Двухтактный инвертор. Двухтактный трансформаторный каскад

Одной из популярнейших топологий импульсных преобразователей напряжения является двухтактный преобразователь или push-pull (в дословном переводе - тяни-толкай).

В отличие от однотактного обратноходового преобразователя (flyback), энергия в сердечнике пуш-пула не запасается, потому что в данном случае это - сердечник трансформатора, а не , он служит здесь проводником для переменного магнитного потока, создаваемого по очереди двумя половинами первичной обмотки.

Тем не менее, несмотря на то, что это именно импульсный трансформатор с фиксированным коэффициентом трансформации, напряжение стабилизации выхода двухтактника все равно может изменяться посредством варьирования ширины рабочих импульсов (с помощью ).

В силу высокой эффективности (КПД до 95%) и наличия гальванической развязки первичной и вторичной цепей, двухтактные импульсные преобразователи широко используется в стабилизаторах и инверторах мощностью от 200 до 500 Вт (блоки питания, автомобильные инверторы, ИБП и т.д.)

На рисунке ниже изображена общая схема типичного двухтактного преобразователя. Как первичная, так и вторичная обмотки имеют отводы от середин, чтобы в каждый из двух рабочих полупериодов, когда активен только один из транзисторов, была бы задействована своя половина первичной обмотки и соответствующая половина вторичной обмотки, где напряжение упадет лишь на одном из двух диодов.

Применение двухполупериодного выпрямителя с диодами Шоттки, на выходе двухтактного преобразователя, позволяет снизить активные потери и повысить КПД, ведь экономически гораздо целесообразнее намотать две половины вторичной обмотки, чем нести потери (финансовые и активные) с диодным мостом из четырех диодов.

Ключи в первичной цепи двухтактного преобразователя (MOSFET или IGBT) должны быть рассчитаны на удвоенное напряжение питания, чтобы выдержать действие не только ЭДС источника, но и добавочное действие ЭДС, наводимых во время работы друг друга.

Особенности устройства и режима работы двухтактной схемы выгодно отличают ее от полумостовой, прямоходовой и обратноходовой. В отличие от полумостовой, здесь нет необходимости развязывать цепь управления ключами от входного напряжения. Двухтактный преобразователь работает как два однотактных прямоходовых преобразователя в одном устройстве.

К тому же, в отличие от прямоходового, духтактному преобразователю не нужна ограничительная обмотка, так как один из выходных диодов продолжает проводить ток даже при закрытых транзисторах. Наконец, в отличие от обратноходового преобразователя, в двухтактнике ключи и магнитопровод используются более щадящим образом, а эффективная длительность импульсов больше.

Во встроенных блоках питания электронных устройств все более популярны двухтактные схемы с управлением по току. При таком подходе проблема повышенного напряжения на ключах исключается на корню. В общую истоковую цепь ключей включается резистор-шунт, с которого снимается напряжение обратной связи для защиты по току. Каждый цикл работы ключей ограничивается по длительности моментом достижения током заданной величины. Под нагрузкой выходное напряжение, как правило, ограничивается посредством ШИМ.

При проектировании двухтактного преобразователя особое внимание уделяют подбору ключей, чтобы сопротивление открытого канала и емкость затвора были бы как можно меньше. Для управления затворами полевых транзисторов в двухтактном преобразователе чаще всего применяют микросхемы-драйверы затворов, которые легко справляются со своей задачей даже на частотах в стони килогерц, свойственных импульсным источникам питания любой топологии.

На рис. 5 представлена схема двухтактного транзисторного каскада усиления с трансформаторным входом и выходом.

Верхнее плечо усилителя образует транзистор 1 и верхние полуобмотки трансформаторов ТV 1 и ТV 2, нижнее плечо включает в свой состав транзистор 2, нижние полуобмотки трансформаторов ТV 1 и ТV 2. В идеальном случае оба плеча совершенно одинаковы и схема симметрична относительно горизонтальной оси, проходящей через средние точки трансформаторов.

Усилитель может работать как в режиме класса А , так и класса В . Для перевода каскада в режим В достаточно уменьшить напряжение смещения на R 2 (увеличить сопротивление R 1 и уменьшить R 2 , либо исключить цепи смещения) до величины обеспечивающей, угол отсечки 90 0 . Рассмотрим режим класса В .

Характеристика схемы . Двухтактный каскад усиления с трансформаторным входом и выходом, последовательного коллекторного питания, со смещением постоянным напряжением, создаваемым током делителя на резисторах R 1, R 2, собран на транзисторах типа n-p-n по схеме с ОЭ, работающих в режиме класса В .

Назначение элементов. Трансформатор ТV 1 предназначен для получения двух одинаковых по амплитуде и противоположных по фазе напряжений, а также согласования сопротивлений источника сигнала с входным сопротивлением усилителя.

Трансформатор ТV 2 обеспечивает согласование сопротивлений нагрузки с выходным сопротивлением коллекторных цепей транзисторов.

Конденсатор С бл1 блокирует R 2 по переменному току, уменьшая потери переменной составляющей входного сигнала.

Делитель R 1 , R 2 обеспечивает требуемое положение НРТ на характеристиках транзисторов.

Принцип работы схемы. При отсутствии входного сигнала (U 1 =0) и включенном источнике питания протекает ток делителя. На резисторе R 2 создаётся напряжение смещения, величина которого обеспечивает положение НРТ в начале проходных статических характеристик транзисторов. Оба транзистора закрыты. Через трансформатор ТV2 ток не протекает и напряжение на выходе равно нулю. Таким образом, в статическом режиме постоянные токи через транзисторы не протекают, т.е. в режиме В ток покоя транзисторов практически равен нулю, что уже предопределяет пониженный расход тока питания.

