Принцип действия тепловых машин. тепловые двигатели

Темы кодификатора ЕГЭ : принципы действия тепловых машин, КПД тепловой машины, тепловые двигатели и охрана окружающей среды.

Коротко говоря, тепловые машины преобразуют теплоту в работу или, наоборот, работу в теплоту.
Тепловые машины бывают двух видов - в зависимости от направления протекающих в них процессов.

1. Тепловые двигатели преобразуют теплоту, поступающую от внешнего источника, в механическую работу.

2. Холодильные машины передают тепло от менее нагретого тела к более нагретому за счёт механической работы внешнего источника.

Рассмотрим эти виды тепловых машин более подробно.

Тепловые двигатели

Мы знаем, что совершение над телом работы есть один из способов изменения его внутренней энергии: совершённая работа как бы растворяется в теле, переходя в энергию беспорядочного движения и взаимодействия его частиц.

Рис. 1. Тепловой двигатель

Тепловой двигатель - это устройство, которое, наоборот, извлекает полезную работу из «хаотической» внутренней энергии тела. Изобретение теплового двигателя радикально изменило облик человеческой цивилизации.

Принципиальную схему теплового двигателя можно изобразить следующим образом (рис. 1 ). Давайте разбираться, что означают элементы данной схемы.

Рабочее тело двигателя - это газ. Он расширяется, двигает поршень и совершает тем самым полезную механическую работу.

Но чтобы заставить газ расширяться, преодолевая внешние силы, нужно нагреть его до температуры, которая существенно выше температуры окружающей среды. Для этого газ приводится в контакт с нагревателем - сгорающим топливом.

В процессе сгорания топлива выделяется значительная энергия, часть которой идёт на нагревание газа. Газ получает от нагревателя количество теплоты . Именно за счёт этого тепла двигатель совершает полезную работу .

Это всё понятно. Что такое холодильник и зачем он нужен?

При однократном расширении газа мы можем использовать поступающее тепло максимально эффективно и целиком превратить его в работу. Для этого надо расширять газ изотермически: первый закон термодинамики, как мы знаем, даёт нам в этом случае .

Но однократное расширение никому не нужно. Двигатель должен работать циклически , обеспечивая периодическую повторяемость движений поршня. Следовательно, по окончании расширения газ нужно сжимать, возвращая его в исходное состояние.

В процессе расширения газ совершает некоторую положительную работу . В процессе сжатия над газом совершается положительная работа (а сам газ совершает отрицательную работу ). В итоге полезная работа газа за цикл: .

Разумеется, должно быть class="tex" alt="A>0"> , или (иначе никакого смысла в двигателе нет).

Сжимая газ, мы должны совершить меньшую работу, чем совершил газ при расширении.

Как этого достичь? Ответ: сжимать газ под меньшими давлениями, чем были в ходе расширения. Иными словами, на -диаграмме процесс сжатия должен идти ниже процесса расширения, т. е. цикл должен проходиться по часовой стрелке (рис. 2 ).

Рис. 2. Цикл теплового двигателя

Например, в цикле на рисунке работа газа при расширении равна площади криволинейной трапеции . Аналогично, работа газа при сжатии равна площади криволинейной трапеции со знаком минус. В результате работа газа за цикл оказывается положительной и равной площади цикла .

Хорошо, но как заставить газ возвращаться в исходное состояние по более низкой кривой, т. е. через состояния с меньшими давлениями? Вспомним, что при данном объёме давление газа тем меньше, чем ниже температура. Стало быть, при сжатии газ должен проходить состояния с меньшими температурами.

Вот именно для этого и нужен холодильник: чтобы охлаждать газ в процессе сжатия.

Холодильником может служить атмосфера (для двигателей внутреннего сгорания) или охлаждающая проточная вода (для паровых турбин). При охлаждении газ отдаёт холодильнику некоторое количество теплоты .

Суммарное количество теплоты, полученное газом за цикл, оказывается равным . Согласно первому закону термодинамики:

где - изменение внутренней энергии газа за цикл. Оно равно нулю: , так как газ вернулся в исходное состояние (а внутренняя энергия, как мы помним, является функцией состояния ). В итоге работа газа за цикл получается равна:

(1)

Как видите, : не удаётся полностью превратить в работу поступающее от нагревателя тепло. Часть теплоты приходится отдавать холодильнику - для обеспечения цикличности процесса.

Показателем эффективности превращения энергии сгорающего топлива в механическую работу служит коэффициент полезного действия теплового двигателя.

КПД теплового двигателя - это отношение механической работы к количеству теплоты , поступившему от нагревателя:

С учётом соотношения (1) имеем также

(2)

КПД теплового двигателя, как видим, всегда меньше единицы. Например, КПД паровых турбин приблизительно , а КПД двигателей внутреннего сгорания около .

Холодильные машины

Житейский опыт и физические эксперименты говорят нам о том, что в процессе теплообмена теплота передаётся от более нагретого тела к менее нагретому, но не наоборот. Никогда не наблюдаются процессы, в которых за счёт теплообмена энергия самопроизвольно переходит от холодного тела к горячему, в результате чего холодное тело ещё больше остывало бы, а горячее тело - ещё больше нагревалось.

