Двух-полярный лабораторный блок питания своими руками. Блок питания: с регулировкой и без, лабораторный, импульсный, устройство, ремонт Регулятор напряжения для лабораторного блока питания

Всем привет. Сегодня заключительный обзор, сборка лабораторного линейного блока питания. Сегодня много слесарных работ, изготовление корпуса и финальная сборка. Обзор размещен в блоге «DIY или Сделай Сам», надеюсь я тут никого не отвлекаю и не кому не мешаю тешить свой взгляд прелестями Лены и Игоря))). Всем кому интересны самоделки и радиотехника - Добро пожаловать!!!
ВНИМАНИЕ: Очень много букв и фото! Трафик!

Добро пожаловать радиолюбитель и любитель самоделок! Для начала давайте вспомним, этапы сборки лабораторного линейного блока питания. Непосредственно к данному обзору не имеет отношения, потому разместил под спойлер:

Этапы сборки

Сборка силового модуля. Плата, радиатор, силовой транзистор, 2 переменных многооборотных резистора и зеленый трансформатор (из Восьмидесятых ®) Как подсказал мудрый kirich , я самостоятельно собрал схему, которую китайцы продают в виде конструктора, для сборки блока питания. Я сначала расстроился, но потом решил, что, видать схема хороша, раз китайцы её копируют… В то же время вылезли и детские болячки этой схемы (которые полностью были скопированы китайцами), без замены микросхем на более «высоковольтные», на вход нельзя подавать больше 22 вольт переменного напряжения… И несколько более мелких проблем, которые подсказали мне наши форумчане, за что им огромное спасибо. Совсем недавно будущий инженер "AnnaSun " предложила избавления от трансформатора. Конечно каждый может модернизировать свой БП как угодно, можно и импульсник поставить в качестве источника питания. Но у любого импульсника (быть может кроме резонансных) на выходе куча помех, и эти помехи частично перейдут на выход ЛабБП… А если там имульсные помехи, то (ИМХО) это не ЛабБП. Потому я не буду избавляться от «зеленого трансформатора».


Поскольку это линейный блок питания, у него есть характерный и существенный недостаток, вся лишняя энергия выделяется на силовом транзисторе. Для примера, на вход мы подаем 24В переменного напряжения, которое после выпрямления и сглаживания превратится в 32-33В. Если на выход присоединить мощную нагрузку, потребляющую 3А при напряжении 5В, вся оставшаяся мощность (28В при токе 3А), а это 84Вт, будет рассеиваться на силовом транзисторе, переходя в тепло. Одним из способов предотвратить эту проблему, и соответственно повысить КПД, это поставить модуль ручного или автоматического переключения обмоток. Данный модуль был рассмотрен в :

Для удобства работы с блоком питания и возможности мгновенного отключения нагрузки, с схему был введен дополнительный модуль на реле, позволяющий включать или выключать нагрузку. Этому был посвящен .


К сожалению, из-за отсутствия нужных реле (нормально замкнутых), данный модуль работал некорректно, потому он будет заменен другим модулем, на D-триггере, позволяющий включать или выключать нагрузку при помощи одной кнопки.

Вкратце расскажу про новый модуль. Схема довольно известная (прислали мне в личку):


Немножко модифицировал её под свои нужды и собрал такую плату:


С обратной стороны:


На это раз никаких проблем не было. Все работает очень четко и управляется одной кнопкой. При подаче питания, на 13 выходе микросхемы всегда логический ноль, транзистор (2n5551) закрыт и реле обесточено - соответственно нагрузка не подключена. При нажатии кнопки, на выходе микросхемы появляется логическая единица, транзистор открывается и реле срабатывает подключая нагрузку. Повторное нажатие на кнопку возвращает микросхему в исходное состояние.

Какой же блок питания без индикатора напряжения и тока? Потому в я попытался сделать ампервольтметр самостоятельно. В принципе получился неплохой прибор, однако он имеет некоторую нелинейность в диапазоне от 0 до 3.2А. Эта погрешность никак не будет влиять при использовании данного измерителя, скажем в зарядном устройстве для АКБ автомобиля, но недопустима для Лабораторного БП, потому, я заменю этот модуль, китайскими щитовыми прецизионными и с дисплеями, имеющими 5 разрядов… А собранный мною модуль найдет применение в какой-нибудь другой самоделке.