При подаче на вход схемы переменного напряжения, например, гармонического сигнала (U 1 ¹ 0) на вторичных обмотках трансформатора ТV1 образуются два вторичных напряжения, сдвинутых относительно друг друга на 180 0 (см. рис. 5). В результате один из транзисторов, например, верхний VT1 переходит в активный режим (открывается) и форма тока через него повторяет форму приложенного напряжения. Импульс тока через верхний трансформатор протекает по цепи: +Е k , верхняя полуобмотка ТV2, К, КП, ЭП, Э, ┴, -Е k . Он индуцирует по вторичной обмотке TV2 импульс тока, протекающий через нагрузку. И в то же время нижний транзистор находится в режиме отсечки и через нижнюю полуобмотку трансформатора ток не протекает.

При смене полярности входного напряжения состояние транзисторов изменяется на противоположное. В этом случае импульс тока под воздействием входного сигнала протекает в нижнем плече каскада по цепи: +Е k , нижняя полуобмотка ТV2, К, КП, ЭП, Э, ┴, -Е k . В результате во вторичной обмотке трансформатора ТV2 возбуждается ток обратного направления.

Таким образом, через нагрузку протекает ток, форма которого совпадает с формой управляющего напряжения (U 1). Временные диаграммы управляющего напряжения, токов через транзисторы, нагрузку и через источник питания приведены на рис. 6.

Как следует из рисунка ток, протекающий через транзисторы, представляет собой косинусоидальные импульсы с длительностью, равной половине периода управляющего напряжения. Транзисторы здесь работают строгопоочередно: каждый пропускает полуволну тока только в свой полупериод колебания (рис. 6). Во вторую половину периода он заперт и тока от источника питания не потребляет. В этот полупериод работает второй транзистор. Такой режим называют режимом класса В . Токи коллекторов транзисторов VT1 и VT2 можно представить в виде ряда Фурье:

Поскольку точки i k1 и i k2 обтекают половины обмоток ТV2 в противоположных направлениях, то результирующий магнитный поток, создаваемый ими, пропорционален их разности. Ток через нагрузку пропорционален магнитному потоку, следовательно, для тока в нагрузке можно записать

Ток в цепи питания усилителя равен сумме токов плеч:

Из полученных результатов следует:

1. Поскольку выходной ток содержит только нечётные гармоники , в двухтактном каскаде происходит компенсация чётных гармоник токов плеч в нагрузке . Это позволяет снизить уровень нелинейных искажений, используя экономичный режим В .

2. На выходе каскада будут компенсироваться все помехи , наводимые синфазно в плечах как от источника питания, так и от других источников. Это снижает чувствительность усилителя к пульсациям питающего напряжения, что позволяет упростить сглаживающие фильтры в цепях питания.

3. Разностный ток плеч не содержит постоянной составляющей тока , при этом отсутствует постоянное подмагничивание сердечника трансформатора. Это позволяет использовать данный трансформатор при более высоком уровне выходного сигнала или при заданной выходной мощности существенно снизить его габариты, массу, стоимость.

Поскольку токи через транзисторы протекают лишь в часть периода, а в остальное время транзистор закрыт, то уменьшается мощность рассеяния транзистора , что позволяет в двухтактной схеме усилителя применить транзистор, рассеивающий на порядок меньшую мощность, чем транзистор в однотактном каскаде, работающем в режиме класса А при той же полезной мощности. Расчёты показывают, что КПД в двухтактном каскаде может приблизиться к 78,6 %. Это достигается большим коэффициентом использования коллекторного напряжения и малой величиной постоянной составляющей тока коллектора (режим класса В ).

Форма частотных характеристик усилителя мощности определяется частотными свойствами трансформатора . Аналитические выражения для АЧХ совпадают с аналогичными выражениями для однотактного трансформаторного каскада.

Недостатки трансформаторного каскада :

· большие размеры, масса и стоимость;

· сравнительно узкая полоса рабочих частот;

· искажения и большие фазовые сдвиги на краях полосы пропускания, что препятствует охвату оконечного каскада глубокой ООС, так как нарушается устойчивость;

· наличие трансформаторов обусловливает невозможность интегрального исполнения УМ. Существуют дополнительные потери полезной энергии в трансформаторах, их КПД обычно составляет 0,7 ¸ 0,9.

Кроме того, режим В хотя и обеспечивает высокий КПД, но вносит повышенные нелинейные искажения, обусловленные кривизной начального участка передаточной характеристики транзисторов I к (U бэ), вследствие чего совмещенная характеристика обоих транзисторов (рис. 7, а ), представляющая зависимость их разностного тока, имеет подобие ступеньки в окрестности перехода через нуль.

Это вызывает так называемые центральные ступеньки на синусоиде разностного тока (рис. 7, б ), а значит, и выходного напряжения.

Для их устранения применяется режим АВ, в котором подается небольшое исходное смещение НРТ А1 и А2 транзисторов так, что они оказываются на середине начальных криволинейных участков передаточных характеристик (рис. 8, а ). Совмещая характеристики транзисторов по напряжению U бэ точками А1 и А2, видим, что характеристика разностного тока получается прямой (штриховая линия на рисунке) и ступенек не возникает (рис. 8, б ). В режиме АВ при малых токах работают оба плеча одновременно подобно режиму А и нелинейность характеристик плеч взаимно компенсируется.

В режиме АВ при малых амплитудах КПД оконечного каскада понижается (по сравнению с режимом В). Однако общий КПД всего усилителя понижается мало, так как ток покоя оконечных транзисторов обычно бывает меньше общего тока питания предварительных каскадов. Режим АВ для двухтактных каскадов является самым распространенным, поскольку обеспечивает высокий КПД и небольшие нелинейные искажения.

Двухтактные бестрансформаторные каскады

Бестрансформаторные схемы получают всё большее применение. При их реализации легко осуществлять непосредственную связь между каскадами (без разделительных конденсаторов). Они имеют хорошие частотные и амплитудные характеристики, легко выполняются по интегральной технологии, т.к. не содержат громоздкие трансформаторы. Чаще всего бестрансформаторные усилители собирают по двухтактной схеме и работают они в основном в режиме АВ.