Рис. 3. Холодильная машина

Ключевое слово здесь - «самопроизвольно». Если использовать внешний источник энергии, то осуществить процесс передачи тепла от холодного тела к горячему оказывается вполне возможным. Это и делают холодильные
машины.

По сравнению с тепловым двигателем процессы в холодильной машине имеют противоположное направление (рис. 3 ).

Рабочее тело холодильной машины называют также хладагентом . Мы для простоты будем считать его газом, который поглощает теплоту при расширении и отдаёт при сжатии (в реальных холодильных установках хладагент - это летучий раствор с низкой температурой кипения, который забирает теплоту в процессе испарения и отдаёт при конденсации).

Холодильник в холодильной машине - это тело, от которого отводится теплота. Холодильник передаёт рабочему телу (газу) количество теплоты , в результате чего газ расширяется.

В ходе сжатия газ отдаёт теплоту более нагретому телу - нагревателю . Чтобы такая теплопередача осуществлялась, надо сжимать газ при более высоких температурах, чем были при расширении. Это возможно лишь за счёт работы , совершаемой внешним источником (например, электродвигателем (в реальных холодильных агрегатах электродвигатель создаёт в испарителе низкое давление, в результате чего хладагент вскипает и забирает тепло; наоборот, в конденсаторе электродвигатель создаёт высокое давление, под которым хладагент конденсируется и отдаёт тепло)). Поэтому количество теплоты, передаваемое нагревателю, оказывается больше количества теплоты, забираемого от холодильника, как раз на величину :

Таким образом, на -диаграмме рабочий цикл холодильной машины идёт против часовой стрелки . Площадь цикла - это работа , совершаемая внешним источником (рис. 4 ).

Рис. 4. Цикл холодильной машины

Основное назначение холодильной машины - охлаждение некоторого резервуара (например, морозильной камеры). В таком случае данный резервуар играет роль холодильника, а нагревателем служит окружающая среда - в неё рассеивается отводимое от резервуара тепло.

Показателем эффективности работы холодильной машины является холодильный коэффициент , равный отношению отведённого от холодильника тепла к работе внешнего источника:

Холодильный коэффициент может быть и больше единицы. В реальных холодильниках он принимает значения приблизительно от 1 до 3.

Имеется ещё одно интересное применение: холодильная машина может работать как тепловой насос . Тогда её назначение - нагревание некоторого резервуара (например, обогрев помещения) за счёт тепла, отводимого от окружающей среды. В данном случае этот резервуар будет нагревателем, а окружающая среда - холодильником.

Показателем эффективности работы теплового насоса служит отопительный коэффициент , равный отношению количества теплоты, переданного обогреваемому резервуару, к работе внешнего источника:

Значения отопительного коэффициента реальных тепловых насосов находятся обычно в диапазоне от 3 до 5.

Тепловая машина Карно

Важными характеристиками тепловой машины являются наибольшее и наименьшее значения температуры рабочего тела в ходе цикла. Эти значения называются соответственно температурой нагревателя и температурой холодильника .

Мы видели, что КПД теплового двигателя строго меньше единицы. Возникает естественный вопрос: каков наибольший возможный КПД теплового двигателя с фиксированными значениями температуры нагревателя и температуры холодильника ?

Пусть, например, максимальная температура рабочего тела двигателя равна , а минимальная - . Каков теоретический предел КПД такого двигателя?

Ответ на поставленный вопрос дал французский физик и инженер Сади Карно в 1824 году.

Он придумал и исследовал замечательную тепловую машину с идеальным газом в качестве рабочего тела. Эта машина работает по циклу Карно , состоящему из двух изотерм и двух адиабат.

Рассмотрим прямой цикл машины Карно, идущий по часовой стрелке (рис. 5 ). В этом случае машина функционирует как тепловой двигатель.

Рис. 5. Цикл Карно

Изотерма . На участке газ приводится в тепловой контакт с нагревателем температуры и расширяется изотермически. От нагревателя поступает количество теплоты и целиком превращается в работу на этом участке: .

Адиабата . В целях последующего сжатия нужно перевести газ в зону более низких температур. Для этого газ теплоизолируется, а затем расширяется адиабатно на учатке .

При расширении газ совершает положительную работу , и за счёт этого уменьшается его внутренняя энергия: .

Изотерма . Теплоизоляция снимается, газ приводится в тепловой контакт с холодильником температуры . Происходит изотермическое сжатие. Газ отдаёт холодильнику количество теплоты и совершает отрицательную работу .

Адиабата . Этот участок необходим для возврата газа в исходное состояние. В ходе адиабатного сжатия газ совершает отрицательную работу , а изменение внутренней энергии положительно: . Газ нагревается до исходной температуры .

Карно нашёл КПД этого цикла (вычисления, к сожалению, выходят за рамки школьной программы):

(3)

Кроме того, он доказал, что КПД цикла Карно является максимально возможным для всех тепловых двигателей с температурой нагревателя и температурой холодильника .