Наконец-то приехали из Китая более высоковольтные микросхемы, о чем я Вам рассказал в . И теперь можно подавать на вход 24В переменного тока, не опасаясь, что пробьет микросхемы…

Теперь дело осталось за «малым», изготовить корпус и собрать все блоки вместе, чем я и займусь в этом финальном обзоре по данной тематике.
Поискав готовый корпус, ничего подходящего не нашел. У китайцев есть неплохие коробки, но, к сожалению, цена их, а особенно …

Отдать китайцам 60 баксов мне «жаба» не позволила, да и глупо такие деньги отдавать за корпус, можно еще немного добавить и купить . По крайней мере, корпус из этого Бп выйдет хороший.

Потому я поехал на строительный базар и купил 3 метра алюминиевого уголка. С его помощью будет собран каркас прибора.
Подготавливаем детали нужного размера. Расчерчиваем заготовки и спиливаем уголки при помощи отрезного диска. .



Затем выкладываем заготовки верхней и нижней панели, чтобы прикинуть, что получится.


Пробуем расположить модули внутри


Сборка идет на потайных винтах (под шляпку зенкером, разенковывается отверстие, что бы головка винта не выступала над уголком), и гайках с обратной стороны. Потихоньку появляются очертания каркаса блока питания:


И вот каркас собран… Не очень ровный, особенно по углам, но думаю, что покраска скроет все неровности:


Размеры каркаса под спойлером:

Измерение размеров





К сожалению времени мало свободного, потому слесарные работы продвигаются медленно. Вечерами за неделю изготовил лицевую панель из листа алюминия и панельку под вход питания и предохранитель.






Расчерчиваем будущие отверстия под Вольтметр и Амперметр. Посадочное гнездо должно быть размерами 45.5мм на 26.5мм
Обклеиваем посадочные отверстия малярным скотчем:


И отрезным диском, при помощи дремеля делаем пропилы (скотч нужен, что бы не выйти за размеры гнезд, и не испортить панель царапинами) Дремель быстро справляется с алюминием, но на 1 отверстие уходит 3-4

Опять была заминка, банально, кончились отрезные диски для дремеля, поиск по всем магазинам Алматы ни к чему не привел, потому пришлось ждать диски из Китая… Благо пришли быстро за 15 дней. Дальше работа пошла более весело и быстро…
Пропилил дремелем отверстия под цифровые индикаторы, и обработал напильником.


Ставим на «уголки» зеленый трансформатор


Примеряем радиатор с силовым транзистором. Он будет изолирован от корпуса, так как на радиаторе установлен транзистор в корпусе ТО-3, а там сложно изолировать коллектор транзистора от корпуса. Радиатор будет стоять за декоративной решеткой с вентилятором охлаждения.




Обработал наждачкой на бруске лицевую панель. Решил примерить все что будет на ней закреплено. Получается вот так:


Два цифровых измерителя, кнопка включения нагрузки, два многооборотных потенциометра, выходные клеммы и держатель светодиода «Ограничение тока». Вроде ничего не забыл?


С обратной стороны лицевой панели.
Разбираем все и красим черной краской с баллончика каркас блока питания.


На заднюю стенку прикрепляем на болты декоративную решетку (куплено на авторынке, анодированный алюминий для тюнига воздухозабора радиатора 2000 тенге (6.13USD))


Вот так получилось, вид с обратной стороны корпуса блока питания.


Ставим вентилятор для обдува радиатора с силовым транзистором. Я прикрепил его на пластиковые черные хомуты, держит хорошо, внешний вид не страдает, их почти не видно.


Возвращаем на место пластиковое основание каркаса с уже установленным силовым трансформатором.


Размечаем места крепления радиатора. Радиатор изолирован от корпуса прибора, т.к. на нем напряжение равное напряжению на коллекторе силового транзистора. Думаю, что он хорошо будет обдуваться вентилятором, что позволит значительно снизить температуру радиатора. Вентилятор будет управляться схемой снимающей информацию с датчика (терморезистора) закрепленного на радиаторе. Таким образом вентилятор не будет «молотить» в пустую, а будет включатся при достижении определенной температуры на радиаторе силового транзистора.


