Назначение, устройство, принцип работы кривошипно-шатунного механизма. Кривошипно-шатунный механизм (КШМ) двигателя Для чего нужен кривошипно шатунный механизм

Кривошипно-шатунный механизм (далее сокращенно – КШМ ) – механизм двигателя. Основным назначением КШМ является преобразование возвратно-поступательных движений поршня цилиндрической формы во вращательные движения коленчатого вала в и наоборот.

Устройство КШМ

Поршень

Поршень имеет вид цилиндра, изготовленного из сплавов алюминия. Основная функция этой детали заключается в превращении в механическую работу изменение давления газа, или наоборот, – нагнетание давления за счет возвратно-поступательного движения.

Поршень представляет собой сложенные воедино днище, головку и юбку, которые выполняют совершенно разные функции. Днище поршня плоской, вогнутой или выпуклой формы содержит в себе камеру сгорания. Головка имеет нарезанные канавки, где размещаются поршневые кольца (компрессионные и маслосъемные). Компрессионные кольца исключают прорыв газов в картер двигателя, а поршневые маслосъемные кольца способствуют удалению излишков масла на внутренних стенках цилиндра. В юбке расположены две бобышки , обеспечивающие размещение соединяющего поршень с шатуном поршневого пальца.

Шатун

Изготовленный штамповкой или кованый стальной (реже – титановый) шатун имеет шарнирные соединения. Основная роль шатуна состоит в передаче поршневого усилия к коленчатому валу. Конструкция шатуна предполагает наличие верхней и нижней головки, а также стержня с двутавровым сечением. В верхней головке и бобышках находится вращающийся («плавающий») поршневой палец, а нижняя головка – разборная, позволяющая, тем самым, обеспечить тесное соединение с шейкой вала. Современная технология контролируемого раскалывания нижней головки позволяет обеспечить высокую точность соединения ее частей.

Коленчатый вал

Изготовленный из стали или чугуна высокой прочности коленчатый вал состоит из шатунных и коренных шеек, соединенных щеками и вращающихся в подшипниках скольжения. Щеки создают противовес шатунным шейкам. Основная функция коленчатого вала состоит в восприятии усилия от шатуна для преобразования его в крутящий момент. Внутри щек и шеек вала предусмотрены отверстия для подачи под давлением масла .

Маховик

Маховик устанавливается на конце коленчатого вала. На сегодняшний день находят широкое применение двухмассовые маховики, имеющие вид двух, упруго соединенных между собой, дисков. Зубчатый венец маховика принимает непосредственное участие в запуске двигателя через .

Блок и головка блока цилиндров

Блок цилиндров и головка блока цилиндров отливаются из чугуна (реже – сплавов алюминия). В блоке цилиндров предусмотрены , постели для подшипников коленчатого и распределительного валов, а также точки крепления приборов и узлов. Сам цилиндр выполняет функцию направляющей для поршней. Головка блока цилиндра располагает в себе камеру сгорания, впускные-выпускные каналы, специальные резьбовые отверстия для свечей , втулки и запрессованные седла. Герметичность соединения блока цилиндров с головкой обеспечены прокладкой. Кроме того, головка цилиндра закрыта штампованной крышкой, а между ними, как правило, устанавливается прокладка из маслостойкой резины.

В целом, поршень, гильза цилиндров и шатун формируют цилиндр или цилиндропоршневую группу кривошипно-шатунного механизма . Современные двигатели могут иметь до 16 и более цилиндров.

Поршень (рис. 4) воспринимает давление газов и передает его через поршневой палец и шатун на коленчатый вал. В двухтактных двигателях наряду с этим поршень выполняет роль золотника механизма газораспределения.

Поршни работают в весьма тяжелых условиях: они испытывают воздействие горячих газов и воспринимают большие динамические нагрузки. Например, в начале рабочего хода на днище поршня диаметром 100 мм действует сила 20…40 кН у карбюраторного двигателя и 6…100 кН – у дизельного. Поршень движется в цилиндре с высокой (до 2 м/с) переменной скоростью, вследствие чего в шатунно-поршневых комплектах возникают значительные (до 15…20 кН) знакопеременные силы инерции (с частотой изменения знака до 200 Гц).

Рисунок. 4. Поршень двигателя ЗИЛ-130: а – общий вид; б – поршневые кольца; в – размещение колец в поршне: 1– ребро поршня; 2 – канавки для поршневых колец; 3 – бобышки; 4 – днище поршня; 5 – головка поршня; 6 – юбка поршня; 7 – компрессионные кольца; 8 – нижнее коническое компрессионное кольцо; 9, 10, 11, 12 – маслосъемные кольца с расширителями; 13 – чугунная всатвка

Применение поршней из алюминиевых сплавов дает возможность снизить конструкционную массу и, следовательно, силы инерции на 20…30% по сравнению с чугунными. Наряду с этим поршни из алюминиевого сплава имеют и недостатки: меньшую механическую прочность, повышенный износ, больший коэффициент линейного расширения (в 2…2,5 раза).

Поскольку поршень непосредственно охлаждаться не может, он нагревается значительно сильнее, чем охлаждаемая гильза. Чтобы предотвратить заклинивание поршня в гильзе, необходимо иметь между ними определенный зазор, когда они находятся в холодном состоянии. Этот зазор уменьшается при прогреве двигателя.