Так, в приведённом выше примере имеем:

В чём смысл использования именно изотерм и адиабат, а не каких-то других процессов?

Оказывается, изотермические и адиабатные процессы делают машину Карно обратимой . Её можно запустить по обратному циклу (против часовой стрелки) между теми же нагревателем и холодильником, не привлекая другие устройства. В таком случае машина Карно будет функционировать как холодильная машина.

Возможность запуска машины Карно в обоих направлениях играет очень большую роль в термодинамике. Например, данный факт служит звеном доказательства максимальности КПД цикла Карно. Мы ещё вернёмся к этому в следующей статье, посвящённой второму закону термодинамики.

Тепловые двигатели и охрана окружающей среды

Тепловые двигатели наносят серьёзный ущерб окружающей среде. Их повсеместное использование приводит к целому ряду негативных эффектов.

Рассеяние в атмосферу огромного количества тепловой энергии приводит к повышению температуры на планете. Потепление климата грозит обернуться таянием ледников и катастрофическими бедствиями.
К потеплению климата ведёт также накопление в атмосфере углекислого газа, который замедляет уход теплового излучения Земли в космос (парниковый эффект).
Из-за высокой концентрации продуктов сгорания топлива ухудшается экологическая ситуация.

Это - проблемы в масштабе всей цивилизации. Для борьбы с вредными последствиями работы тепловых двигателей следует повышать их КПД, снижать выбросы токсичных веществ, разрабатывать новые виды топлива и экономно расходовать энергию.

Лекция: Принципы действия тепловых машин


Тепловая машина

Тепловая машина - это система, которая может превратить тепло в работу или же наоборот, совершает работу для получения тепла.

Существует два основных вида тепловых машин:


1. Системы, способные превращать тепло в работу. Такие системы называются тепловыми двигателями . Данные тепловые машины лежат в основе двигателей на автомобилях. Чтобы машина ехала, двигатель должен совершать работу. Для совершения данной работы происходит сгорание топлива.


2. Системы, способные охлаждать тела, за счет совершения работы внешних сил. Такие системы называются холодильными машинами. В основе нашего домашнего холодильника лежит принцип холодильной машины. Любое тепло, которое подводится к ней, выводиться за пределы машины за счет совершения работы внешними силами.


Любая тепловая машина состоит из тела, которое совершает работу, холодильника и нагревателя.


Тепловые двигатели


В основе данной машины лежит принцип извлечения работы из беспрерывного движения структурных единиц вещества. Данное изобретение открыло двери в эру нового технического прогресса.

Рабочим телом для данной машины является газ. Во время его нагревания поршень двигателя передвигается и тем самым совершает работу. Чтобы газ расширился, к нему подводят нагреватель. Расширение будет происходить только в том случае, когда температура газа будет больше, чем температура окружающей среды.


Во время сгорания топлива выделяется достаточная энергия, большая часть которой идет на совершение работы, поэтому

Q1 = A1


Теперь давайте разберемся, какую роль играет холодильник в тепловой машине. Для того, чтобы машина постоянно работала, необходимо, чтобы газ расширялся и сужался - в таком случае поршень будет периодически возвращаться в исходное положение. Поэтому холодильник охлаждает газ, передавая ему теплоту: Q2 = A2

В данном случае полезная работа будет равна: A = A1 − A2

Чтобы работа охлаждения была меньше, её следует совершать при меньшем давлении, как показано на графике.

Где Q1 - Q2 = А, А - полезная работа.

Стоит отметить, что КПД всегда меньше единицы. Более того, зачастую нами используются тепловые двигатели, КПД которых меньше 50%.


Холодильные машины


Как было сказано в предыдущих разделах, нельзя заставить некоторую систему самопроизвольно передавать тепло от менее нагретого тела к более нагретому. Однако ключевое слово здесь - самопроизвольно. С помощью внешнего источника работы это все-таки возможно. Холодильная машина производит именно такие процессы.

Условия, необходимые для работы теплового двигателя

Тепловым двигателем называется машина, в которой происходит превращение энергии, полученной при сгорании топлива, в механическую энергию.

Вещество, производящее работу в тепловых двигателях, называется рабочим телом или рабочим веществом . В паровых двигателях таким рабочим веществом является пар, а в двигателях внутреннего сгорания – газ.

Установим общие условия (относящиеся ко всем тепловым двигателям), которые необходимы, чтобы преобразовать энергию топлива в энергию движения машин и механизмов. Эти условия мы выясним на примере работы паросиловой установки, схема которой изображена на рисунке.

Одна из частей паросиловой установки – топка с паровым котлом С. В котле образуется пар, который под давлением направляется по трубе М в цилиндр паровой машины Е. Здесь пар расширяется и, двигая поршень, совершает работу. Посредством передающего механизма А возвратно-поступательное движение поршня преобразуется во вращательное движение маховика, который приводит в движение рабочие части станков, сельскохозяйственных машин, генераторов тока и т. д.

Реактивные двигатели

Развитие авиации сводится в основном к увеличению скорости, высоты, грузоподъёмности, дальности, надёжности полёта самолётов, что в значительной степени зависит от возможностей совершенствования двигателя.