Прикрепляем на место лицевую панель, поглядеть что получилось.


Декоративной решетки осталось много, потому решил попробовать сделать П-образную крышку корпуса блока питания (на манер компьютерных корпусов), если не понравится, переделаю на что-нибудь другое.


Вид спереди. Пока решетка «наживлена» и еще не плотно прилегает к каркасу.


Вроде неплохо получается. Решетка достаточно прочная, можно смело ставить сверху что-либо, ну а про качество вентиляции внутри корпуса, даже не стоит говорить, вентиляция будет просто отличная, по сравнению с закрытыми корпусами.

Ну чтож, продолжаем сборку. Подключаем цифровой амперметр. Важно: не наступайте на мои грабли, не используйте штатный разъем, только пайка непосредственно к контактам разъема. Иначе будет в место тока в Амперах, показывать погоду на Марсе.


Провода для подключения амперметра, да и всех остальных вспомогательных устройств должны быть максимально короткими.
Между выходными клеммами (плюс-минус) установил панельку из фольгированного текстолита. Очень удобно прочертив изолирующие бороздки в медной фольге, создавать площадки для подключения всех вспомогательных устройств (амперметр, вольтметр, плата отключения нагрузки и т.п.)

Основная плата установлена рядом с радиатором выходного транзистора.



Плата переключения обмоток установлена над трансформатором, что позволило значительно сократить длину шлейфа проводов.

Наступил черед собрать модуль дополнительного питания для модуля переключения обмоток, амперметра, вольтметра и т.п.
Поскольку у нас линейный - аналоговый БП, будем использовать так же вариант на трансформаторе, никаких импульсных блоков питания. :-)
Вытравливаем плату:


Впаиваем детали:


Тестируем, ставим латунные «ножки» и встраиваем модуль в корпус:



Ну вот, все блоки встроены (кроме модуля управления вентилятором, который будет изготовлен позже) и установлены на свои места. Провода подключены, предохранителя вставлены. Можно проводить первое включение. Осеняем себя крестом, закрываем глаза и даем питание…
Бабаха и белого дыма нет - уже хорошо… Вроде на холостом ходу ничего не греется… Нажимаем кнопку включения нагрузки - зажигается зеленый светодиод и щелкает реле. Вроде все пока нормально. Можно приступать к тестированию.

Как говорится, «скоро сказка сказывается, да не скоро дело делается». Опять выплыли подводные камни. Модуль переключения обмоток трансформатора работает некорректно с силовым модулем. При напряжении переключения с первой обмотки на следующую происходит скачек напряжения, т.е при достижении 6.4В происходит скачек до 10.2В. Потом конечно можно уменьшить напряжение, но это не дело. Сначала я думал, что проблема в питании микросхем, поскольку их питание тоже от обмоток силового трансформатора, и соответственно растет с каждой последующей подключенной обмоткой. Потому попробовал дать питание на микросхемы с отдельного источника питания. Но это не помогло.
Потому есть 2 варианта: 1. Полностью переделать схему. 2. Отказаться от модуля автоматического переключения обмоток. Начну с 2 варианта. Полностью без переключения обмоток я остаться не могу, потому как вариант мириться с печкой мне не нравится, потому поставлю тумблер- переключатель позволяющий выбирать подаваемое напряжение на вход БП из 2-х вариантов 12В или 24В. Это конечно «полумера», но лучше чем вообще ничего.
Заодно решил поменять амперметр на другой подобный, но с зеленым цветом свечения цифр, поскольку красные цифры амперметра светятся довольно слабо и при солнечном свете их плохо видно. Вот что получилось:


Вроде так получше. Возможно, так же, что я заменю вольтметр на другой, т.к. 5 разрядов в вольтметре явно избыточно, 2 разряда после запятой вполне достаточно. Варианты замены у меня есть, так что проблем не будет.

Ставим переключатель и подключаем к нему провода. Проверяем.
При положении переключателя «вниз» - максимальное напряжение без нагрузки составило около 16В

При положении переключателя вверх - доступно максимальное напряжение для данного трансформатора 34В (без нагрузки)

Теперь ручки, долго не стал придумывать варианты и нашел пластмассовые дюбели подходящего диаметра, как внутреннего, так и внешнего.