Название "бестрансформаторный каскад" в общем случае носит условный характер; дело в том, что, как правило, в усилителях применяются двух-трех элементные составные транзисторы в каждом плече. Поэтому плечо представляет собой двух-трехкаскадный усилитель.

На рис. 9 приведена одна из распространенных схем двухкаскадного бестрансформаторного усилителя мощности с параллельным управлением транзисторами оконечного двухтактного каскада (на VT 2 и VT 3) однофазным переменным напряжением.

Для исключения необходимости двух источников питания сопротивление нагрузки R н подключено через разделительный конденсатор C 2 к одному из полюсов источника E п. Это возможно потому, что через нагрузку протекает только переменный ток. Напряжение между выводами конденсатора C 2 почти постоянно и близко к E п /2. В режиме АВ, в полупериод когда транзистор VT 3 открывается, конденсатор С 2 в цепи нагрузки включается последовательно с источником Е п и их напряжения вычитаются, так что итоговое напряжение питания одного плеча равно Е п - Е С2 = Е п /2, а конденсатор С 2 частично заряжается током транзистора VT 3. В полупериод работы транзистора VT 2 конденсатор с напряжением E C 2 = Е п /2 служит источником питания и частично разряжается.

В схемах бестрансформаторных каскадов большой мощности возникает затруднение в выборе комплементарной пары мощных транзисторов с совпадающими или близкими параметрами. Выход - применение в плечах двухкаскадной схемы выходного каскада составных транзисторов.

Простейшим двухтактным инвертором является автогенератор по схеме Ройера. Здесь транзисторы попеременно находятся в состоянии насыщения и отсечки (рис.5.7).

Рисунок 5.7 – Двухтактный автогенератор

После включения питания через резистор R 1 протекает ток, открывающий оба транзистора. Схема симметрична и коллекторные токи транзисторов равны между собой i K 1 = i K 2, ЭДС самоиндукции в обмотках W 1 также равны по величине, но противоположно направлены. Поэтому коллекторная обмотка в целом нейтральна и в базовой обмотке ничего не наводится. За счёт тепловых, дробовых или фликкер – шумов ток одного из транзисторов мгновенно станет больше. Пусть i K 1 > i K 2 , тогда в базовой обмотке появится ЭДС, как показано на рис.5.7, под действием которой VT1 приоткрывается, а VT2 призакрывается, i K 1 ещё больше возрастает, возрастает ЭДС и т.д. протекает лавинообразный процесс, в результате которого VT1 входит в насыщение, а VT2 – в состояние отсечки. Рабочая точка сердечника входит в область насыщения рост тока прекращается, ЭДС самоиндукции меняет знак на противоположный, чтобы поддержать падающий ток и происходит обратный лавинообразный процесс, в результате которого VT2 входит в насыщение, а VT1 – в состояние отсечки и так далее.

Это автогенератор с насыщающимся трансформатором. Индукция в сердечнике меняется от –B m до +B m . . Резистор R1 служит для запуска схемы, а резистор Rб ограничивает базовый ток в открытом состоянии.

Из– за конечного быстродействия транзисторов, работающих с насыщением, время рассасывания коллекторного тока не равно нулю и время выключения больше времени включения. Поэтому в момент смены полярности напряжения на W 1 , VT1 ещё не успевает перейти в состояние отсечки, а VT2 уже включился и, к ещё открытому VT1, прикладывается напряжение

(5.6)

Поэтому коллекторный ток имеет всплеск – так называемый сквозной ток (рис.5.8).

Рисунок 5.8 – Сквозные токи в схеме Ройера

Величина сквозного тока может в несколько раз превышать рабочий ток.

Поэтому в современных источниках питания такие схемы используется редко, но в радиолюбительской практике очень широко – простота и надёжность, при небольшой выходной мощности – до 100 Ватт делают схему очень привлекательной.

Для больших мощностей используют преобразователи с независимым возбуждением, чтобы уменьшить мощность потерь в насыщающемся выходном трансформаторе. Усложняется схема управления, формируются сигналы управления с запасом по времени на выключение транзисторов.

К двухтактным относятся также мостовые и полумостовые схемы. На рис.5.9а приведена силовая цепь мостового инвертора, а на рис. 5.9б – диаграмма работы при активной нагрузке. Ключи работают попарно и поочерёдно (VT 1 , VT 4 и VT 2 , VT 3). Потери здесь больше, чем в обычной схеме, поскольку в цепи тока включены последовательно два ключа. Напряжение на закрытом ключе равно всего Eк, поэтому такая схема предпочтительна при высоких напряжениях питания. Форма напряжения на нагрузке и форма тока совпадают.

Рисунок 5.9 – Мостовой инвертор

На практике нагрузка редко бывает активной, обычно она имеет индуктивный характер (рис.5.10) и ток в первичной обмотке не может измениться мгновенно.

Рисунок 5.10 – Мостовой инвертор с индуктивным характером нагрузки

После коммутации ключей (VT1,4 закрываются, VT2,3 открываются) под действием ЭДС самоиндукции ток протекает ещё некоторое время () через первичную обмотку в том же направлении. Ключи VT2,3 не держат обратного напряжения и могут быть пробиты этой ЭДС самоиндукции. Для их защиты и создания пути тока разряда индуктивности все ключи шунтируют диодами. На рис. 5.10 условно показаны только два из них. Энергия, запасённая в индуктивности, возвращается в источник по цепи: минус источника Е К, диод VD3, обмотка W1, диод VD2, плюс источника Е К, имеет место рекуперация, а чтобы ток протекал в источник, величина ЭДС превышает Е К на величину . Мгновенная мощность на интервале отрицательна . (5.7)

Рекуперация энергии может играть и положительную роль. Например, городской электротранспорт и локомотивы на железной дороге. В них, при движении идёт потребление энергии от контактной сети приводными электродвигателями. При торможении двигатели переключаются в генераторный режим, кинетическая энергия движения преобразуется в электрическую и возвращается в сеть. В источниках электропитания рекуперация приводит только к дополнительным потерям и её следует избегать. В мостовом инверторе, например, можно изменить алгоритм управления ключами, как показано на рис.5.11.

