизельной форсунки автовладелец может заметить по ряду признаков:

Увеличился расход топлива при нормальной тяге.

Машина не хочет двигаться с места и дымит.

Способы чистки форсунок

Для решения вышеназванных проблем требуется периодическая промывка топливных форсунок. Для устранения загрязнений применяют ультразвуковую очистку, используют особую жидкость, выполняя процедуру вручную, либо добавляют специальные присадки, позволяющие очистить форсунки без разбора мотора.

Заливка промывки в бензобак

Наиболее простой и щадящий способ очистки загрязненных форсунок. Принцип действия добавляемого состава заключается в постоянном растворении с его помощью имеющихся отложений в системе впрыска, а также частичное предотвращение их появления в будущем.

Такая методика хороша для новых машин либо автомобилей с небольшим пробегом. В этом случае добавление промывки в бак с топливом выступает профилактикой, позволяющей поддерживать силовую установку и топливную систему машины в чистоте. Для машин с серьезными загрязнениями топливной системы данный способ не подходит, а в ряде случаев может нанести вред, усугубив имеющиеся проблемы. При большом количестве загрязнений смытые отложения попадают в форсунки и забивают их еще больше.

Чистка без снятия с двигателя

Промывка ТФ без разбора двигателя выполняется путем подключения промывочной установки непосредственно к мотору. Такой подход позволяет отмыть скопившуюся грязь на форсунках и топливной рампе. Двигатель на полчаса запускается на холостом ходу, подача смеси происходит под давлением.

Данный способ не используется на сильно изношенных двигателях, а также не подходит для автомобилей с установленной системой КЕ-Jetronik.

Чистка со снятием форсунок

При сильных загрязнениях двигатель разбирают на специальном стенде, снимают форсунки и выполняют их индивидуальную очистку. Подобные манипуляции дополнительно позволяют определить наличие неисправностей в работе форсунок с их последующей заменой.

Чистка ультразвуком

Очистка форсунок выполняется в ультразвуковой ванне для предварительно снятых деталей. Вариант подходит при сильных загрязнениях, не убирающихся очистителем.
Операции по очистке форсунок без снятия с двигателя в среднем обходятся владельцу автомобиля в 15-20 у.е. Стоимость диагностики с последующей чистой для одной форсунки в ультразвуке либо на стенде составляет около 4-6 у.е. Комплексные работы по промывке и замене отдельных деталей позволяют обеспечить бесперебойную работу топливной системе еще на полгода, добавив 10-15 тыс. км. пробега.

Мало кто знает, что в автомобиле есть форсунки. Даже если кто-то и знает, то большая часть из них не знает о том, что это такое, для чего они предназначены и по какому принципу осуществляется работа. На самом деле, топливная форсунка находится в автомобиля. Она предназначена для того, чтобы вовремя подавать топливо в камеру сгорания двигателя. Форсунка устроена так, что она создает топливную смесь путем смешивания бензина и воздуха.

Строение

Как уже было сказано, основной задачей форсунки является вовремя подать нужное количество бензиновой смеси в камеру сгорания под нужным давлением. Следует обратить внимание на то, что бензиновая смесь нужна только бензиновому двигателю, а дизельному двигателю и смесь нужна дизельная. Перед тем, как попасть в камеру сгорания двигателя, бензин и воздух смешиваются в определенном количестве. После того, как получается эта смесь, она попадает в камеру сгорания.

Для того, чтобы под давлением отправить правильное количество топливной смеси в цилиндры двигателя, предусмотрен специальный клапан, который во время открытия набирает топливо и выдавливает эту смесь в цилиндры.

Существуют разные виды форсунок, их различает лишь принцип работы и привод клапана. Сегодня есть три вида форсунок. Основной вид из них - это форсунка с электромагнитным клапаном. Этот вид наиболее распространен на бензиновых двигателях, потому что конструкция этого устройства и принцип работы настолько просты, что их всего лишь потребуется промывать время от времени.