Отрезаем трубочку нужной длины и надеваем на штоки переменных резисторов:


Затем надеваем ручки и фиксируем винтами. Поскольку трубка дюбеля достаточно мягкая, ручка фиксируется очень хорошо, что бы сорвать её необходимы значительные усилия.

Обзор получился очень большим. Потому не буду отнимать Ваше время и вкратце протестируем Лабораторный блок питания.
Помехи осциллографом мы уже смотрели в первом обзоре, и с тех пор ничего не изменилось в схемотехнике.
Потому проверим минимальное напряжение, ручка регулировки в крайнем левом положении:

Теперь максимальный ток

Ограничение тока в 1А

Максимальное ограничение тока, ручка регулировки тока в крайне правом положении:

На этом Всё мои дорогие радиогубители и сочувствующие… Спасибо всем, кто дочитал до конца. Прибор получился брутальный, тяжелый и я надеюсь надежный. До новых встреч в эфире!

UPD: Осциллограммы на выходе блока питания при включении напряжения:


И выключения напряжения:

UPD2: Друзья с форума «Паяльник» дали идею, как с минимальными переделками схемы запустить модуль переключения обмоток. Спасибо всем за проявленный интерес, буду доделывать прибор. Поэтому - продолжение следует. Добавить в избранное Понравилось +72 +134


Как самому изготовить полноценный блок питания с диапазоном регулируемого напряжения 2,5-24 вольта, да очень просто, повторить может каждый не имея за плечами радиолюбительского опыта.

Делать будем из старого компьютерного блока питания, ТХ или АТХ без разницы, благо, за годы PC Эры у каждого дома уже накопилось достаточно количество старого компьютерного железа и БП наверняка тоже там есть, поэтому себестоимость самоделки будет незначительной, а для некоторых мастеров равно нулю рублей.

Мне достался для переделки вот какой АТ блок.


Чем мощнее будете использовать БП тем лучше результат, мой донор всего 250W с 10 амперами на шине +12v, а на деле при нагрузке всего 4 А он уже не справляется, происходит полная просадка выходного напряжения.

Смотрите что написано на корпусе.


Поэтому смотрите сами, какой ток вы планируете получать с вашего регулируемого БП, такой потенциал донора и закладывайте сразу.

Вариантов доработки стандартного компьютерного БП множество, но все они основаны на изменении в обвязке микросхемы IC - TL494CN (её аналоги DBL494, КА7500, IR3М02, А494, МВ3759, М1114ЕУ, МPC494C и т.д.).


Рис №0 Распиновка микросхемы TL494CN и аналогов.

Посмотрим несколько вариантов исполнения схем компьютерных БП, возможно одна из них окажется ваша и разбираться с обвязкой станет намного проще.

Схема №1.

Приступим к работе.
Для начала необходимо разобрать корпус БП, выкручиваем четыре болта, снимаем крышку и смотрим внутрь.


Ищем на плате микросхему из списка выше, если таковой не окажется, тогда можно поискать вариант доработки в интернете под вашу IС.

В моем случае на плате была обнаружена микросхема KA7500, значит можно приступать к изучению обвязки и расположению ненужных нам деталей, которые необходимо удалить.


Для удобства работы, сначала полностью открутим всю плату и вынем из корпуса.


На фото разъём питания 220v.

Отсоединим питание и вентилятор, выпаиваем или выкусываем выходные провода, чтобы не мешали нам разбираться в схеме, оставим только необходимые, один желтый (+12v), черный (общий) и зеленый* (пуск ON) если есть такой.


В моём АТ блоке зеленого провода нет, поэтому он запускается сразу при включении в розетку. Если блок АТХ, то в нем должен быть зеленый провод, его необходимо припаять на "общий", а если пожелаете сделать отдельную кнопку включения на корпусе, то тогда просто поставьте выключатель в разрыв этого провода.


Теперь надо посмотреть на сколько вольт стоят выходные большие конденсаторы, если на них написано меньше 30v , то надо заменить их на аналогичные, только с рабочим напряжение не меньше 30 вольт.