Рисунок 5.11 – Мостовой инвертор без рекуперации

В этой схеме при замкнутых ключах VT1 и VT4, идёт передача энергии в нагрузку и её накопление в индуктивности. После размыкания VT1, ЭДС самоиндукции меняет знак, как показано на рис.5.11а и индуктивность разряжается через открытый ключ VT4 и защитный диод VD3 на нагрузку. Здесь запас по времени такой, что индуктивность полностью разряжается и появляются высшие гармоники в составе выходного напряжения. Если не будет разрыва между токами i p и i 1 , то не будет провала в выходном напряжении и в его спектре будет меньше высших гармоник.

В мостовых схемах инверторов имеется четыре управляемых ключа и довольно сложная схема управления. Уменьшить число ключей позволяет полумостовая схема инвертора, которая приведена на рис.5.12.

Рисунок 5.12 – Полумостовой инвертор

Здесь конденсаторы С 1 и С 2 создают искусственную среднюю точку источника . При открытом VT 1 С 1 разряжается на нагрузку и подзаряжается С 2 , а при открытом VT 2 – наоборот (С 2 разряжается на нагрузку и подзаряжается С 1). Напряжение, прикладываемое к первичной обмотке трансформатора равно напряжению на одном конденсаторе.

В двухтактных преобразователях более эффективно используется магнитопровод импульсного трансформатора. В таких схемах не требуется бороться с намагничиванием сердечника, что позволяет уменьшить его габариты. Выходное напряжение получается симметричным. Кроме того, транзисторы преобразователя работают в более легком режиме.

Иногда для небольшой мощности (до 15 Вт) используют самый простой преобразователь, выполненный по схеме автогенератора (рис. 4.16, а). Эта схема не критична к применяемым деталям, но подбор рабочей точки режима работы транзисторов при помощи резистора R2 может улучшить характеристики устройства (иногда параллельно R2 устанавливают конденсатор). Делитель из резисторов R1-R2 обеспечивает необходимый начальный ток для запуска работы автогенератора.

Рис. 4.16. Схемы двухтактных автогенераторов

Используемые универсальные транзисторы 2N3055 заменяются подобными отечественными КТ818ГМ, КТ8150А, а если изменить полярность подаваемого питания, то можно применять и p-n-р транзисторы. Питающее напряжение схемы может быть от 12 до 24 В. Для длительной работы устройства транзисторы необходимо установить на радиаторы.

Трансформатор может быть выполнен на ферритовом М2000НМ1 кольцевом магиитопроводе, его рабочее сечение зависит. от мощности в нагрузке. Для упрощенного выбора можно воспользоваться рекомендациями, см. табл. 4.5.

Таблица 4.5. Допустимая максимальная мощность для кольцевых ферритовых магнитопроводов марки М2000НМ1

При изготовлении трансформатора Т1 обмотки 1 и 2 наматываются одновременно, но фазировка подключения их должна соответствовать показанной на схеме. Для сечения кольцевого магнитопровода типоразмера К32х20х6 обмотки 1 и 2 содержат по 8 витков (провод ПЭЛ диаметром 1,2...0,81 мм); 3 и 4 по 2 витка (0,23 мм); 5 - число витков вторичной обмотки зависит от необходимого напряжения (0,1...0,23 мм).

С помощью этой схемы можно получать напряжение до 30 кВ, если применить магнитопровод от трансформаторов, используемых в современных телевизорах.

Аналогичная схема автогенератора, выполненная на полевых транзисторах, приведена на рис. 4.16, б. Она позволяет использовать более простой трансформатор, в котором не нужны обмотки обратной связи. Стабилитроны VD1, VD2 предотвращают появление на затворах транзисторов опасных напряжений.

Рабочая частота таких схем задается параметрами магнитопровода трансформатора и индуктивностью обмоток, так как от этого зависит задержка сигнала обратной связи (лучше если частота будет находиться в диапазоне 20...50 кГц).

В качестве недостатка данных схем можно отметить низкий КПД, что затрудняет их применение при большой мощности, а также нестабилизированное выходное напряжение, которое может сильно меняться в зависимости от изменения напряжения питания. Более удачная схема двухтактного преобразователя, выполненная с использованием специализированной микросхемы (рис. 4.17), отличается высоким КПД и может поддерживать стабильное напряжение на нагрузке.

Рис. 4.17. Схема двухтактного импульсного преобразователя

Преобразователь выполнен на широко распространенной микросхеме ШИМ-контроллере Т114ЕУ4 (полный импортный аналог TL494), что позволяет сделать схему довольно простой. В нормальном состоянии (при нулевом напряжении на затворе) транзисторы VT1, VT2 закрыты и открываются импульсами с соответствующих выходов микросхемы. Резисторы R7-R9 и R8-R10 ограничивают выходной ток микросхемы, а также величину напряжения на затворе ключей. Цепь из элементов C1-R2 обеспечивает плавный выход на рабочий режим при включении питания (постепенное увеличение ширины импульсов на выходах микросхемы). Диод VD1 предохраняет повреждение элементов схемы при ошибочном подключении полярности питания.

Диаграммы напряжений, поясняющие работу, показаны на рис. 4.18. Как видно на рисунке (а), задний фронт импульса имеет большую длительность, чем передний. Это объясняется наличием емкости затвора полевого транзистора, заряд которой рассасывается через резистор R9 (R10) во время, когда выходной транзистор микросхемы закрыт. Это увеличивает время закрывания ключа. Так как в открытом состоянии на полевом транзисторе падает напряжение не более 0,1 В, потери мощности в виде небольшого нагрева VT1 и VT2 происходят в основном за счет медленного закрывания транзисторов (именно этим ограничена максимальная допустимая мощность нагрузки).