Принцип работы основан на том, что в корпусе форсунки расположена специальная обмотка, которая создает разряжение в определенный момент по сигналу электронного блока, который знает, сколько нужно отправить бензина в камеру сгорания.

Во время этого напряжения, игла поднимается из посадочного места и направляет нужное количество топлива, используя большое давление, в камеру сгорания. Давление в топливной рампе держится на постоянном уровне. Если двигателю необходимо больше топлива, насос поднимает давление автоматически.

Второй вид - это электрогидравлические форсунки. Этот вид наиболее распространен среди дизельных двигателей. Это устройство начинает работу по сигналу электронного блока, знающего сколько бензина требуется мотору. Здесь топливо попадает в камеру сгорания за счет изменения давления на поршни.

Существует еще один вид форсунок, но он встречается только на дизельных двигателях с установленной топливной системой Common Rail. Такие форсунки имеют преимущества перед другими видами в скорости срабатывания и в качестве давления. Благодаря этому топливо может поступать в камеры сгорания под определенным давлением во время всего цикла, что положительно сказывается на мощности мотора. Принцип работы здесь основан на гидравлике, как и во втором типе.

Ремонт и замена

Как уже было сказано, форсунки часто забиваются, и из-за этого топливо перестает попадать в двигатель. Для того, чтобы мотор работал правильно и динамично, форсунки нужно постоянно проверять и прочищать, если они засорены.

Для того, чтобы жиклеры не засорялись нужно заливать в автомобиль только качественное топливо на проверенных заправочных станциях. Жиклеры, это каналы, по которым идет топливо, перед тем как попасть в камеру сгорания. Для того, чтобы уберечь автомобиль от некачественного топлива, в устройстве автомобиля есть специальные фильтры, они находятся в разных частях топливной системы. Фильтры бывают грубой, мягкой и тонкой очистки. Грубой очистке подвергается топливо во время попадания в бак, а фильтр тонкой очистки расположен непосредственно перед попаданием в систему впрыска.

Сегодня на полках автомобильных магазинов можно встретить различные моющие присадки. Они нужны для того, чтобы промывать жиклеры. Эти присадки нужно добавлять в топливный бак, и они уже сами прочистят все каналы.

Этот способ подойдет лишь тем, у кого жиклеры засорены несильно, если на вашем автомобиле они засорены настолько, что автомобиль не заводится, то тут нужно воспользоваться другими способами очистки.

Вторым способом очистки считается очистка без снятия приборов с машины. Для того, чтобы очистить каналы от мусора этим способом, нужно залить в бак промывочное топливо. Затем следует отключить топливный насос и магистрали. После этого подающий проводник топлива подключается к установке, с помощью которой будет проводиться очистка. Эта установка, в свою очередь, будет подавать промывающее топливо, используя высокое давление.

Третий вид очистки используют, когда уже другие два способа перестали помогать. Здесь требуется снять форсунки с машины и погрузить их в специальный раствор в специальной камере. В этой камере они будут очищаться под ультразвуком, который разрушит весь лишний мусор в теле форсунки.

Для того, чтобы избежать последних двух способов очистки, следует подливать моющие присадки в бак каждые 2-3 тысячи пройденного расстояния. Они очистят не только жиклеры, но и топливный трубопровод и различные механизмы, которые тоже способны забиваться. Помимо всего этого нужно ухаживать за топливным насосом, который подает топливо в трубопровод, давление в котором постоянно регулируется.

Подводим итоги

Сегодня каждый водитель знает о том, что в его автомобиле есть топливная система, но не каждый водитель ухаживает за ней должным образом. Нередко в автосервис привозят автомобили с забитой мусором топливной системой. Для того, чтобы избежать этого, нужно вовремя ухаживать за своим автомобилем.

Оборудование такого рода используется во всех системах впрыска двигателей - и бензиновых, и дизельных. Сегодня на современных двигателях используют форсунки, которые оснащены электронным управлением впрыска.

Зависимо от того или иного способа выполнения впрыска различают такие виды форсунок, как: электромагнитная, пьезоэлектрическая и электрогидравлическая.