Двигатели внутреннего сгорания с винтами-пропеллерами уже не обеспечивают увеличения скорости и высоты полёта самолётов. Причина этого заключается в следующем.

В самолёте с воздушным винтом последний, вращаясь, отбрасывает воздух, заставляя его двигаться ускоренно. По третьему закону Ньютона , отбрасываемая масса воздуха действует на винт, толкает его вперёд, создавая этим тягу, движущую весь самолёт. Тяга получается, таким образом, как результат ответного воздействия (реакции) воздуха, отбрасываемого винтом. Винт служит посредником, который за счёт энергии топлива совершает работу по передвижению самолёта.

Коэффициент полезного действия тепловых двигателей

При устройстве тепловых двигателей важно прежде всего добиться, чтобы как можно большее количество энергии сгораемого топлива превратилось в механическую энергию, иначе говоря, при минимальной затрате топлива получилась максимальная работа. Тогда двигатель будет экономичным. Зная количество теплоты Q 1 , переданное рабочему телу от нагревателя, и количество теплоты Q 1 – Q 2 , превращенное в механическую энергию, можно оценить степень экономичности этого процесса превращения.

Отношение количества теплоты, превращенной машиной о механическую энергию, к количеству теплоты, полученной от нагревателя, называется коэффициентом полезного действия тепловой машины (к. п. д.).

К. п. д. машины принято обозначать буквой η (греч. «эта»):

η = (Q 1 – Q 2) : Q 1

Изучая условия получения работе за счёт внутренней энергии пара в паровых машинах, Карнов 1824 г. установил, что коэффициент полезного действия любого реального теплового двигателя не может превышать величины (Т 1 – Т 2) : T 1 , где Т 1 – абсолютная температура нагреватели, а Т 2 – абсолютная температура холодильника. Чем ближе к. п. д. двигателя к этой величине, тем двигатель совершеннее. Этот вывод хорошо оправдывается на практике.

Работа при расширении газа

Представим себе, что в цилиндре под поршнем, площадь которого S, находится какой-нибудь газ, давление которого равно р. Сила, с которой газ давит на поршень, определяется по формуле F = pS. Если нагревать газ при постоянном давлении, то он расширится и поршень переместится на некоторое расстояние h.

Газ при этом совершит работу А = pSh. Но Sh = V 2 – V 1 есть увеличение объёма газа, следовательно:

A = p · (V 2 – V 1)

Работа газа при изобарном расширении равна произведению давления газа на увеличение его объёма.

Дизельный двигатель

От чего зависит коэффициент полезного действия двигателя внутреннего сгорания? Как и во всякой тепловой машине, в этом двигателе имеется источник энергии – нагреватель (таким источником является сгорающее топливо) и холодильник – атмосферный воздух. Чем выше разность температур между ними, тем выше к. п. д. двигателя.

Так как температура газов, получающихся при сгорании смеси, велика (порядка 1600–1800 о С), то к. п. д. двигателей внутреннего сгорания значительно выше к. п. д. паровых машин. На практике к. п. д. двигателей внутреннего сгорания достигает 20–30%.

Как можно ещё повысить к. п. д. этого двигателя? Опыт и расчёты показывают, что для этого нужно добиться большей степени сжатия смеси. Однако в двигателях карбюраторного типа очень сильно сжимать горючую смесь нельзя, так как она, сильно нагреваясь, будет преждевременно самовоспламенятся.

Немецкий инженер Дизель изобрёл двигатель, названный его именем, работающий по такому циклу, который позволяет избежать указанных выше затруднений и значительно повысить к. п. д.

Паровые турбины

Среди тепловых двигателей важное место занимают паровые турбины. В отличие от поршневых паровых двигателей в паровых турбинах используется не энергия упругости пара, а кинетическая энергия струн пара.

Предположим, что давление пара в котле равно р 1 . Предоставим пару возможность свободно вытекать из котла через какое-либо отверстие или через насадку – сопло. При истечении через сопло давление пара будет падать, и в устье сопла оно окажется равным некоторому давлению р 2 . Вначале скорость пара равна нулю, при выходе же из сопла она увеличивается; при этом давление пара в сопле падает.

Потенциальная энергия пара при падении его давления уменьшается; соответственно увеличивается кинетическая энергия пара (по закону сохранения и превращения энергии). Вытекающий из сопла пар попадает на лопатки рабочего колеса и приводит его во вращение.

Схема действия одного из типов турбин представлена на рисунке. На валу А насажен диск В, по ободу которого закреплены лопатки L. Против лопаток расположены сопла С, в которые пар поступает из котла. В соплах пар расширяется и, выходя из их устьев с большой скоростью, попадает в каналы, образуемые лопатками, где теряет часть своей кинетической энергии, которая идёт на приведение диска В вместе с валом во вращательное движение. Па рисунке изображено колесо однодисковой турбины Лаваля (без кожуха).