В настоящее время с целью уменьшения коэффициента линейного расширения и повышения прочности применяют поршни, изготовленные из высококремнистого алюминиевого сплава (содержание кремния до 22%, как например, у семейства двигателей ЯМЗ).

Для предотвращения заклинивания поршня его устанавливают в цилиндр с зазором. Поскольку днище и головка поршня нагреваются интенсивнее, чем юбка, зазор между цилиндром и головкой делают большим.

Конструкция и размеры поршня определяются главным образом величиной и скоростью нарастания давления газов и быстроходностью двигателя. Поршни дизелей имеют более массивную и жесткую конструкцию, большее число поршневых колец.

На долговечность поршня и бесшумность его работы большое влияние оказывает размещение оси поршневого пальца. С целью обеспечения одинаковых условий работы поршня при различных направлениях его движения ось поршневого пальца несколько смещают вниз и располагают на высоте 0,64…0,68 рабочей высоты юбки. Чтобы избежать стуков при переходе через мертвые точки, ось поршневого пальца смещают на 1,4…1,6 мм от оси поршня в сторону действия боковой силы при рабочем ходе (противоположную направлению вращения).

Поршневой палец служит для шарнирного соединения поршня с шатуном. Для уменьшения массы и снижения сил инерции его делают пустотелым. Поршневой палец работает под воздействием ударных нагрузок, переменных по величине и направлению, подвергается изгибу и истиранию. Чтобы противостоять этим нагрузкам, поршневой палец должен иметь мягкую сердцевину и, твердую поверхность. Этим требованиям удовлетворяют поршневые пальцы, изготовленные из углеродистой или малолегированной стали. Их подвергают термической обработке – цементации на глубину 0,5…1,0 мм, с последующей поверхностной закалкой токами высокой частоты на глубину 1,0…1,5 мм. Наружную поверхность пальца шлифуют и полируют.

Подавляющее распространение на современных двигателях получили плавающие поршневые пальцы, которые могут проворачиваться как в верхней головке шатуна, так и в бобышках поршня. Такая конструкция обеспечивает более равномерный износ сопряжения. Осевая фиксация поршневого пальца осуществляется стопорными пружинными кольцами, устанавливаемыми в бобышках поршня.

Поршневые компрессионные кольца служат для герметизации надпоршневого пространства и предотвращают прорыв газов в картер двигателя. Поршневое кольцо представляет собой криволинейный брус, имеющий в свободном состоянии вырез. При установке в цилиндр кольцо сжимается и благодаря своей упругости прижимается наружной поверхностью к зеркалу цилиндра. Уплотняющее действие поршневых колец тем лучше, чем больше их число. В карбюраторных двигателях устанавливают на поршне 2 - 3 компрессионных кольца, в дизельных – 3 - 4.

Поршневые кольца современных быстроходных двигателей работают в чрезвычайно тяжелых условиях, под воздействием высоких давлений и температур, сил инерции и трения. В наиболее тяжелых условиях работает верхнее компрессионное кольцо.

Самым распространенным материалом для изготовления поршневых компрессионных колец является легированный чугун. Чугунные поршневые кольца получают из индивидуально отлитых заготовок. Однако качество литых чугунных колец не полностью удовлетворяет современным требованиям.

В настоящее время часто применяют стальные кольца. Более перспективными являются кольца из металлокерамических материалов, обладающие большей износостойкостью. Такие кольца получают прессованием порошкообразной смеси железа, меди и графита под большим давлением и при высокой температуре.

В процессе работы двигателя компрессионные кольца попеременно прижимаются к верхней и нижней кромкам канавок поршня и действуют как насос, стремясь перекачивать масло со стенок цилиндра в камеру сгорания. Поэтому на поршнях устанавливают, кроме компрессионных, маслосъемные кольца . Они снимают масло со стенок цилиндра, направляя его обратно в картер двигателя. Длительное время маслосъемные кольца изготовлялись из чугуна. В настоящее время широкое распространение получили стальные составные маслосъемные кольца. Обладая гибкостью, относительной подвижностью элементов и высоким давлением на стенки цилиндра, стальное кольцо хорошо приспосабливается к поверхности цилиндра, имеющего искаженную форму (вследствие износа) и обеспечивает хорошее распределение масла по поверхности цилиндра как в новом, так и в изношенном двигателе. Переход с чугунных маслосъемных колец на стальные позволил уменьшить расход смазочного масла в 2 раза, а пробег двигателя до замены колец увеличить до 150000 км.

Шатун обеспечивает шарнирную связь прямолинейно движущегося поршня с вращающимся коленчатым валом. Он передает от поршня коленчатому валу силу давления газов при рабочем ходе. Шатун совершает сложное плоскопараллельное движение: возвратно-поступательное вдоль оси цилиндра и качательное относительно оси поршневого пальца. Шатун испытывает значительные знакопеременные нагрузки, действующие по его продольной оси. Во время рабочего хода сила давления газов сжимает шатун. Силы инерции стремятся оторвать поршень от коленчатого вала и растягивают шатун. Наряду с этим качательное движение вызывает знакопеременные силы инерции, изгибающие шатун в плоскости его качания.