Рис. 4.18. Диаграммы напряжений

Параметры данной схемы при работе на лампу мощностью 100 Вт приведены в табл. 4.6. В холостом ходу потребляемый ток составляет 0,11 А (9 В) и 0,07 А (15 В). Рабочая частота преобразователя около 20 кГц.

Таблица 4.6. Основные параметры схемы

Трансформатор Т1 выполнен на двух сложенных вместе кольцевых сердечниках из феррита марки М2000НМ1 типоразмера К32х20х6. Параметры обмоток указаны в табл. 4.7.

Таблица 4.7. Параметры обмоток трансформатора Т1

До намотки острые грани сердечника необходимо закруглить надфилем или грубой наждачной бумагой. При изготовлении трансформатора сначала наматывается вторичная обмотка. Намотка выполняется виток к витку, в один слой с последующей изоляцией лакотканью или фторопластовой лентой. Первичные обмотки 1 и 2 наматываются двумя проводами одновременно, как это показано на рис. 4.19 (равномерно распределив витки на магнитопроводе). Такая намотка позволяет значительно уменьшить выбросы напряжения на фронтах при закрывании полевых ключей. Транзисторы устанавливаются на теплоотвод, в качестве которого применен дюралевый профиль (рис. 4.20).

Рис. 4.19 Вид конструкции импульсного трансформатора

Рис. 4.20. Конструкция радиатора

Радиаторы закрепляются на краях печатной платы. Односторонняя печатная плата из стеклотекстолита толщиной 1,5...2 мм имеет размеры 110x90 мм (см. рис. 4.21 и 4.22).

Рис. 4.21. Топология печатной платы

Рис. 4.22. Расположение элементов

Данную схему можно использовать для питания нагрузки, постоянно потребляющей мощность до 100 Вт. Для большей мощности необходимо уменьшить время переключения полевых ключей. Это позволяют сделать специально разработанные микросхемы, имеющие комплементарный выходной каскад, предназначенный для управления мощными полевыми транзисторами, например, К1156ЕУ2, UC3825.

В качестве силовых ключей на мощность до 60 Вт в приведенной схеме можно также применять транзисторы N-типа со статической индукцией КП958А (BCIT- Bipolar Static Induction Transistor). Они разработаны специально для работы в высокочастотных источниках питания. Физика работы такого транзистора близка к работе обычного биполярного, но из-за конструктивных особенностей он имеет ряд преимуществ:

1) низкое падение напряжения исток-сток в открытом состоянии;
2) повышенный коэффициент усиления;
3) высокое быстродействие при переключении;
4) повышенная устойчивость к тепловому пробою.

В этом случае транзисторы лучше подобрать с одинаковыми параметрами, а резисторы R9 и R10 уменьшить до 100...150 Ом.

Временные диаграммы

При выборе схемы построения импульсного источника электро­питания разработчик в первую очередь руководствуется ожидаемыми габаритными размерами и простотой схемотехнических решений. Се­тевые источники, питающие нагрузки небольшой мощности (до 100-150 Вт), встраиваемые в достаточно габаритную аппаратуру, лучше строить по однотактной fly-back схеме. Для стабилизаторов, в которых не требуется гальванической развязки нагрузки от питающей сети, применяют чопперную схему. При питании от гальванических элементов или аккумуляторов можно использовать бустерную схему. Однако не исключены ситуации, в которых перечисленные преобра­зователи и стабилизаторы использовать нельзя.

Случай первый - прибор, питаемый от сети переменного тока, имеет ограниченные габариты (к примеру, в приборном корпусе не удается разместить достаточно крупный накопительный трансформа­тор фли-бак конвертора).

Второй случай - - потребляемая мощность прибора превышает 150...200Вт.

Третий случай - отдельные части схемы прибора требуют до­полнительного питания, гальванически развязанного от остальной схемы.

Во всех этих случаях требуется разработка так называемых двух­тактных схем преобразователей, имеющих гальваническую развязку первичной и вторичной цепей. Наибольшее распространение среди двухтактных конверторов получили три схемы: двухфазная пуш-пульная (push-pull), полумостовая (half-bridge) и мостовая (full-bridge). Достоинство этих схем состоит в том, что при необходимости разработчик может легко ввести в конструкцию узел стабили­зации выходного напряжения, либо отказаться от него. В первом слу­чае конвертор будет представлять собой полноценный источник пита­ния, к которому можно подключать любую нагрузку. Во втором случае получится простой преобразователь электрической энергии, требующий дополнительной стабилизации по выходу. В ряде случаев такой простой конвертор вполне устроит разработчика. Поскольку все три схемы двухтактных конверторов имеют множество аналогий, мы расскажем о них в одной главе, акцентируя внимание на индиви­дуальных особенностях и проводя сравнительный анализ.

Пуш-пульная двухфазная схема


Рис. 14.1. Базовая двухтактная push-pull схема преобразователя

Эта схема (рис. 14.1) состоит из двух ключевых элементов, в качестве которых используются мощные биполярные или поле­вые транзисторы. Трансформатор Тр имеет первичную и вторичную обмотки, разделенные на полуобмотки. К средней точке первичной обмотки подключен вывод источника питания. Вторичная цепь пред­ставляет собой двухфазный двухполупериодный выпрямитель VD1, VD2, а также фильтр пульсаций (в этой схеме элементом фильтра яв­ляется конденсатор С ф).



В первом такте, как показано на рис. 14.2, l замкнут, Кл2 разо­мкнут, ток течет по полуобмотке 1.1 и трансформируется в полуоб­мотку 2.1. Диод VD1 открыт и проводит ток i 2.1 , подзаряжая конденса­тор Сф. Во втором такте, изображенном на рис. 14.3, ключ Кл.l закры­вается и открывается ключ Кл2. Соответственно ток i 1.2 течет по
полуобмотке 1.2 и трансформируется в полуобмотку 2.2. Диод VD1 заперт, диод VD2 проводит ток i 2 2 , подзаряжая конденсатор С ф.