На фото - черные конденсаторы как вариант замены для синего.

Делается это потому, что наш доработанный блок будет выдавать не +12 вольт, а до +24 вольт, и без замены конденсаторы просто взорвутся при первом испытании на 24v, через несколько минут работы. При подборе нового электролита емкость уменьшать не желательно, увеличивать всегда рекомендуется.

Самая ответственная часть работы.
Будем удалять все лишнее в обвязке IC494, и припаивать другие номиналы деталей, чтобы в результате получилась вот такая обвязка (Рис. №1).


Рис. №1 Изменение в обвязке микросхемы IC 494 (схема доработки).

Нам будут нужны только эти ножки микросхемы №1, 2, 3, 4, 15 и 16, на остальные внимание не обращать.


Рис. №2 Вариант доработки на примере схемы №1

Расшифровка обозначений.


Делать надо примерно так , находим ножку №1 (где стоит точка на корпусе) микросхемы и изучаем, что к ней присоединено, все цепи необходимо удалить, отсоединить. В зависимости от того как у вас в конкретной модификации платы будут расположены дорожки и впаяны детали, выбирается оптимальный вариант доработки, это может быть выпаивание и приподнятие одной ножки детали (разрывая цепь) или проще будет перерезать дорожку ножом. Определившись с планом действий, начинаем процесс переделки по схеме доработки.




На фото - замена резисторов на нужный номинал.


На фото - приподнятием ножек ненужных деталей, разрываем цепи.

Некоторые резисторы, которые уже впаяны в схему обвязки могут подойти без их замены, например, нам необходимо поставить резистор на R=2.7k с подключением к "общему", но там уже стоит R=3k подключенный к "общему", это нас вполне устраивает и мы его оставляем там без изменений (пример на Рис. №2, зеленые резисторы не меняются).






На фото - перерезанные дорожки и добавленные новые перемычки, старые номиналы записываем маркером, может понадобится восстановить все обратно.

Таким образом просматриваем и переделываем все цепи на шести ножках микросхемы.

Это был самой сложный пункт в переделке.

Делаем регуляторы напряжения и тока.


Берем переменные резисторы на 22к (регулятор напряжения) и 330Ом (регулятор тока), припаиваем к ним по два 15см провода, другие концы впаиваем на плату согласно схеме (Рис. №1). Устанавливаем на лицевую панель.

Контроль напряжения и тока.
Для контроля нам понадобятся вольтметр (0-30v) и амперметр (0-6А).


Эти приборы можно приобрести в Китайских интернет магазинах по самой выгодной цене, мой вольтметр мне обошелся с доставкой всего 60 рублей. (Вольтметр: )


Амперметр я использовал свой, из старых запасов СССР.

ВАЖНО - внутри прибора есть резистор Тока (датчик Тока), необходимый нам по схеме (Рис. №1), поэтому, если будете использовать амперметр, то резистор Тока ставить дополнительно не надо, без амперметра ставить надо. Обычно RТока делается самодельный, на 2-х ватное сопротивление МЛТ наматывается провод D=0,5-0,6 мм, виток к витку на всю длину, концы припаяем к выводам сопротивления, вот и все.

Корпус прибора каждый сделает под себя.
Можно оставить полностью металлический, прорезав отверстия под регуляторы и приборы контроля. Я использовал обрезки ламината, их легче сверлить и выпиливать.

Эта статья предназначена для людей, которые быстро могут отличить транзистор от диода, знают для чего нужен паяльник и за какую сторону его держать, ну и наконец дошли до понимания, что без лабораторного блока питания их жизнь больше не имеет смысла…

Данную схему нам прислал человек под ником: Loogin.