Указанные условия работы предъявляют к конструкции шатуна следующие требования: высокая жесткость; достаточная усталостная прочность; небольшая масса; простота и технологичность. Габаритные размеры нижней головки шатуна не должны препятствовать его проходу через цилиндр при сборке двигателя.

Основными элементами шатуна являются верхняя (неразъемная) и нижняя (разъемная) головки и соединяющий их стержень. Наилучшей формой поперечного сечения стержня шатуна, обеспечивающей ему высокую жесткость при минимальной массе, является двутавр.

В верхнюю головку шатуна устанавливаются бронзовые втулки, обладающие высокой износостойкостью и сопротивляемостью усталостным разрушениям.

В нижнюю головку шатуна устанавливаются тонкостенные шатунные вкладыши, которые выполняются подобно вкладышам коренных подшипников, с тем же материалом антифрикционного слоя.

Шатуны для карбюраторных двигателей изготовляют из углеродистой или легированной стали. В дизельных двигателях шатуны работают при больших динамических нагрузках, поэтому для их изготовления требуются высоколегированная сталь и увеличенные сечения элементов (утяжеление конструкции).

Коленчатый вал (рис. 5) воспринимает усилия от шатунов и преобразует их в крутящийся момент. Коленчатый вал является наиболее напряженной деталью КШМ. Он подвергается растяжению, сжатию, изгибу, скручиванию, срезу, поверхностному трению, продольным и поперечным деформациям. При этом нагрузки носят динамический характер и достигают значительных величин.

При большой длине вала эти нагрузки могут вызвать заметные продольные и угловые деформации и привести к усталостным разрушениям.

Исходя из условий работы, характера и величены нагрузок, коленчатый вал должен удовлетворять следующим требованиям: обладать статической и динамической уравновешенностью; быть достаточно жестким и долговечным при небольшой массе; иметь высокую усталостную прочность; быть устойчивым против вибрации и крутильных колебаний; иметь точные размеры и высокую износостойкость трущихся поверхностей (коренных и шатунных шеек).

Коленчатые валы изготовляют ковкой или штамповкой из углеродистой или низколегированной стали. В последние годы получают распространение литые валы из магниевого чугуна. Они имеют меньшую массу и дешевле, чем кованые.

Валы подвергают термической обработке – закалке и отпуску. Шейки коленчатого вала закаливают токами высокой частоты на глубину 3…4 мм, шлифуют и полируют.

Рисунок 5. Подвижные детали кривошипно-шатунного механизма: 1 – храповик; 2 – фиксаторные шайбы; 3, 13 – шатунные шейки; 4 – вкладыши шатунных шеек; 5 – пружинное кольцо; 6 – поршневой палец; 7 – верхняя головка шатуна; 8 – стержень шатуна; 9 – болты; 10 – нижняя головка шатуна; 11 – крышка шатуна; 12, 19, 24, 29 – коренные шейки коленчатого вала;

14, 26 – вкладыши коренных шеек; 15, 16 – поршни; 17, 28 – противовесы; 18 – маховик; 20 – задняя часть вала; 21 – стопорное кольцо; 22, 27, 30 – крышки; 23 – масляная полость; 31 – шестерня привода ГРМ; 32 – передняя часть вала; 33 – шкив ременной передачи

Коленчатый вал имеет коренные и шатунные шейки, соединенные друг с другом при помощи щек. Коренные шейки выполняются одинаковыми по диаметру. Шатунная шейка со смежными щеками составляет колено, кривошип вала. Все шатунные шейки по длине и диаметру одинаковы.

В автотракторных двигателях коленчатые валы могут вращаться в подшипниках качения и скольжения. Подшипники качения обеспечивают уменьшение потерь на трение, что обеспечивает значительное облегчение запуска двигателя в холодное время. Однако в многоцилиндровых двигателях конструкция блока цилиндров и коленчатого вала с подшипниками качения значительно усложняется. Имеются и другие недостатки. Поэтому чаще всего используются подшипники скольжения. Коренные подшипники скольжения выполняют в виде тонкостенных стальных вкладышей (полуколец), которые устанавливают в расточках блока цилиндров. На внутреннюю поверхность вкладыша наносится слой из антифрикционного сплава, состав и свойства которого зависят от степени нагруженности.

В карбюраторных двигателях длительное время использовались свинцовооловянистые сплавы (баббиты). Широкое распространение получил сплав СОС–6–6 на свинцовой основе, содержащей 6% олова, 6% сурьмы, 0,5% меди. Однако свинцовооловянистые сплавы чувствительны к повышению температуры и, имеют недостаточную сопротивляемость уста-лостным выкрашиваниям.

В связи с этим в настоящее время получили широкое применение сталеалюминиевые вкладыши, обладающие высокой усталостной прочностью и хорошими противокоррозийными качествами. Сталеалюминиевые вкладыши широко применяются на современных V-образных карбюраторных двигателях и обеспечивают им достаточно высокий межремонтный срок службы.