Двигатель внутреннего сгорания

В паровых машинах и паровых турбинах для преобразования энергии топлива в механическую энергию используют водяной пар, который получается в паровых котлах. Наряду с этим существуют тепловые двигатели, в цилиндрах которых одновременно протекают процессы сгорания топлива, выделения при этом энергии и совершения за счёт части её механической работы; такие двигатели называются двигателями внутреннего сгорания . В этих двигателях используется жидкое или газообразное топливо. Жидкое топливо перед сжиганием испаряется или распыляется в воздухе.

Рассмотрим устройство четырёхтактного карбюраторного автомобильного двигателя. Принцип действия двигателей, применяемых на тракторах и самолётах, сходен с автомобильным.

Схема четырёхтактного двигателя внутреннего сгорания и диаграмма работы такого двигателя изображены на рисунке.

Из схемы видно, что внутри цилиндра А может свободно перемещаться поршень В. В верхней части цилиндра имеются два клапана. Через клапан Д производится впуск так называемой горючей смеси, состоящей из воздуха и мельчайших частиц жидкого или газообразного топлива. Клапан Е служит для удаления из цилиндра отработавших газов; С – запальник (свеча), назначение которого – воспламенять находящуюся над поршнем смесь.

Паровые котлы

Одна и основных частей паросиловой установки – котёл. Каждый паровой котел состоит из топки для сжигания топлива, топочного пространства, барабана котла с водяным и паровым пространством, герметически закрытым. Всякий котёл обладает определенной производительностью, измеряемой количеством воды, которую он способен испарить в течение часа при определенных температуре и давлении. Часть котла, которая во время топки приходит в соприкосновение с пламенем, называется поверхностью нагрева .

На рисунке изображен дымогарный котёл. Внутри этого котла помещён ряд трубок А, по которым продукты горения проходят в дымовую коробку В, откуда попадают в дымовую трубу. Такие котлы устанавливают на локомобилях и на паровозах. Многочисленные дымогарные трубки дают огромную поверхность нагрева, с помощью которой в большей степени полезно используется энергия, получающаяся при сгорании топлива. Вода в этих котлах находится между дымогарными трубками.

Можно сделать котлы иначе: по трубкам пустить воду, а между трубками пламя. Такие котлы называются водотрубными .

Виды реактивных двигателей

Все разнообразные виды реактивных двигателей состоят из следующих основных частей: 1) бака с топливом, 2) камеры, где это топливо сгорает, 3) устройств, обеспечивающих подачу топлива в камеру сгорания и истечение продуктов сгорания. В зависимости от вида используемого топлива реактивные двигатели разделяются на две большие группы: двигатели на твёрдом топливе, двигатели на жидком топливе.

Простейшим примером двигателя на твёрдом топливе служит пороховая ракета. В ракете при сгорании пороха образуются газы, которые выбрасываются из тела ракеты, создавая реактивную тягу.

В жидкостных реактивных двигателях (ЖРД) сгорают жидкие горючие вещества (нефтепродукты, спирт и т. д.). Жидкостные реактивные двигатели применялись в конце второй мировой войны для самолётов–снарядов дальнего действия. Скорость самолётов-снарядов достигала 5400 км/ч при дальности полёта 290-300 км и высоте траектории 100 км.

К этому же роду двигателей относится ракетный двигатель для межпланетных сообщений, изобретённый К. Э. Циолковским.

Паровая машина

В паровой машине энергия пара непосредственно преобразуется в энергию движения поршня.

На рисунке изображена схема устройства одноцилиндровой паровой машины. Пар из парового котла по трубе А поступает в парораспределительную коробку В, а оттуда в рабочий цилиндр С – попеременно то с одной, то с другой стороны поршня. Распределение пара производится с помощью золотника Z.

Когда пар поступает в правую часть цилиндра, то он толкает поршень влево, а отработавший пар вытесняется и выходит через выводную трубу (на рисунке эта труба не показана). Затем, наоборот, пар поступает в левую часть цилиндра и толкает поршень вправо.

При помощи штока Е, шатуна F и кривошипа К возвратно-поступательное движение поршня превращается во вращательное движение вала машины и махового колеса. В свою очередь маховое колесо через передающий механизм L и М перемещает золотник, который поочерёдно впускает пар то с правой, то с левой стороны поршня.

Холодильник

Рис. 2.31. Тепловой двигатель

Нагреватель

Рабочее тело двигателя

2.12 Тепловые машины

Коротко говоря, тепловые машины преобразуют теплоту в работу или, наоборот, работу в теплоту.

Тепловые машины бывают двух видов в зависимости от направления протекающих в них процессов.

1. Тепловые двигатели преобразуют теплоту, поступающую от внешнего источника, в механическую работу.

Автомобильный двигатель внутреннего сгорания это пример теплового двигателя. В нём происходит преобразование тепла, выделяющегося при сгорании топлива, в механическую энергию автомобиля.

2. Холодильные машины передают тепло от менее нагретого тела к более нагретому за счёт механической работы внешнего источника.

Бытовой холодильник, который стоит у вас в квартире, служит примером холодильной машины. В нём тепло отводится от холодильной камеры и передаётся в окружающее пространство.

Рассмотрим эти виды тепловых машин более подробно.