Та­ким образом, передача энергии в нагрузку осуществляется во время обоих тактов.


Чтобы перейти к параметрам реальных схем, мы вначале предпо­ложим, что у нас, тем не менее, есть возможность применения идеаль­ных элементов. То есть транзисторы могут мгновенно переключаться, отсутствует время обратного восстановления диодов, первичная об­мотка обладает очень большим значением индуктивности намагниче­ния (согласно эквивалентной схеме). В этих условиях определить за­висимость выходного напряжения от величины входного очень про­сто. Напряжение первичной обмотки трансформируется во вторичную обмотку без потерь, с коэффициентом трансформации:

Коэффициенты трансформации n l и п 2 полагают одинаковыми, более того, уравнивают количество витков первичных и вторичных полуобмоток:

Напряжение на первичной обмотке в режиме замкнутого ключа (без учета падения напряжения на силовом ключе):


Поскольку схема строится с двухполупериодным выпрямлением на выходе, соотношение между напряжением питания и напряжением на нагрузке:

Пока нам не совсем ясно, как можно ввести регулировку напряже­ния на нагрузке. Поэтому необходимо вспомнить о коэффициенте за­полнения и распространить его на двухтактную схему. Попытаемся выяснить, что произойдет, если мы сузим управляющие импульсы, как показано на рис. 14.4. Коэффициент заполнения и в случае двух­тактной схемы определяется точно так же, как и для однотактной:

где γ - отношение времени открытого состояния одного ключа к пе­риоду коммутации.


Рис. 14.4. К определению коэффициента заполнения

В данном случае мы определяем коэффициент заполнения для од­ного плеча двухтактной схемы. . Определим среднее значение тока на­грузки, учитывая, что передача энергии осуществляется на протяже­нии обоих полупериодов, а значит, среднее значения напряжения за один такт работы нужно удвоить:

Рис. 14.5. Графики, поясняющие работу пуш-пульной схемы преобразователя

Таким образом, регулируя γ в промежутке от 0 до 0,5, можно ли­нейно регулировать напряжение на нагрузке. В реальной схеме ни вкоем случае нельзя допускать, чтобы преобразователь работал с γ = 0,5. Типичное значение γ не должно превышать 0,4...0,45. Все дело в том, что используемые элементы не могут обладать идеальными свойствами. Как нам известно, первичная обмотка обладает ограни­ченной индуктивностью L μ , которая накапливает энергию:


Максимальный ток i μ , показанный на графике (рис. 14.7), определяется из соотношения:


При размыкании Кл1 накопленная в магнитопроводе энергия стремится поддержать ток. Если бы в схеме не было защитного диода VDp 2 , показанного на рис. 14.6, на Кл2 возник бы бросок отрицатель­ного напряжения. Способность биполярных транзисторов выдержи­вать отрицательные броски напряжения невелика (единицы вольт), поэтому разрядный ток i μ необходимо замкнуть через диод VDp 2 . Ди­од практически «накоротко» замыкает обмотку ω 2 2 и быстро разряжа­ет L μ (рис. 14.8). При разряде выделяется тепловая энергия, учесть ко­торую можно через следующее соотношение:


Рис. 14.6. К пояснению коммутационных

процессов в реальной схеме пуш-пульного


преобразователя Рис. 14.7. Определение тока намагничения

Рис. 14.8. Разряд индуктивности намагничения

При работе пуш-пульного преобразователя разрядные диоды включаются попеременно. Следует также помнить, что в составе транзисторов MOSFET, а также некоторых транзисторов IGBT эти ди­оды уже есть, поэтому вводить дополнительные элементы нет необхо­димости.

Вторая неприятность связана с конечным временем восстановле­ния диодов выпрямителя. Представим, что в начальный момент вре­мени диод VD1 проводит ток. Направления действия ЭДС показаны на схеме «а» (рис. 14.9).


Рис. 14.9. Пояснение влияния конечного времени восстановления выпрямительных диодов


При включении транзистора VT1 ЭДС меняет направление (схема «б»), открывается диод VD2. Но в то же время диод VD1 не может мгновенно закрыться. Поэтому вторичная обмотка оказывается закороченной диодной парой VD1-VD2, что вызывает броски тока в клю­чевом элементе (это хорошо видно на эквивалентной схеме трансфор­матора). Форма тока первичной обмотки на совмещенном графике при у = 0,5 будет такой, как изображено на рис. 14.10.

Рис. 14.10. Характер тока обмоток трансформатора в случае наличия идеальных и реальных выпрямительных диодов

Во избежание коммутационных выбросов необходимо, во-пер­вых, вводить паузу между закрытием Кл1 и открытием Кл2 на время не менее чем удвоенное время обратного восстановления диода tгг. Во-вторых, если есть возможность, лучше отказаться от обычных ди­одов и применить диоды Шоттки.

Напряжение на закрытом ключевом транзисторе складывается из напряжения питания U n и ЭДС первичной полуобмотки, которая в данный момент разомкнута. Поскольку коэффициент трансформации этих обмоток равен 1 (обмотки с одинаковым числом витков), пере­напряжение на ключевом транзисторе достигает 2 U n . Поэтому, выби­рая транзистор, следует обратить внимание на допустимое напряжение между его силовыми электродами. Необходимо также учитывать, что ток ключевого транзистора складывается из постоянного тока на­грузки, пересчитанного в первичную цепь, и линейно нарастающего тока намагничения индуктивности первичной обмотки. Ток имеет трапецеидальную форму.

При определении максимального коэффициента заполнения в случае использования полевых транзисторов, которые переключают­ся достаточно быстро, нужно руководствоваться значением задержки обратного восстановления диодов. Промежуток времени, в течение которого переключение запрещено:

∆t зад = 2t rr .