В дизельных двигателях, имеющих повышенную нагрузку на подшипники, применяются стальные вкладыши с антифрикционным сплавом из свинцовистой бронзы, содержащей 30% свинца, улучшающего противозадирные свойства. Подшипники из свинцовистой бронзы выдерживают без усталостных разрушений почти вдвое большую нагрузку, чем баббиты и стабильно работают при нагреве до 140…150°С, в то время как для баббитов предельно допустимой является температура 120°С.

Вместе с тем антифрикционный сплав из свинцовистой бронзы плохо поглащает твердые абразивные частицы, недостаточно хорошо прирабатывается, имеет склонность к коррозии. Поэтому в двигателях с подшипниками из свинцовистой бронзы можно применять только специальное масло с противокоррозийной присадкой.

Маховик устанавливают на задний конец коленчатого вала для уменьшения неравномерности работы двигателя и выведения поршней из мертвых точек.

В многоцилиндровых двигателях рабочие ходы протекают с частичным перекрытием, что обеспечивает хорошую равномерность и позволяет кривошипному механизму проходить мертвые точки без помощи маховика. В этих случаях маховик обеспечивает плавную работу двигателя на малой частоте вращения, облегчает трогание машины и способствует пуску двигателя.

Маховик отливают из серого чугуна и крепят к фланцу коленчатого вала. На обод маховика напрессовывают стальной зубчатый венец, служащий для пуска двигателя от стартера.

На торцевой поверхности маховика наносят метки, соответствующие ВМТ и моменту зажигания. Этими метками пользуются при установке зажигания или впрыска, а также при проведении различных регулировок. В сборе с коленчатым валом маховик должен быть динамически сбалансирован.

При работе двигателя на детали КШМ действуют давление газов на поршень, силы инерции масс, движущихся возвратно-поступательно (поршень и часть массы шатуна) и вращающихся (колено вала и часть массы шатуна), силы веса. По мере вращения вала эти силы, за исключением силы веса, меняют величину и направление.

К кривошипно-шатунному механизму предъявляются следующие требования: высокие прочность, жесткость, износостойкость, небольшая масса, плотная посадка поршня в цилиндре, уравновешенность вращающихся деталей.

Все детали КШМ делятся на две группы: неподвижные и подвижные. К неподвижным деталям относятся корпус (картер и цилиндры), головка блока цилиндров и поддон картера. Подвижными частями являются поршни с кольцами и поршневыми пальцами, шатуны, коленчатый вал и маховик.

Неподвижные детали КШМ

Корпус КШМ

Корпус КШМ объединяет в себе картер и цилиндры (цилиндр). Он является базовой частью (остовом) двигателя. На нем устанавливаются все механизмы и системы двигателя, и посредством него двигатель устанавливается на автомобиле.

Корпус двигателя может иметь три исполнения:

  • картер, к которому крепятся отдельные цилиндры;
  • картер, к которому крепятся цилиндры, объединенные в один блок цилиндров;
  • блок-картер, в котором все элементы отлиты как одно целое.

В настоящее время с отдельными цилиндрами производят только двигатели воздушного охлаждения, так как изготовление блока цилиндров с охлаждающимися ребрами (высотой до 18 мм) представляет значительные технологические трудности.

Применение отдельных блоков цилиндров в современных автомобильных двигателях также ограничено. Они чаще всего используются в мощных дизелях, картеры и цилиндры которых изготовляют из легких сплавов. В большинстве автомобильных двигателей применяются блок-картеры несколько более сложные в изготовлении, но обладающие наиболее высокой жесткостью.

В зависимости от того, какие элементы корпуса двигателя воспринимают основную нагрузку, существуют следующие варианты силовых схем:

  • с несущим блоком цилиндров (рис. 3.1, а);
  • с несущими цилиндрами;
  • с несущими силовыми шпильками (рис. 3.1, б).

^/2 Ъ/Ц

г Р г "/2 УР г "/2"

Р г 6)

Рис. 3.1. Силовые схемы двигателей с жидкостным охлаждением: а - с несущим блоком цилиндров; б - с несущими силовыми шпильками; Р г - сила давления газов

Первый вариант получил наибольшее распространение. Здесь нагрузки от рабочих газов воспринимаются стенками цилиндров, рубашкой охлаждения (полости для прохода охлаждающей жидкости), головкой блока цилиндров, поперечными перегородками картера, которые заканчиваются коренными опорами.

Второй вариант используется в двигателях с отдельными цилиндрами, соединенными с картером и головкой блока цилиндров короткими болтами или шпильками. В этом случае под действием давления рабочего тела стенки цилиндров и рубашки охлаждения, если она имеется, испытывают напряжение разрыва.

В третьем варианте блок цилиндров (или отдельные цилиндры), головка блока цилиндров и крышки коренных подшипников стягиваются длинными силовыми шпильками, ввернутыми в перегородки картера.

Блок-картер отливают из чугуна или алюминиевого сплава. Блок-картер У-образного двигателя показан на рис. 3.2.

Горизонтальная перегородка делит блок-картер на верхнюю и нижнюю части. В верхней части блока и горизонтальной перегородке имеются отверстия под цилиндры или гильзы цилиндров. В вертикальных перегородках картера есть отверстия под подшипники коленчатого вала, которые обрабатывают в сборе с крышками подшипников. Поэтому крышки подшипников не взаимозаменяемы. Для того чтобы повысить жесткость блок-картера, крышки коренных опор у некоторых двигателей дополнительно крепят к картерной части блока поперечными стяжными болтами.