2.12.1 Тепловые двигатели

Мы знаем, что совершение над телом работы есть один из способов изменения его внутренней энергии: совершённая работа как бы растворяется в теле, переходя в энергию беспорядочного движения и взаимодействия его частиц.

Тепловой двигатель это устройство, которое, наоборот, извлекает полезную работу из ¾хаотической¿ внутренней энергии тела. Изобретение теплового двигателя радикально изменило облик человеческой цивилизации.

Принципиальную схему теплового двигателя можно изобразить следующим образом (рис. 2.31 ). Давайте разбираться, что означают элементы данной схемы.

Рабочее тело двигателя это газ. Он расширяется, двигает поршень и совершает тем самым полезную меха-

ническую работу.

Но чтобы заставить газ расширяться, преодолевая внешние силы, нужно нагреть его до температуры, которая существенно выше температуры окружающей среды. Для этого газ приводится в контакт с нагревателем сгорающим топливом.

В процессе сгорания топлива выделяется значительная энергия, часть которой идёт на нагревание газа. Газ получает от нагревателя количество теплоты Q1 . Именно за счёт этого тепла двигатель совершает полезную работу A.

Это всё понятно. Что такое холодильник и зачем он нужен?

При однократном расширении газа мы можем использовать поступающее тепло максимально эффективно и целиком превратить его в работу. Для

этого надо расширять газ изотермически: первый закон термодинамики, как мы знаем, даёт нам в этом случае A = Q1 .

Но однократное расширение никому не нужно. Двигатель должен работать циклически, обеспечивая периодическую повторяемость движений поршня. Следовательно, по окончании расширения газ нужно сжимать, возвращая его в исходное состояние.

В процессе расширения газ совершает некоторую положительную работу A1 . В процессе сжатия над газом совершается положительная работа A2 (а сам газ совершает отрицательную работу A2 ). В итоге полезная работа газа за цикл: A = A1 A2 .

Разумеется, должно быть A > 0, или A2 < A1 (иначе никакого смысла в двигателе нет). Сжимая газ, мы должны совершить меньшую работу, чем совершил газ при расширении.

Как этого достичь? Ответ: сжимать газ под меньшими давлениями, чем были в ходе расширения. Иными словами, на pV -диаграмме процесс сжатия должен идти ниже процесса расширения, т. е. цикл должен проходиться по часовой стрелке (рис.2.32 ).

Рис. 2.32. Цикл теплового двигателя

Например, в цикле на рисунке работа газа при расширении равна площади криволинейной трапеции V1 1a2V2 . Аналогично, работа газа при сжатии равна площади криволинейной трапеции V1 1b2V2 со знаком минус. В результате работа A газа за цикл оказывается положительной и равной площади цикла 1a2b1.

Хорошо, но как заставить газ возвращаться в исходное состояние по более низкой кривой, то есть через состояния с меньшими давлениями? Вспомним, что при данном объёме давление газа тем меньше, чем ниже температура. Стало быть, при сжатии газ должен проходить состояния с меньшими температурами.

Вот именно для этого и нужен холодильник: чтобы охлаждать газ в процессе сжатия. Холодильником может служить атмосфера (для двигателей внутреннего сгорания) или охлаждающая проточная вода (для паровых турбин).

При охлаждении газ отдаёт холодильнику некоторое количество теплоты Q2 . Суммарное количество теплоты, полученное газом за цикл, оказывается равным Q1 Q2 . Согласно первому закону термодинамики:

Q1 Q2 = A + U;

где U изменение внутренней энергии газа за цикл. Оно равно нулю: U = 0, так как газ вернулся в исходное состояние (а внутренняя энергия, как мы помним, является функцией состояния). В итоге работа газа за цикл получается равна:

A = Q1 Q2 :

Как видите, A < Q1 : не удаётся полностью превратить в работу поступающее от нагревателя тепло. Часть теплоты приходится отдавать холодильнику для обеспечения цикличности процесса.

машины

Холодильник

Рис. 2.33. Холодильная машина

Нагреватель

Рабочее тело холодильной

Показателем эффективности превращения энергии сгорающего топлива в механическую работу служит коэффициент полезного действия теплового двигателя.

КПД теплового двигателя это отношение механической работы A к количеству тепло-

ты Q1 , поступившему от нагревателя:

A : Q1

С учётом соотношения (2.12 ) имеем также

Q 1Q 2

КПД теплового двигателя, как видим, всегда меньше единицы. Например, КПД паровых турбин приблизительно 25%, а КПД двигателей внутреннего сгорания около 40%.

2.12.2 Холодильные машины

Житейский опыт и физические эксперименты говорят нам о том, что в процессе теплообмена теплота передаётся от более нагретого тела к менее нагретому, но не наоборот. Никогда не наблюдаются процессы, в которых за счёт теплообмена энергия самопроизвольно переходит от холодного тела к горячему, в результате чего холодное тело ещё больше остывало бы, а горячее тело ещё больше нагревалось.

Ключевое слово здесь ¾самопроизвольно¿. Если использовать внешний источник энергии, то осуществить процесс передачи тепла от холодного тела к горячему оказывается вполне возможным. Это и делают холодильные машины.