Поправка коэффициента заполнения:


Максимальный коэффициент заполнения:

При использовании биполярных транзисторов и транзисторов IGBT максимально возможный коэффициент заполнения уменьшает­ся за счет времени выключения и спада этих транзисторов, а также ха­рактерного «хвоста»:

Опыт показывает, что 1 коэффициент заполнения не превышает 0,45 в самом благоприятно^ случае.


Чем еще отличается реальная схема от идеальной? Сопротивления открытого диода и ключевого транзистора отличны от нулевого. Учесть падение напряжения на этих элементах (и поправку на коэф­фициент трансформации) можно так, как показано на рис. 14.11.

а) Выпрямительные диоды: в открытом состоянии на диоде падает в среднем 0,7.. .1,0 В (стандартный диод), либо 0,5. ..0,6 В (диод Шоттки);

б) Ключевые транзисторы: если в качестве ключа используется биполярный транзистор или транзистор IGBT, на ключе будет падать напряжение Uкэ (в режиме насыщения). Типичное значение напряже­ния насыщения - 0,2. ..0,5 В. Для транзистора MOSFET необходимо вычислить напряжение:


Предварительный расчет основных параметров схемы пуш-пульного конвертора должен определить коэффициент трансформации п и габаритную мощность трансформатора. Мы уже выяснили, что:

Иначе (с учетом падения напряжения на ключах и выпрямитель­ных диодах):


где - минимально возможное напряжение питания (задается в начале разработки).

К примеру, если проектируется преобразователь с батарейным пи­танием, в качестве этого напряжения можно принять значение напря­жения, измеренное на клеммах батареи в конце срока службы.


Необходимо также определить минимальное значение коэффици­ента заполнения γ min , исходя из максимального значения напряжения питания (этот параметр понадобится при определении параметров сглаживающего выходного фильтра):


Теперь можно перейти к определению габаритной мощности трансформатора, которая вычисляется как полусумма мощности, пе­реданной в первичную обмотку и полученной со вторичных обмоток. В случае двухобмоточного трансформатора габаритную мощность можно определить как сумму мощностей нагрузки и мощности, из­расходованной на схему управления (если преобразователь построен таким образом, что схема управления питается от этого же трансфор­матора):

Выбор необходимого магнитопровода для трансформатора осу­ществляется по формуле для габаритной мощности, выведенной в разделе «Как работает трансформатор». По этой формуле мы должны определить произведение SS 0 . Следует отметить, что для двухтактных преобразователей предпочтительнее использовать тороидальные магнитопроводы, поскольку трансформаторы, намотанные на них, получа­ются наиболее компактными. Итак, габаритная мощность трансформа­тора, намотанного на магнитопроводе конкретных размеров:

где η тр - КПД трансформатора (типичное значение 0,95...0,97) Разработчиком должно быть выполнено условие:


Число витков первичной полуобмотки можно найти по следую­щей формуле, которая представляет собой форму записи закона элек­тромагнитной индукции:


Число витков вторичной полуобмотки:


После этого нужно выбрать необходимый диаметр провода и про­верить заполнение окна медью. Если коэффициент а получится более 0,5, необходимо взять магнитопровод с большим значением S 0 и пере­считать количество витков.

Определить температуру перегрева трансформатора можно по следующей формуле:


где ∆E n - - перегрев (Т n = Т а + T n);

Т п - температура поверхности трансформатора;

Р п - суммарные потери тепла (на активном сопротивлении об­мотки и в магнитопроводе);

S охл -- площадь наружной поверхности трансформатора;

α-- коэффициент теплоотдачи (α = 1,2 10 -3 Вт/см 2 °С).

После расчета трансформатора нужно провести выбор силовых элементов по допустимым значениям токов и напряжений, облегчить при необходимости тепловой режим с помощью теплоотводящих ра­диаторов.

Очень важный вопрос, который сейчас необходимо рассмот­реть, - это выбор схемы управления двухтактным импульсным ис­точником. Не так давно все эти схемы приходилось проектировать на дискретных элементах, что рождало достаточно громоздкие и не слишком надежные решения. Микросборки, применяющиеся для уп­равления однотактными схемами стабилизаторов и преобразовате­лей, впрямую не годятся для использования в двухтактных схемах, поскольку нужно иметь, два парафазных выхода, управляемых одним генератором. Кроме того, микросхема должна содержать специаль­ный узел для гарантированного ограничения у, чтобы не допустить аварийных ситуаций и сквозных токов. Желательно наличие дополни­тельных входов защитного отключения. В последнее время было раз­работано большое количество специализированных микросхем, в ко­торых уже есть практически все необходимые узлы.

Широко применяющаяся для управления блоками питания компь­ютеров типа IBM-PC микросхема TL494 (выпускается фирмой Texas Instruments, имеет отечественный аналог КР1114ЕУ1) подробно опи­сана в доступной книге . Как пример, рассмотрим не менее инте­ресную микросхему СА1524 , выпускаемую фирмой Intersil. Эта микросхема содержит в своем составе цепи управления, контроля, нормально функционирует при питании от 8 до 40 В. Она может быть применена в составе любых схем стабилизаторов и преобразователей, описанных в этой книге.

Основные узлы микросхемы (рис. 14.12):

Термокомпенсированный опорный источник напряжения 5 В;

Точный RC-генератор;

Усилитель ошибки (разницы между требуемым напряжением на­грузки и реальным напряжением на выходе стабилизатора);

Компаратор схемы управления ключевыми транзисторами;

Усилитель ошибки по сигналу тока в первичной цепи;


двухтактный выходной каскад, построенный на быстрых биполярных транзисторах;

Схема дистанционного управления включением/выключением.