В блок-картере выполнены отверстия для деталей механизма газораспределения, имеются плоскости для крепления фильтров, насосов и других механизмов.

Рис. 3.2. Блок-картер У-образного двигателя: / - корпус; 2 - отверстие под коленчатый вал; 3 - отверстие под распределительный вал; 4 - каналы для подвода охлаждающей жидкости;

5 - гильзы

Блок-картеры могут быть с цилиндрами, выполненными непосредственно в блоке, и со сменными гильзами цилиндров.

Гильзы цилиндров могут быть «мокрыми» или «сухими»: «мокрые» - если их наружные стенки омываются охлаждающей жидкостью, «сухие» - запрессовываются в расточенные отверстия цилиндров и не имеют контактов с охлаждающей жидкостью.

Для увеличения жесткости блок-картера двигателя выполняют следующее:

  • объединяют все основные элементы в единый силовой каркас, имеющий пространственную конфигурацию (рис. 3.3);
  • увеличивают число несущих перегородок, расположенных в одной плоскости с коренными опорами коленчатого вала;
  • делают дополнительное оребрение перегородок и стенок;
  • располагают плоскости разъема картера ниже оси коленчатого вала;
  • используют У-образную компоновку;
  • применяют туннельный картер.

Рис. 3.3. Блок-картер двигателя ЯМЗ-238: а - поперечный разрез; б - продольный разрез

Наиболее жесткую конструкцию имеет блок-картер с неразъемным туннельным картером (рис. 3.4), который обычно применяется при использовании в качестве коренных опор подшипников качения. В этом случае коленчатый вал монтируется с торца двигателя и наружные обоймы подшипников устанавливаются в расточенных гнездах картера. Туннельный блок-картер наиболее сложен в производстве.

Рис. 3.4. Туннельный блок-картер: а - продольный разрез; б - поперечный разрез

Себестоимость блок-картера, выполненного из серого чугуна, ниже блок-картера из алюминиевого сплава. Серый чугун обладает хорошими литейными качествами, прочен и легко обрабатывается. Отливки из серого чугуна не склонны к короблению и образованию трещин.

Если чугунные блоки отливаются в земляные формы, то блоки из алюминиевого сплава изготовляются литьем под давлением в разборные металлические формы. При этом обеспечиваются высокие точность и производительность. Существенным недостатком алюминиевых блоков является их повышенное тепловое расширение, что в процессе работы может вызвать искажение форм.

Вероятность деформации блок-картера при эксплуатации во многом определяется технологией его изготовления.

Искажение формы может произойти при неудачном выборе схемы КШМ двигателя, неравномерном нагреве, а также вследствие механической и особенно термической перегрузки двигателя при работе.

Кроме того, это может произойти при сборке двигателя, если не соблюдать рекомендуемый порядок и моменты затяжки болтов и гаек крепления головки блока цилиндров и крышек коренных подшипников.

Недопустимые деформации элементов блок-картера вплоть до разрушения могут произойти при его заправке холодной охлаждающей жидкостью при разогретом двигателе, а также при замерзании воды в рубашке охлаждения.

Кривошипно-шатунный механизм (КШМ), пожалуй, самая важная система двигателя.
Назначение кривошипно-шатунного механизма – преобразовывать возвратно-поступательное движение во вращательное и обратно.

Все детали кривошипно-шатунного механизма делятся на две группы: подвижные и неподвижные. К подвижным относятся:

  • поршень,
  • коленчатый вал,
  • маховик.

К неподвижным:

  • головка и блок цилиндров,
  • крышка картера.

Устройство кривошипно-шатунного механизма

Поршень похож на перевернутый стакан, в который укладываются кольца. На любом из них присутствуют два вида колец: маслосъемное и компрессионное. Маслосъемных обычно ставят два, а компрессионных – одно. Но бывают и исключения в виде: два таких и два таких — все зависит от типа двигателя.

Шатун изготавливается из двутаврового стального профиля. Состоит из верхней головки, которая соединяется с поршнем при помощи пальца, и нижней – соединение с коленчатым валом.

Коленчатый вал изготавливается в основном из чугуна повышенной прочности. Представляет собой несоосный стержень. Все шейки тщательно шлифуются, с соблюдением необходимых параметров. Существуют коренные шейки — для установки коренных подшипников, и шатунные – для установки через подшипники шатунов.

Роль подшипников скольжения выполняют разрезные полукольца, выполненные в виде двух вкладышей, которые обработаны токами высокой частоты для прочности. Все они покрыты антифрикционным слоем. Коренные крепятся к блоку двигателя, а шатунные — к нижней головке шатуна. Чтобы вкладыши хорошо работали, в них делают канавки для доступа масла. Если вкладыши провернуло – значит, имеется недостаточный подвод масла к ним. Это обычно происходит при засорении масляной системы. Вкладыши ремонту не подлежат.

Продольное перемещение вала ограничивают специальные упорные шайбы. С обоих концов обязательно применение различных сальников для предотвращения выхода масла из системы смазки двигателя.