  • Читайте также статью:

Конструкция и принцип функционирования электромагнитной форсунки


Фотография устройства электромагнитной форсунки


Электромагнитное устройство такого плана, как правило, используют, на бензиновых двигателях, включая и те, которые имеют систему непосредственного впрыска. Данный вид оборудования характеризуется довольно простой конструкцией, которая состоит из сопла и включающего электромагнитного клапана, оснащенного иглой.

Работа электромагнитной форсунки происходит таким образом. Электронный блок управления, в точном соответствии с заложенным ранее алгоритмом, обеспечивает в необходимый момент на обмотку возбуждения клапана подачу напряжения. В процессе этого создается электромагнитное поле, которое преодолевает усилие пружины, затем втягивает якорь с иглой и, таким образом, освобождает сопло. После этого осуществляется впрыск топлива. Когда же напряжение пропадает, пружина иглу форсунки возвращает на седло.

Конструкция и принцип функционирования электрогидравлической форсунки


Фотография устройства электрогидравлической форсунки


Электрогидравлическое оборудование такого плана применяют на дизельных двигателях, включая и те, которые оборудованы системой впрыска под названием «Common Rail». Конструкция устройства данного типа объединяет в себе электромагнитный клапан, сливную и впускную дроссели, камеру управления.

Принцип работы данного оборудования основан на применении давления топлива, и при впрыске, и после его прекращения. Электромагнитный клапан в исходном положении обесточен и полностью закрыт, игла устройства прижата к седлу с помощью силы давления на поршень топлива в камере управления. В таком положении впрыск топлива не осуществляется. Следует отметить, что в такой ситуации давление топлива на иглу в связи с разностью площадей контакта менее давления, осуществляемого на поршень.

После команды электроблока управления происходит срабатывание электромагнитного клапана и осуществляется открытие сливной дроссели. При этом, топливо, находящееся в камере управления, вытекает в сливную магистраль через дроссель. Впускной дроссель служит препятствием тому, чтобы произошло быстрое выравнивание давлений не только во впускной магистрали, но также и в камере управления. Постепенно давление на поршень уменьшается, но не изменяется давление топлива, осуществляемое на иглу - в результате этого происходит поднятие иглы и, соответственно, впрыск горючего.

Конструкция, преимущества и принцип функционирования пьезоэлектрической форсунки


Схема устройства пьезоэлектрической форсунки


Наиболее совершенным устройством, с помощью которого обеспечивается впрыск топлива, считается пьезоэлектрическое оборудование такого плана - оно называется «пьезофорсунка». Данный вид устройств устанавливают на тех дизельных двигателях, которые оборудованы системой впрыска, носящей название Common Rail - аккумуляторная топливная система.

Преимущество подобных устройств - это быстрота срабатывания (примерно в четыре раза быстрее, чем электромагнитный клапан), что в результате предоставляет возможность многократно впрыскивать топливо на протяжении течение одного цикла. Кроме этого плюсом пьезофорсунок является максимально точная дозировка топлива, которое впрыскивается.

Создание данного вида оборудования стало возможным в связи с использованием в управлении форсункой пьезоэффекта, который основан на смене длины пьезокристалла в результате воздействия напряжения. Конструкция такого устройства включает в себя пьезоэлемент и толкатель, отвечающий за переключение клапана, а также иглу - всё это помещено в корпус устройства.

В работе данного вида оборудования, также как и в работе электрогидравлических устройств такого плана, используют гидравлический принцип. Игла в исходном положении посажена на седло из-за высокого давления топлива. В процессе подачи на пьезоэлемент электрического сигнала, происходит увеличение его длины, что передает на поршень толкателя усилие. В результате этого происходит открытие переключающего клапана и поступление в сливную магистраль топлива. Падает давление выше иглы. В связи с давлением в нижней части происходит поднятие иглы и, соответственно, впрыск топлива.

Количество топлива, которое впрыскивается, определяется такими факторами, как:

  • длительность воздействия на пьезоэлемент;
  • давление топлива в топливной рампе.


Поделиться