Все изображения уменьшены в размере, для просмотра в полном размере кликните левой клавишей мышки на изображение

Здесь я постараюсь максимально подробно - шаг за шагом рассказать как это сделать с минимальными затратами. Наверняка у каждого после апгрейдов домашнего железа валяется под ногами как минимум один БП. Конечно кое-что придётся докупить, но эти жертвы будут небольшими и скорее всего оправданы конечным результатом – это, как правило около 22В и 14А потолочных. Лично я вложился в $10. Конечно, если собирать всё с «нулевой» позиции, то надо быть готовым выложить ещё около $10-15 для покупки самого БП, проводов, потенциометров, ручек и прочей рассыпухи. Но, обычно – такого хлама у всех навалом. Есть ещё нюанс – немного придётся потрудиться руками, поэтому они должны быть «без смещения» J и нечто подобное может и у Вас получиться:

Для начала нужно любыми способами раздобыть ненужный но исправный БП АТХ мощностью >250W. Одна из наиболее популярных схем – это Power Master FA-5-2:


Подробную последовательность действий я опишу именно для этой схемы, но все они справедливы и для других вариантов.
Итак, на первом этапе нужно подготовить БП-донор:

  1. Удаляем диод D29 (можно просто одну ногу поднять)
  2. Удаляем перемычку J13, находим в схеме и на плате (можно кусачками)
  3. Перемычка PS ON на землю должна стоять.
  4. Включаем ПБ только на короткое время, так как напряжение на входах будет максимальное (примерно 20-24В) Собственно это и хотим увидеть...

Не забываем про выходные электролиты, рассчитанные на 16В. Возможно они немного нагреются. Учитывая, что они скорее всего «набухшие», их все равно придется отправить в болото, не жалко. Провода уберите, они мешают, а использоваться будут только GND и +12В их потом назад припаяете.


5. Удаляем 3.3х вольтовую часть: R32, Q5, R35, R34, IC2, C22, C21:


6. Удаляем 5В: сборку шоттки HS2, C17, C18, R28, можно и "типа дроссель" L5
7. Удаляем -12В -5В: D13-D16, D17, C20, R30, C19, R29


8. Меняем плохие: заменить С11, С12 (желательно на большую ёмкость С11 - 1000uF, C12 - 470uF)
9. Меняем несоответствующие компоненты: С16 (желательно на 3300uF х 35V как у меня, ну хотя бы 2200uF x 35V обязательно!) и резистор R27 советую его заменить на более мощный, например 2Вт и сопротивление взять 360-560 Ом.


Смотрим на мою плату и повторяем:

10. Убираем всё с ног TL494 1,2,3 для этого удаляем резисторы: R49-51 (освобождаем 1ю ногу), R52-54 (... 2ю ногу), С26, J11 (...3ю ногу)
11. Не знаю почему, но R38 у меня был перерублен кем то J рекомендую Вам его тоже перерубить. Он участвует в обратной связи по напряжению и стоит параллельно R37-му. Собственно R37 тоже можно перерубить.


12. отделяем 15ю и 16ю ноги микросхемы от "всех остальных": для этого делаем 3 прореза существующих дорожек а к 14й ноге восстанавливаем связь чёрной перемычкой, как показано на моем фото.


13. Теперь подпаиваем шлейф для платы регулятора в точки согласно схемы, я использовал отверстия от выпаянных резисторов, но к 14й и 15й пришлось содрать лак и просверлить отверстия, на фото вверху.
14. Жила шлайфа №7 (питание регулятора) можно взять от питания +17В ТЛ-ки, в районе перемычки, точнее от неё J10. Просверлить отверстие в дорожку, расчистить лак и туда! Сверлить лучше со стороны печати.


Это всё было, как говорится: «минимальная доработка», чтобы сэкономить время. Если время не критично, то можно просто привести схему в следующее состояние:


Ещё я посоветовал бы поменять кондёры высоковольтные на входе (С1, С2) Они маленькой ёмкости и наверняка уже изрядно подсохли. Туда нормально станут 680uF x 200V. Плюс неплохо дроссель групповой стабилизации L3 немного переделать, либо использовать 5ти вольтные обмотки, соединив их последовательно, либо вообще убрать всё и намотать около 30ти витков новым эмальпроводом общим сечением 3-4мм 2 .

Для питания вентилятора нужно «подготовить» ему 12В. Я выкрутился таким образом: Там где раньше стоял полевой транзистор для формирования 3,3В можно «поселить» 12ти вольтную КРЕН-ку (КРЕН8Б или 7812 импортный аналог). Конечно там без резки дорожек и добавки проводов не обойтись. В конечном итоге получилось в общем даже и «ничего»:


На фото видно, как всё гармонично ужилось в новом качестве, даже разъём вентилятора недурно уместился и перемотанный дроссель получился весьма неплох.