К передней части коленвала крепится шкив привода системы охлаждения и звездочка, которая приводит в действие распредвал при помощи цепной передачи. На основных моделях выпускаемых сегодня автомобилей ей на замену пришел ремень. К задней части коленчатого вала крепится маховик. Он предусмотрен для устранения дисбаланса вала.

Также на нем стоит зубчатый венец, предназначенный для пуска двигателя. Чтобы при разборке и дальнейшей сборке не возникало проблем – крепеж маховика выполняется по не симметричной системе. От расположения меток его установки зависит и момент зажигания – следовательно, оптимальная работа двигателя. При изготовлении его балансируют вместе с коленчатым валом.

Картер двигателя изготавливается вместе с блоком цилиндров. Он служит основой для крепления ГРМ и КШМ. Имеется поддон, который служит емкостью для масла, а так же для защиты двигателя от деформации. Снизу предусмотрена специальная пробка для слива моторного масла.

Принцип работы КШМ

На поршень оказывают давление газы, которые вырабатываются при сгорании топливной смеси. При этом он совершает возвратно – поступательные движения, заставляя проворачиваться коленчатый вал двигателя. От него вращательное движение передается на трансмиссию, а оттуда – на колеса автомобиля.

А вот на видео показано как работает КШМ в :

Основные признаки неисправности КШМ:

  • стуки в двигателе;
  • потеря мощности;
  • снижение уровня масла в картере;
  • повышенная дымность выхлопных газов.

Кривошипно-шатунный механизм двигателя очень уязвим. Для эффективной работы необходима своевременная замена масла. Лучше всего ее производить на станциях техобслуживания. Даже, если Вы недавно поменяли масло, и приходит пора сезонного ТО – обязательно перейдите на то масло, какое указано в инструкции по эксплуатации машины. Если в работе двигателя возникают какие-то проблемы: шумы, стуки – обращайтесь к специалистам – только в авторизированном центре Вам дадут объективную оценку состояния автомобиля.

ВВЕДЕНИЕ

В данной курсовой работе подробно описано назначение, устройство и принцип действия кривошипно-шатунного механизма. Перечислены различные неисправности и методы их диагностирования. Для более долгой эксплуатации, представлен список работ выполняемых при техническом обслуживании.

Цель данной курсовой работы - изучение кривошипно-шатунного механизма.

Задачи данной курсовой:

1) Изучить назначение, устройство и принцип действия кривошипно-шатунного механизма.

2) Рассмотреть возможные неисправности, повреждения и методы их диагностирования.

3) Изучить какие работы проводятся при техническом обслуживании и ремонте кривошипно-шатунного механизма.

Предмет исследования - кривошипно-шатунный механизм автомобилей ВАЗ.

Методы исследования - теоретический анализ технической литературы.

НАЗНАЧЕНИЕ, УСТРОЙСТВО, ПРИНЦИП ДЕЙСТВИЯ КРИВОШИПНО-ШАТУННОГО МЕХАНИЗМА

Назначение и устройство кривошипно-шатунного механизма

Кривошипно-шатунный механизм преобразует прямолинейное возвратно-поступательное движение поршней, воспринимающих давление газов, во вращательное движение коленчатого вала.

Кривошипно-шатунный механизм состоит из следующих деталей: поршней с кольцами и пальцами, шатунов, коленчатого вала и маховика. Поршни размещены в цилиндрах, которые установлены в блок-картере, закрытым сверху головкой цилиндров.

Поршневая группа и шатун. Поршень с уплотнительными кольцами, пальцем и деталями крепления составляет поршневую группу. Поршень с уплотнительными кольцами обеспечивает герметичность переменного объема, в котором протекает рабочий процесс двигателя, а также воспринимает давление газов и передает возникающее усилие через палец и шатун коленчатому валу. При помощи поршня также осуществляется заполнение цилиндра горючей смесью или воздухом, сжатие ее и удаление из цилиндра отработавших газов. Кроме того, у двухтактных двигателей поршень открывает окна впускного, выпускного и перепускного каналов. Поршень работает в условиях больших давлений, высоких температур и быстро меняющихся скоростей движения.

Поршень состоит из верхней уплотняющей части (головки) и нижней направляющей части (юбки). Для лучшего отвода теплоты и увеличения прочности поршня днище с внутренней стороны имеет ребра жесткости. Снаружи днище может быть плоским, вогнутым, выпуклым, фасонным.

Боковая поверхность поршня имеет сложную конусовидно-эллиптическую форму, а диаметр его меньше диаметра цилиндра, причем у головки поршня диаметр меньше, чем у юбки, а большая ось эллипса перпендикулярна оси поршневого кольца. Все это позволяет при нагреве и расширении поршня обеспечивать между стенками цилиндра и поршнем зазор, который дает возможность поршню при нагревании свободно расширяться и перемещаться в цилиндре.