По сравнению с тепловым двигателем процессы в холодильной машине имеют противоположное направление (рис. 2.33 ).

Рабочее тело холодильной машины называют также

который поглощает теплоту при расширении и отдаёт при сжатии21 .

Холодильник в холодильной машине это тело, от которого отводится теплота. Холодильник передаёт рабоче-

му телу (газу) количество теплоты Q2 , в результате чего газ расширяется.

В ходе сжатия газ отдаёт теплоту Q1 более нагретому телу нагревателю. Чтобы такая теплопередача осуществлялась, надо сжимать газ при более высоких температурах, чем были при расширении. Это возможно лишь за счёт работы A0 , совершаемой внешним источником (например, электродвигателем)22 . Поэтому количество тепло-

ты, передаваемое нагревателю, оказывается больше количества теплоты, забираемого от холо-

дильника, как раз на величину A0 :

Q1 = Q2 + A0 :

21 В реальных холодильных установках хладагент это летучий раствор с низкой температурой кипения, который забирает теплоту в процессе испарения и отдаёт при конденсации.

22 В реальных холодильных агрегатах электродвигатель создаёт в испарителе низкое давление, в результате чего хладагент вскипает и забирает тепло; наоборот, в конденсаторе электродвигатель создаёт высокое давление, под которым хладагент конденсируется и отдаёт тепло.

Таким образом, на pV -диаграмме рабочий цикл холодильной машины идёт против часовой стрелки. Площадь цикла это работа A0 , совершаемая внешним источником (рис.2.34 ).

Рис. 2.34. Цикл холодильной машины

Основное назначение холодильной машины охлаждение некоторого резервуара (например, морозильной камеры). В таком случае данный резервуар играет роль холодильника, а нагревателем служит окружающая среда в неё рассеивается отводимое от резервуара тепло.

Показателем эффективности работы холодильной машины является холодильный коэффициент, равный отношению отведённого от холодильника тепла к работе внешнего источника:

Q A 2 0 :

Холодильный коэффициент может быть и больше единицы. В реальных холодильниках он принимает значения приблизительно от 1 до 3.

Имеется ещё одно интересное применение: холодильная машина может работать как тепловой насос. Тогда её назначение нагревание некоторого резервуара (например, обогрев помещения) за счёт тепла, отводимого от окружающей среды. В данном случае этот резервуар будет нагревателем, а окружающая среда холодильником.

Показателем эффективности работы теплового насоса служит отопительный коэффициент, равный отношению количества теплоты, переданного обогреваемому резервуару, к работе

внешнего источника:

Q A 1 0 :

Значения отопительного коэффициента реальных тепловых насосов находятся обычно в диапазоне от 3 до 5.

2.12.3 Тепловая машина Карно

Важными характеристиками тепловой машины являются наибольшее и наименьшее значения температуры рабочего тела в ходе цикла. Эти значения называются соответственно температурой нагревателя и температурой холодильника.

Мы видели, что КПД теплового двигателя строго меньше единицы. Возникает естественный вопрос: каков наибольший возможный КПД теплового двигателя с фиксированными значениями температуры нагревателя T1 и температуры холодильника T2 ?

Пусть, например, максимальная температура рабочего тела двигателя равна 1000 K, а минимальная 300 K. Каков теоретический предел КПД такого двигателя?

Ответ на поставленный вопрос дал французский физик и инженер Сади Карно в 1824 году. Он придумал и исследовал замечательную тепловую машину с идеальным газом в качестве

рабочего тела. Эта машина работает по циклу Карно, состоящему из двух изотерм и двух адиабат.

Рассмотрим прямой цикл машины Карно, идущий по часовой стрелке (рис. 2.35 ). В этом случае машина функционирует как тепловой двигатель.

T 23

Рис. 2.35. Цикл Карно

Изотерма 1 ! 2. На участке 1 ! 2 газ приводится в тепловой контакт с нагревателем температуры T1 и расширяется изотермически. От нагревателя поступает количество теплоты Q1 и целиком превращается в работу на этом участке: A12 = Q1 .

Адиабата 2 ! 3. В целях последующего сжатия нужно перевести газ в зону более низких температур. Для этого газ теплоизолируется, а затем расширяется адиабатно на учатке 2 ! 3. При расширении газ совершает положительную работу A23 , и за счёт этого уменьшается его внутренняя энергия: U23 = A23 .

Изотерма 3 ! 4. Теплоизоляция снимается, газ приводится в тепловой контакт с холодильником температуры T2 . Происходит изотермическое сжатие. Газ отдаёт холодильнику количество теплоты Q2 и совершает отрицательную работу A34 = Q2 .

Адиабата 4 ! 1. Этот участок необходим для возврата газа в исходное состояние. В ходе адиабатного сжатия газ совершает отрицательную работу A41 , а изменение внутренней энергии положительно: U41 = A41 . Газ нагревается до исходной температуры T1 .

Карно нашёл КПД этого цикла (вычисления, к сожалению, выходят за рамки школьной программы):

T 1T 2

Кроме того, он доказал, что КПД цикла Карно является максимально возможным для всех тепловых двигателей с температурой нагревателя T1 и температурой холодильника T2 .

