Разновидности современных двигателей. Типы автомобильных двигателей

5, 10, 12 или более цилиндрами. Позволяет сократить линейные размеры мотора по сравнению с рядным расположением цилиндров.

VR-образный
"VR" аббревиатура двух немецких слов, обозначающих V-образный и R- рядный, т.е "v-образно-рядный". Двигатель разработан компанией Volkswagen и представляет собой симбиоз V-образного двигателя с экстремально малым углом развала 15° и рядного двигателя.Его шесть цилиндров расположены V-образно под углом 15° в отличие от традиционных V-образных двигателей, имеющих угол 60° или 90°. Поршни расположены в блоке в шахматном порядке. Совокупность достоинств обоих типов двигателей привела к тому, что двигатель VR6 стал настолько компактным, что позволил накрыть оба ряда цилиндров одной общей головкой, в отличие от обычного V-образного двигателя. В результате двигатель VR6 получился существенно меньше по длине, чем рядный 6 цилиндровый, и меньше по ширине, чем обычный V-образный 6-цилиндровый двигатель. Ставился с 1991г (1992 модельный) на автомобили Volkswagen Passat, Golf, Corrado, Sharan. Имеет заводские индексы "AAA" объемом 2.8 литра, мощностью 174 л/с и "ABV" объемом 2.9 литра и мощностью 192 л/с.

Оппозитный двигатель - поршневой двигатель внутреннего сгорания , в котором угол между рядами цилиндров составляет 180 градусов. В автомобильной и мототехнике оппозитный двигатель применяется для снижения центра тяжести, вместо традиционного V-образного , так же оппозитное расположение поршней позволяет им взаимно нейтрализовывать вибрации, благодаря чему двигатель имеет более плавную рабочую характеристику.
Наиболее широкое распространение оппозитный двигатель получил в модели Volkswagen Kaefer (Beetle, в английском варианте) выпущенной за годы производства (с по 2003 год) в количестве 21 529 464 штук.
Компания Porsche использует его в большинстве своих спортивных и гоночных моделях серий , GT1 , GT2 и GT3.
Оппозитный двигатель является также отличительной чертой автомобилей марки Subaru , который устанавливается практически во все модели Subaru c 1963 года . Большинство двигателей этой фирмы имеют оппозитную компоновку, которая обеспечивает очень высокую прочность и жёсткость блока цилиндров, но в то же время делает двигатель сложным в ремонте. Старые двигатели серии EA (EA71, EA82 (выпускались примерно до 1994 года)) славятся своей надёжностью . Более новые двигатели серии EJ, EG, EZ (EJ15, EJ18, EJ20, EJ22, EJ25, EZ30, EG33, EZ36), устанавливаемые на различные модели Subaru с 1989 года и по настоящее время (с февраля 1989 года автомобили Subaru Legacy оснащаются оппозитными дизельными двигателями вкупе с механической коробкой передач).
Также устанавливался на румынские автомобили Oltcit Club (является точной копией Citroen Axel), с 1987 по 1993 годы. В производстве мотоциклов оппозитные двигатели нашли широкое применение в моделях фирмы BMW , а также в советских тяжёлых мотоциклах «Урал» и «Днепр».

U-образный двигатель - условное обозначение силовой установки, представляющей собой два рядных двигателя, коленчатые валы которых механически соединены при помощи цепи или шестерней.
Известные примеры использования: спортивные автомобили - Bugatti Type 45 , опытный вариант Matra Bagheera ; некоторые судовые и авиационные двигатели.
U-образный двигатель с двумя цилиндрами в каждом блоке обозначается иногда как square four .

Двигатель со встречным движением поршней - конфигурация двигателя внутреннего сгорания с расположением цилиндров в два ряда один напротив другого (обычно один над другим) таким образом, что поршни расположенных друг напротив друга цилиндров движутся навстречу друг другу и имеют общую камеру сгорания. Коленвалы механически соединены, мощность отбирается с одного из них, или с обоих (например, при приводе двух гребных винтов). Двигатели этой схемы в основном двухтактные с турбонаддувом . Эта схема применяется на авиадвигателях, танковых двигателях (Т-64 , Т-80УД , Т-84 , Chieftain), двигателях тепловозов (ТЭ3 , 2ТЭ10) и больших морских судовых дизелях. Встречается и другое название этого типа двигателей - двигатель с противоположно-движущимися поршнями (двигатель с ПДП).