Юбка обеспечивает направление движения поршня в цилиндре и передает на его стенки боковые усилия. В верхней части юбка снабжена приливами-бобышками, в которых выполнены отверстия для поршневого пальца, соединяющего поршень с шатуном. Ось пальца пересекается с осью поршня, но иногда она смещается от оси поршня. Это позволяет уменьшить нагрузку на поршень в момент перехода им верхней мертвой точки (далее ВМТ). Для улучшения приработки поршней к цилиндрам, уменьшения износа и предохранения их от задиров юбку поршня покрывают тонким слоем олова. Сам поршень отливается из специального алюминиевого сплава.

Поршневые кольца подразделяют на компрессионные и маслосъемные. Они предназначены для исключения прорыва газов между стенками цилиндра и поршня, попадания масла из картера в камеру сгорания, где, сгорая, масло образует нагар. Кольца участвуют в отводе тепла от поршня к цилиндру. В свободном состоянии наружный диаметр кольца больше диаметра цилиндра, поэтому после его установки кольцо плотно прилегает к стенкам цилиндра.

Для установки в канавки поршня кольца выполняют разрезными с зазором 0,2 - 0,5 мм. Разрезы поршневых колец называю замками, которые по форме бывают в основном прямыми, иногда косыми или ступенчатыми. В процессе работы и износа у поршневых колец снижается упругость, и как следствие, ухудшается герметичность цилиндра. Поршневые кольца изготовляют из легированного чугуна отливкой с после дующей механической обработкой, а так же из стали. Высота колец меньше высоты канавки в поршне на 0,03 - 0,08 мм.

Материал для изготовления поршневых колец должен обладать хорошей упругостью и достаточной прочностью в условиях высоких температур, иметь высокую износоустойчивость, но не больше износоустойчивости зеркала цилиндра. Опорную поверхность одного или двух верхних компрессионных поршневых колец для уменьшения износа кольца и цилиндра покрывают слоем хрома толщиной до 0,16 - 0,20 мм с пористой поверхностью, хорошо удерживающей смазку. Для улучшения приработки рабочие поверхности нижних колец нередко покрывают слоем олова или другого легкоистираемого материала.

Поршневой палец служит для шарнирного соединения поршня с шатуном и изготовляется пустотелым из высококачественной износоустойчивой стали. Внутренняя его поверхность цилиндрическая или конически-цилиндрическая.

Концы пальца размещают в отверстиях бобышек поршня, а середина проходит через отверстие в головке шатуна. Если пальцы свободно поворачиваются и в бобышках, и в головке шатуна, то они называются плавающими. Такое соединение имеет наибольшее распространение, поскольку при перемещении поршня с шатуном вся поверхность плавающего пальца является рабочей, что уменьшает износ и возможность заедания.

В некоторых двигателях палец может неподвижно закрепляться и головке шатуна и длина его меньше диаметра поршня. Для ограничения осевых перемещений пальца и исключения повреждений стенок цилиндра палец закрепляют стопорными кольцами, устанавливаемыми в канавки бобышек торцевыми заглушками, вставляемыми в бобышки и стопорным кольцом, размещенным в проточках пальца и верхней головки шатуна.

Смазку поршневого пальца осуществляют через сверления в стержне или прорези в верхней головке шатуна и масляные каналы в бобышках поршня.

Шатун служит для соединения поршня с коленчатым валом. При работе двигателя шатун при рабочем ходе передает усилие от поршня к коленчатому валу, а при остальных тактах обеспечивает перемещение поршня в цилиндре. При помощи кривошипно-шатунного механизма возвратно-поступательное движение поршня преобразуется во вращательное движение коленчатого вала.

Шатун состоит из верхней и нижней головки и соединяющего их стержня: верхняя головка неразъемная и служит для установки поршневого пальца, шарнирно соединяющего поршень с шатуном. Для уменьшения трения и износа в нее запрессовывают одну или две бронзовые втулки; нижняя головка у многих двигателей выполняется составной с прямым (90°) или косым (30 - 60°) относительно оси стержня шатуна разъемом. Плоскость разъема может быть гладкой или иметь шлицевой замок. Косой разъем облегчает пропуск поршня с шатуном через цилиндр, а также соединение шатуна с кривошипом коленчатого вала.

Съемная часть нижней головки шатуна - крышка. Она крепится к стержню двумя болтами, которые имеют гайки или ввертываются в тело шатуна и надежно стопорятся после затяжки.

В нижней головке шатуна установлены стальные тонкостенные вкладыши (верхний и нижний), с тонким слоем 0,1 - 0,9 мм анфрикционного сплава. Вкладыши выполняют функцию подшипника скольжения и удерживаются в шатуне и в крышке плотной посадкой и наличием у них усиков, входящих в соответствующие выточки в шатуне и крышке.

Стержень шатуна имеет обычно двутавровое сечение, расширяющееся к нижней головке, обтекаемую форму и плавные переходы к головкам. У некоторых шатунов в стержне выполняют канал для подвода под давлением масла к поршневому пальцу.

При работе двигателя на шатун действуют силы давления газов и силы инерции, которые сжимают, растягивают и изгибают шатун в продольном и поперечном направлениях. Поэтому его форма, конструкция и материал должны обеспечивать прочность, жесткость и легкость. Шатуны изготовляют из высококачественных углеродистых и легированных сталей штамповкой нагретых заготовок с последующей механической и термической обработкой.