Теперь регулятор. Чтобы упростить задачу с разными там шунтами, поступаем так: покупаем готовые амперметр и вольтметр в Китае, либо на местном рынке (наверняка там их можно найти у перекупщиков). Можно купить совмещённый. Но, надо не забывать, что потолок по току у них 10A! Поэтому в схеме регулятора придется ограничивать предельный ток на этой отметке. Здесь я опишу вариант для отдельных приборов без регулировки тока с ограничением по максимуму 10A. Схема регулятора:


Чтобы сделать регулировку ограничения тока, надо вместо R7 и R8 поставить переменный резистор 10кОм, также как R9. Тогда можно будет использовать всемерялку. Также стоит обратить внимание на R5. В данном случае его сопротивление 5,6кОм, потому что у нашего амперметра шунт 50mΩ. Для других вариантов R5=280/R шунта. Поскольку мы взяли вольтметр один из самых дешевых, поэтому его немного надо доработать, чтобы он мог измерять напряжения от 0В, а не от 4,5В как это сделал производитель. Вся переделка заключается в разделении цепей питания и измерения посредствам удаления диода D1. Туда впаиваем провод – это и есть +V питания. Измеряемая часть осталась без изменений.


Плата регулятора с расположением элементов показана ниже. Изображение для лазерно-утюжного метода изготовления идёт отдельным файлом Regulator.bmp с разрешением 300dpi. Также в архиве есть и файлы для редактирования в EAGLE. Последнюю офф. версию можно скачать тут: www.cadsoftusa.com. В интернете имеется много информации о этом редакторе.





Потом прикручиваем готовую плату у потолку корпуса через изолирующие проставки, например нарезанные из отработанной палочки чупа-чупса высотой по 5-6 мм. Ну и не забыть проделать предварительно все необходимые вырезы для измерительных и прочих приборов.



Предварительно собираем и тестируем под нагрузкой:



Как раз и смотрим на соответствие показаний различных китайских девайсов. А ниже уже с «нормальной» нагрузкой. Это автомобильная лампа главного света. Как видно - без малого 75Вт имеется. При этом не забываем засунуть туда осциллограф, и увидеть пульсации около 50мВ. Если будет больше, то вспоминаем про «большие» электролиты по высокой стороне ёмкостью по 220uF и тут же забываем после замены на нормальные ёмкостью 680uF например.


В принципе на этом можно и остановиться, но чтобы придать более приятный вид прибору, ну чтобы он не выглядел самоделкой на 100%, мы делаем следующее: выходим из своей берлоги, поднимаемся на этаж выше и с первой попавшейся двери снимаем бесполезную табличку.

Как видим, до нас тут кто-то уже побывал


В общем по тихому делаем это грязное дело и начинаем работать напильниками разных фасонов и параллельно осваивать AutoCad.



Потом на наждаке затачиваем кусок трёхчетвертной трубы и из достаточно мягкой резины нужной толщины вырубываем и суперклеем лепим ножки.



В итоге получаем достаточно приличный прибор:


Следует отметить несколько моментов. Самое главное – это не забывать, что GND блока питания и выходной цепи не должны быть связаны , поэтому нужно исключить связь между корпусом и GND БП. Для удобства желательно вынести предохранитель, как на моём фото. Ну и постараться максимально восстановить недостающие элементы входного фильтра, их скорее всего нет вообще у исходника.

Вот ещё пара вариантов подобных приборов:


Слева 2х этажный корпус ATX с всемерялкой, а справа сильно переделанный старый AT корпус от компьютера.

Я много смотрю видео по ремонту различной электроники и часто видео начинается с фразы "подключаем плату к ЛБП и...".
В общем ЛБП штука полезная и крутая, вот только стоит как крыло самолета, да и не нужно мне для поделок точности в доли миливольта, достаточно заменить ворох китайских БП сомнительного качества, и иметь возможность не боясь что-либо сжечь определить сколько нужно питания прибору с потеряным БП, подключаем и повышаем напряжение пока не заработает (Роутеры, свичи, ноутбуки), да и так называемый "Поиск неисправности методом ЛБП" тоже удобная штука (это когда на плате есть КЗ но какой из тысячи SMD элементов пробило хрен поймешь, к входам цепляется ЛБП с ограничением по току 1А и на ощупь ищется горячий элемент - нагрев = пробой).