Принцип действия:
1 впуск
2 приводной нагнетатель
3 воздухопровод
4 предохранительный клапан
5 выпускной КШМ
6 впускной КШМ (запаздывает на ~20° относительно выпускного)
7 цилиндр со впускными и выпускными окнами
8 выпуск
9 рубашка водяного охлаждения
10 свеча зажигания

Ротативный двигатель - звездообразный двигатель воздушного охлаждения, основанный на вращении цилиндров (обычно представленных в нечетном количестве) вместе с картером и воздушным винтом вокруг неподвижного коленчатого вала, закреплённого на моторной раме . Подобные двигатели широко использовались во времена первой мировой войны и гражданской войны в России . На протяжений этих войн эти двигатели превосходили по удельной массе двигатели водяного охлаждения, поэтому в основном использовались именно они (в истребителях и самолетах-разведчиках) .
Звёздообразный двигатель (радиальный двигатель ) - поршневой двигатель внутреннего сгорания, цилиндры которого расположены радиальными лучами вокруг одного коленчатого вала через равные углы. Звездообразный двигатель имеет небольшую длину и позволяет компактно размещать большое количество цилиндров. Нашел широкое применение в авиации.
Звёздообразный двигатель отличается от других типов конструкцией кривошипно-шатунного механизма. Один шатун является основным, он похож на шатун обычного двигателя с рядным расположением цилиндров, остальные являются вспомогательными и крепятся к основному шатуну по его периферии (такой же принцип применяется в V-образных двигателях). Недостатком конструкции звездообразного двигателя является возможность протекания масла в нижние цилиндры во время стоянки, в связи с чем требуется перед запуском двигателя убедиться в отсутствии масла в нижних цилиндрах. Запуск двигателя при наличии масла в нижних цилиндрах приводит к гидроудару и поломке кривошипно-шатунного механизма.
Четырёхтактные звездообразные моторы имеют нечётное число цилиндров в ряду - это позволяет давать искру в цилиндрах «через один».


Ро́торно-поршнево́й дви́гатель внутреннего сгорания (РПД, двигатель Ва́нкеля), конструкция которого разработана в году инженером компании NSU Вальтером Фройде , ему же принадлежала идея этой конструкции. Двигатель разрабатывался в соавторстве с Феликсом Ванкелем , работавшим над другой конструкцией роторно-поршневого двигателя.
Особенность двигателя - применение трёхгранного ротора (поршня), имеющего вид треугольника Рело , вращающегося внутри цилиндра специального профиля, поверхность которого выполнена по эпитрохоиде .

Конструкция
Установленный на валу ротор жёстко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестернёй - статором. Диаметр ротора намного превышает диаметр статора, несмотря на это ротор с зубчатым колесом обкатывается вокруг шестерни. Каждая из вершин трёхгранного ротора совершает движение по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре с помощью трёх клапанов.
Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля , Стирлинга или Отто без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами. Отсутствие механизма газораспределения делает двигатель значительно проще четырехтактного поршневого (экономия составляет около тысячи деталей), а отсутствие сопряжения (картерное пространство, коленвал и шатуны) между отдельными рабочими камерами обеспечивают необычайную компактность и высокую удельную мощность. За один оборот ванкель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя. Смесеобразование, зажигание , смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания.
Практическое применение получили двигатели с трёхгранными роторами, с отношением радиусов шестерни и зубчатого колеса: R:r = 2:3, которые устанавливают на автомобилях, лодках и т. п.

Конфигурация двигателя W
Двигатель разработан компаниями Audi и Volkswagen и представляет собой два V-образно расположенных двигателя . Крутящий момент снимается с обоих коленвалов.

Роторно-лопастной двигатель внутреннего сгорания (РЛД, двигатель Вигрия́нова), конструкция которого разработана в 1973 году инженером Михаилом Степановичем Вигрияновым. Особенность двигателя - применение вращающегося сложносоставного ротора размещённого внутри цилиндра и состоящего из четырех лопастей.
Конструкция На паре соосных валов установлены по две лопасти, разделяющие цилиндр на четыре рабочие камеры. Каждая камера за один оборот совершает четыре рабочих такта (набор рабочей смеси, сжатие, рабочий ход и выброс отработанных газов). Таким образом, в рамках данной конструкции возможно реализовать любой четырехтактный цикл. (Ничто не мешает использовать данную конструкцию для работы парового двигателя, только лопастей придется использовать две вместо четырех.)


Уравновешанность двигателей


Степень уравновешенности
(зеленая ячейка- уравновешенные силы или моменты, красная -
свободные)


1


R2


R2*


V2


B2


R3


R4


V4


B4


R5


VR5


R6


V6


VR6


B6


R8


V8


B8


V10


V12


B12


Силы инерции первого
порядка

Независимо от конструкции, любой электродвигатель устроен одинаково: внутри цилиндрической проточки в неподвижной обмотке (статоре) вращается ротор, в котором возбуждается магнитное поле, приводящее к отталкиванию его полюсов от статора.