Для обеспечения хорошей уравновешенности двигателя различие в массе отдельных шатунов и комплектов шатунно-поршневой группы должно быть минимальным. Для правильной сборки поршня с шатуном и установки их в двигатель на нижней головке шатуна и ее крышке выбивают порядковый номер цилиндра, для которого предназначен шатун, а также другие метки.

Коленчатый вал и маховик. Коленчатый вал состоит из коренных и шатунных шеек, соединенных щеками, фланца для крепления маховика и носка.

Коренные шейки служат для установки коленчатого вала в подшипниках, размещенных в картере двигателя. При помощи шатунных шеек вал соединяется с нижними головками шатунов. Шатунные и коренные шейки соединяют при помощи щек. Для разгрузки коренных подшипников от инерционных сил движущихся деталей шатунно-поршневой группы на щеках вала установлены противовесы, в сборе с которыми вал балансируется. Противовесы могут изготовляться заодно со щеками или в виде отдельных, надежно закрепленных деталей. Шатунная шейка вместе с прилегающими к ней щеками образует колено вала или кривошип.

Для избежания разрушения коленчатых валов в местах перехода щек к коренным и шатунным шейкам выполняют закругления - галтели. В коренных и шатунных шейках и в щеках просверлены каналы для подачи под давлением масла к шатунным подшипникам.

На передней части коленчатого вала крепятся: шестерня привода распределительного вала, шкив приводных ремней, маслоотражатель, сальник и храповик для проворачивания вала рукояткой. К хвостовику коленчатого вала болтами крепится маховик. На хвостовике вала имеется маслосъемная резьба и маслоотражательный буртик, а в торце имеется гнездо для установки переднего подшипника вала муфты сцепления.

Носик и хвостовик вала уплотняются резиновыми самоподжимными манжетами. Коленчатый вал вращается в коренных подшипниках, имеющих вкладыши из сталеалюминевой ленты.

Изготовляют коленчатые валы из углеродистых и легированных сталей штамповкой или литьем с последующей механической и термической обработкой. Для повышения износоустойчивости коренных и шатунных шеек их подвергают поверхностной закалке, а затем шлифуют и полируют.

Форма коленчатого вала зависит от числа и расположения цилиндров, тактности и порядка работы двигателя. Она должна обеспечивать равномерное чередование рабочих ходов в цилиндрах по углу поворота коленчатого вала, принятую последовательность работы цилиндров и уравновешенность двигателя.

Число шатунных шеек на коленчатом валу двигателя с однорядным расположением цилиндров равно числу цилиндров. У двигателей с V-образным расположением цилиндров число шатунных шеек равно половине числа цилиндров: у этих двигателей на каждой шейке рядом установлены головки двух шатунов. Число коренных шеек коленчатого вала у v-образных двигателей обычно на одну больше, чем у шатунных.

Вкладыши коренных подшипников устанавливают в постели блок-картера и крышки коренных подшипников, а фиксацию осуществляют таким же способом, как и шатунных.

Маховик обеспечивает равномерность вращения коленчатого вала, пуск двигателя и трогание с места. При пуске двигателя маховик, получив энергию после рабочего хода в одном из цилиндров, обеспечивает за счет инерции вращение коленчатого вала, при этом в остальных цилиндрах создаются условия для протекания рабочих ходов, в результате чего двигатель начинает работать.

Маховик отливают из чугуна в виде диска. Для увеличения момента инерции маховика основную массу его металла располагают по ободу, т.е. на максимальном расстоянии от оси вращения маховика. На обод маховика напрессовывают стальной зубчатый венец, с которым при пуске двигателя входит в зацепление шестерня пускового устройства, и наносят метки для определения положения поршня в первом цилиндре и установки момента зажигания или момента подачи топлива.

В сборе с коленчатым валом маховик балансируется. Это выполняют для того, чтобы при их вращении не возникало вибрации и биения от центробежных сил, и не происходил усиленный износ коренных подшипников двигателя. На заднем торце маховика монтируют сцепления.

При работе двигателя на коленчатый вал действуют осевые усилия от работы косозубых шестерен привода газораспределения, включения муфты сцепления и нагрева вала. Чтобы ограничить осевые перемещения коленчатого вала, один из коренных подшипников (задний, передний или средний) выполняют упорным. Для этого вкладыши таких подшипников снабжаются отбортовкой, упорными кольцами или полукольцами.

Принцип действия кривошипно-шатунного механизма

При анализе действия кривошипно-шатунного механизма необходимо отметить прямую и обратную схему движения.

Прямая схема: Поршень под действием давления газов совершает поступательное движение в сторону коленчатого вала. С помощью кинематических пар «поршень-шатун» и «шатун-вал» поступательное движение поршня преобразовывается во вращательное движение коленчатого вала.

Коленчатый вал состоит из:

* шатунные шейки

* коренные шейки

* противовес

Обратная схема: Коленчатый вал под действием приложенного внешнего крутящего момента совершает вращательное движение, которое через кинематическую цепь «вал-шатун-поршень» преобразовывается в поступательное движение поршня.

В данной главе нами рассмотрено устройство и принцип действия кривошипно-шатунного механизма. Мы определили составляющие детали кривошипно-шатунного механизма и технические составляющие.



Поделиться