Рис. 14.12. Функциональные узлы микросхемы СА1524 фирмы Intersil

Широтно-импульсное регулирование (ШИР) было рассмотрено нами в главе, посвященной чопперной схеме стабилизатора. В данном случае схема ШИР работает точно так же. Единственную особенность составляют триггер и схема логики, которые «маршрутизируют» уп­равляющие импульсы, поочередно направляя их то на один выход (транзистор Sa), то на другой (транзистор Sb). Триггер синхронизиро­ван тактовыми импульсами с задающего генератора. Тактовые им­пульсы имеют некоторую длительность, которая служит для органи­зации защитной паузы между выключением одного силового транзи­стора и включением второго. Таким образом, коэффициент заполнения у тах не может быть более 0,45 (суммарное время паузы по двум выходам составляет 10%). Время паузы (dead time) можно регулировать, выбирая соответствующий номинал времязадающего кон­денсатора Ст. Частота работы задающего генератора определяется со­отношением rt и Ст (выбор этих элементов, показанных на рис. 14.13, осуществляется из графика, рис. 14.14). Можно заметить, что ощути­мые значения времени паузы получаются при достаточно больших номиналах емкости Ст. Если элементы времязадающей цепи уже вы­браны, «мертвое время» можно подрегулировать в пределах 0,5...5,0 мкс подключением конденсатора Cd к выводу 3, как показано на рис. 14.15. Величина этого конденсатора находится в пределах 100...1000 пФ. Однако такой способ разработчики схемы рекоменду­ют использовать только в крайнем случае.


Рис. 14.13. Элементы частотозада-ющей цепи Рис. 14.14. График выбора элементов времязадающей цепи

Еще один способ регулирования dead time заключается в ограни­чении величины напряжения усилителя ошибки (рис. 14.16).

Усилитель ошибки (выводы 1, 2, 9) имеет коэффициент усиления 80 dB (10000) и может быть снижен до необходимой величины вклю­чением резистора R L между выводами 1(2) и 9 (в зависимости от того, прямая или инвертирующая схема включения используется разработ­чиком импульсного источника). Частота единичного усиления усили­теля ошибки f -- 3 МГц. Разработчики микросхемы отмечают, что усилитель ошибки, не охваченный цепью обратной связи, имеет так называемый полюс передаточной характеристики в точке 250 Гц

(сдвиг фаз между входным и выходным сигналом на этой частоте до­стигает 45 градусов). Полюс хорошо видно на графике (рис. 14.18). Это еще одна причина, по которой нельзя использовать усилитель без цепей обратной связи, показанных на рис. 14.17.


Рис. 14.15. Дополнительный конденсатор Q, регулирующий «мертвое время» (а), и график выбора его номинала (б)

Рис. 14.16. Способ регулировки dead time посредством ограничения величины на­пряжения усилителя ошибки

Рис. 14.17. Обратная связь в усилите­ле ошибки

Источник без обратной связи может превратиться в генератор. Чтобы устранить возможность самовозбуждения, рекомендуется под-, ключать к выводу 9 корректирующую цепочку, как показано на. рис. 14.19.



Рис. 14.18. АФЧХ усилителя ошибки Рис. 14.19. Корректирующая цепочка, устраняющая самовозбуждение

Параметры микросхемы СА1524:

Напряжение питания 8...40 В;

Максимальная частота задающего генератора - 300 кГц;

Нестабильность выходного напряжения - не более 1 %;

Температурная нестабильность - не более 2%;

Диапазон емкости Ст - 0,001...0,1 мкФ;

Диапазон сопротивления rt - 1,8...120 кОм;

Входное смещение усилителя ошибки - 0,5 мВ;

Входной ток усилителя ошибки - 1 мкА;

Максимальное напряжение «коллектор-эмиттер» транзисторов Sa и Sb -40B;

Токовая защита срабатывает при превышении тока потребления микросхемы более 100 мА;

Время нарастания тока коллектора транзисторов Sa и Sb -0,2 мкс;

Время спада тока коллектора транзисторов Sa и Sb - 0,1 мкс.

Микросхема имеет также вход внешнего управления (вывод 10). Отключение происходит при подаче высокого уровня (номинальный ток 0,2 мА).

Мы вернемся к микросхеме СА1524 при практической разработке экспериментального пуш-пульного преобразователя, а сейчас рас­смотрим появившиеся в последнее время маломощные интегрирован­ные источники, построенные по пуш-пульной схеме. Нужда в мало­мощном преобразователе появляется тогда, когда необходимо получить напряжение, источник которого не имеет гальванической связи с остальной схемой. К примеру, цифровые устройства передачи инфор­мации по длинным линиям нуждаются в таких источниках. Помеха, наведенная в длинной линии, может повредить передающее и прием­ное устройства, поэтому линия связи развязывается с помощью согла­сующих трансформаторов или оптоэлектронных приборов. Активные согласующие линейные устройства требуют питания.

Второй пример использования гальванически развязанных источников гораздо ближе к тематике книги. Чуть позже мы будем рассматривать так называемый бутстрепный метод управления двухтактны­ми каскадами. Мы увидим, что в данной схеме нужен источник, гальванически развязанный с общим проводом. В динамическом режиме эту функцию, как окажется, с успехом может выполнить конденсатор. А вот в статическом режиме без нормального источника не обойтись. Еще совсем недавно эта задача решалась с помощью дополнительной; обмотки на сетевом трансформаторе, что, конечно, не способствовало уменьшению габаритов схемы. Появление миниатюрных преобразо­вателей изящно решило эту проблему .

Для примера разберем устройство микросхемы DCP0115 фирмы] Burr-Brown , функциональные узлы которой показаны на рис. 14.20, а внешний вид - на рис. 14.21. В составе микросхемы имеется высокочастотный генератор и двухтактный каскад, работающий; с частотой 400 кГц. К силовому каскаду подключен миниатюрный трансформатор, который, тем не менее, позволяет получить мощность 1 Вт на нагрузке (при выходном напряжении 15 В). Имеются также схема мягкого старта и схема блокировки при перегреве с возможно­стью восстановления после отключения. Выводы синхронизации" (sync in, sync out) используются, когда микросхема работает совмест­но с другими импульсными источниками, имеющимися в приборе. Синхронизация позволяет избежать биения частот и снизить излучае­мые радиопомехи. Микроисточник выполнен в корпусе DIP-14.



Поделиться