Но из за жабы я не мог себе позволить такую роскошь, но ползая по Pikabu набрел на интересный пост в котором написано как из говна и палок китайских модулей соброать БП своей мечты.
Поковырявшись еще на эту тему я нашел еще кучу видео о том как такое чудо собирать Раз Два .
Собрать такую поделку может любой, да и по стоимости не так уж и дорого по сравнению с готовыми решениями.
Кстати есть целый альбом где народ хвастается своими поделками.
Назаказывал всего и начал ждать.

Основой послужил импульсный БП 24V 6A (такойже как и в паяльной станции, но о ней в следующий раз)

Регулировка напряжения и тока пойдет через вот такой вот преобразователь - ограничитель.

Ну и индикатор до 100 вольт.

В принципе этого достаточно чтобы схема работала, но я решил сделать полноценный прибоор и докупил еще:

Раземы питания под кабель "восьмерку"

Разьмемы под "Бананы" на лицевую панель и 10K многооборотные резисторы для плавной регулировки.
А также нашел в ближайшем строймаге сверла, болтики, гаечки, термоклей и выдрал из старого системника CD привод.

Для начала собрал все на столе и протестировал, схема не сложная, брал ее




Я в курсе что это скриншоты с ютуба, но жутко лень скачивать видео и вырезать оттуда кадры, суть от этого не поменяется, а найти исходники картинок сейчас не смог.

Распиновка моего индикатора нашлась в гугле.


Собрал и подключил лампочку для нагрузки, работает, нужно собирать в корпус, в качестве корпуса у меня выступает старый CD привод (наверное еще и рабочий, но думаю этому стандарту пора на покой) привод старый, потому метал толстый и прочный, лицевые панели из заглушек из системника.

Прикинул в корпусе что и куда ляжет, и пошла сборка.

Разметил места под компоненты, просверлили отверстия, покрасил коркус из балона и вставил болты.

Под все элементы приклеил пластик от упаковки наушников чтобы избежать возможное КЗ на корпус, а под DC-DC преобразователи для питания USB и охлаждения еще положил термопрокладку (зделав вырез в пластике под нее, предварительно срезав все высупающие ножки, саму термопрокладку взял из привода, она охлаждала драйвер двигателя).

Изнутри накрутил по одной гайке и сверху вырезал шайбочку из пластикового контейнера, чтобы поднять палты над корпусом.

Все провода припаивал так как зажимам веры нет, могут послабится и начать грется.













Для продува самых горячих элементов (Регулятор напряжения) установил в боковую стенку 2 40мм 12В вентилятора, поскольку БП греется не все время а только под нагрузкой, постоянно слушать вой не самых тихиз вентиляторов не очень хочется (да, брал самые дешевые вентеляторы, и шумят они сильно) для управления охлаждением заказал вот такой модуль контроля температуры, штука простая и супер полезная, можно как охлаждать так и нагревать, настраивается просто Вот инструкция .

Выставил примерно 40 градусов, как самую горячую точку взял радиатор преобразователя.

Дабы не гонять лишний воздух выставил на преобразователе питания охлаждения порядка 8 вольт.
В итоге получилось нечто такое, внутри места навалом, можно и какой-нибуть нагрузочный резистор добавить.

Уже под финальный вид заказал крутилки, пришлось срезать 5мм вала резистора и подложить по 2 пластиковые шайбы с внутренней стороны чтобы ручки стали вплотную к корпусу.



И того имеем вполне годный БП, с дополнительным выходом на USB который может дать 3А для зарядки планшета.

Вот так БП выглядит уже на резиновых ножках (3M Bumpon Самоклейка) в паре с паяльной станцией.



Я доволен результатом, получился вполне мощный БП с плавной регулировкой и в то же время легкий и портативный, я порой работаю на выезде и таскать за собой фабричный ЛБП с тороидальным трансформатором вообще не кайф, а тут вполне легко помещается в рюкзак.

О том как я делал паяльную станцию раскажу в следующий раз.



Поделиться