Так, в приведённом выше примере (T1 = 1000 K, T2 = 300 K) имеем:

max =1000 300 = 0;7 (= 70%): 1000

В чём смысл использования именно изотерм и адиабат, а не каких-то других процессов? Оказывается, изотермические и адиабатные процессы делают машину Карно обратимой. Её можно запустить по обратному циклу (против часовой стрелки) между теми же нагревателем и холодильником, не привлекая другие устройства. В таком случае машина Карно будет функционировать как холодильная машина.

Возможность запуска машины Карно в обоих направлениях играет очень большую роль в термодинамике. Например, данный факт служит звеном доказательства максимальности КПД цикла Карно. Мы ещё вернёмся к этому в следующей статье, посвящённой второму закону термодинамики.

Большая часть двигателей, используемых людьми, - это тепловые двигатели. Устройства, превращающие энергию топлива в механическую энергию, называются тепловыми двигателями.

Любой тепловой двигатель (паровые и газовые турбины, двигатели внутреннего сгорания) состоит из трех основных элементов: рабочего тела (это газ), которое совершает работу в двигателе; нагревателя, от которого рабочее тело получает энергию, часть которой затем идет на совершение работы; холодильника , которым является атмосфера или специальные устройства.

Обязательно температура нагревателя больше температуры холодильника.

Рабочее тело двигателя получает количество теплоты Qн от нагревателя, совершает работу А и передает холодильнику количество теплоты Qx..

Эффективность работы двигателя характеризует коэффициент полезного действия (КПД).

Он равен отношению работы к энергии, которое получило рабочее тело от нагревателя.

Паровая или газовая турбина, двигатель внутреннего сгорания, реактивный двигатель работают на базе ископаемого топлива. В процессе работы многочисленных тепловых машин возникают тепловые потери, которые, в конечном счете, приводят к повышению внутренней энергии атмосферы, т. е. к повышению ее температуры. Это может привести к таянию ледников и катастрофическому повышению уровня Мирового океана, а вместе с тем к глобальному изменению природных условий. При работе тепловых установок и двигателей в атмосферу выбрасываются вредные для человека, животных и растений оксиды азота, углерода и серы. С вредными последствиями работы тепловых машин можно бороться путем повышения КПД, их регулировки и создания новых двигателей, не выбрасывающих вредные вещества с отработанными газами.
Тепловые машины широко используют на производстве и в быту. По железнодорожным магистралям водят составы мощные тепловозы, по водным путям – теплоходы. Миллионы автомобилей с двигателями внутреннего сгорания перевозят грузы и пассажиров. Поршневыми, турбовинтовыми и турбореактивными двигателями снабжены самолеты и вертолеты. С помощью ракетных двигателей осуществляются запуски искусственных спутников, космических кораблей и станций. Двигатели внутреннего сгорания являются основой механизации производственных процессов в сельском хозяйстве. Их устанавливают на тракторах, комбайнах, самоходных шасси, насосных станциях. Тепловоз - автономный локомотив, на котором в качестве силовой энергетической установки используется тепловой поршневой двигатель внутреннего сгорания - дизельный двигатель , величина эффективного кпд которого достигает 40-45%. Применение дизельного двигателя вместо паросиловой энергетической установки паровоза обеспечивает высокий уровень кпд тепловоза (26-31%), превышающий кпд паровоза в 4-5 раз.

Билет № 14

Элементарный электрический заряд; два вида электрических зарядов, закон сохранения электрического заряда; закон Кулона. Электрическое поле: напряженность электрического поля, линии напряженности электрического поля.

Электрический заряд обычно обозначается буквами q или Q .

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

· Существует два рода электрических зарядов, условно названных положительными и отрицательными.

· Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому.. Одно и то же тело в разных условиях может иметь разный заряд.

· Одноименные заряды отталкиваются, разноименные – притягиваются.

· Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда .

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

q 1 + q 2 + q 3 + ... +q n = const.

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С современной точки зрения, носителями зарядов являются элементарные частицы. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду

e = 1,6 .

Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов.

В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами .

Точечным зарядомназывают заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции.

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ - существует вокруг электрического заряда, материально.
Основное свойство электрического поля: действие с силой на электрический заряд, внесенный в него.
Электростатическое поле
- поле неподвижного электрического заряда.
Напряженность электрического поля - силовая характеристика электрического поля.
- это отношение силы, с которой поле действует на внесенный точечный заряд к величине этого заряда.
- не зависит от величины внесенного заряда, а характеризует электрическое поле!

Направление вектора напряженности
совпадает с направлением вектора силы, действующей на положительный заряд, и противоположно направлению силы, действующий на отрицательный заряд.

Силовые линии электрического поля - непрерывные линии, касательными к которым являются векторы напряженности эл.поля в этих точках.
Однородное эл.поле - напряженность поля одинакова во всех точках этого поля.
Свойства силовых линий: не замкнуты (идут от + заряда к -), непрерывны, не пересекаются,
их густота говорит о напряженности поля (чем гуще линии, тем больше напряженность).



Поделиться