Поддержание постоянного отталкивания требует либо перекоммутации обмоток ротора, как это делается на коллекторных электродвигателях, либо создания вращающегося магнитного поля в самом статоре (классический пример - асинхронный трехфазный двигатель).

Виды электродвигателей и их особенности

Экономичность и надежность оборудования напрямую зависят от электродвигателя, поэтому его выбор требует серьезного подхода.

Посредством электродвигателя электрическая энергия преобразуется в механическую. Мощность, количество оборотов в минуту, напряжение и тип питания являются основными показателями электродвигателей. Также, большое значение имеют массогабаритные и энергетические показатели.

Электродвигатели обладают большими преимуществами. Так, по сравнению с тепловыми двигателями сопоставимой мощности, по размеру электрические двигатели намного компактнее. Они прекрасно подходят для установки на небольших площадках, например в оборудовании трамваев, электровозов и на станках различного назначения.

При их использовании не выделяется пар и продукты распада, что обеспечивает экологическую чистоту. Электродвигатели делятся на двигатели постоянного и переменного тока, шаговые электродвигатели, серводвигатели и линейные.

Электродвигатели переменного тока, в свою очередь, подразделяются на синхронные и асинхронные.

  • Электродвигатели постоянного тока
    Используются для создания регулируемых электроприводов с высокими динамическими и эксплуатационными показателями. К таким показателям относятся высокая равномерность вращения и перезагрузочная способность. Их используют для комплектации бумагоделательных, красильно-отделочных и подъемно-транспортных машин, для полимерного оборудования, буровых станков и вспомогательных агрегатов экскаваторов. Часто они применяются для оснащения всех видов электротранспорта.

  • Пользуются более высоким спросом, чем двигатели постоянного тока. Их часто используют в быту и в промышленности. Их производство намного дешевле, конструкция проще и надежнее, а эксплуатация достаточно проста. Практически вся домашняя бытовая техника оборудована электродвигателями переменного тока. Их используют в стиральных машинах, кухонных вытяжных устройствах и т.д. В крупной промышленности с их помощью приводится в движение станковое оборудование, лебедки для перемещения тяжелого груза, компрессоры, гидравлические и пневматические насосы и промышленные вентиляторы.
  • Шаговые электродвигатели
    Действуют по принципу преобразования электрических импульсов в механическое перемещение дискретного характера. Большинство офисной и компьютерной техники оборудовано ими. Такие двигатели очень малы, но высокопродуктивны. Иногда и востребованы в отдельных отраслях промышленности.
  • Серводвигатели
    Относятся к двигателям постоянного тока. Они высокотехнологичны. Их работа осуществляется посредством использования отрицательной обратной связи. Такой двигатель отличается особой мощностью и способен развивать высокую скорость вращения вала, регулировка которого осуществляется с помощью компьютерного обеспечения. Такая функция делает его востребованным при оборудовании поточных линий и в современных промышленных станках.
  • Линейные электродвигатели
    Обладают уникальной способностью прямолинейного перемещения ротора и статора относительно друг друга. Такие двигатели незаменимы для работы механизмов, действие которых основано на поступательном и возвратно-поступательном движении рабочих органов. Использование линейного электродвигателя способно повысить надежность и экономичность механизма благодаря тому, что значительно упрощает его деятельность и почти полностью исключает механическую передачу.
  • Синхронные двигатели
    Являются разновидностью электродвигателей переменного тока. Частота вращения их ротора равняется частоте вращения магнитного поля в воздушном зазоре. Их используют для компрессоров, крупных вентиляторов, насосов и генераторов постоянного тока, так как они работают с постоянной скоростью.
  • Асинхронные двигатели
    Также, относятся к категории электродвигателей переменного тока. Частота вращения их ротора отличается от частоты вращения магнитного поля, которое создается током обмотки статора. Асинхронные двигатели разделяются на два типа, в зависимости от конструкции ротора: с короткозамкнутым ротором и фазным ротором. Конструкция статора в обоих видах одинакова, различие только в обмотке.

Электродвигатели незаменимы в современном мире. Благодаря им значительно облегчается работа людей. Их использование помогает снизить затрату человеческих сил и сделать повседневную жизнь намного комфортнее.

Обозначение серии электродвигателя:

  • АИР, А, 4А, 5А, АД, 7АVЕR - общепромышленные электродвигатели с привязкой мощностей по ГОСТ 51689-2000
  • АИС, 6А, IMM, RA, AIS - общепромышленные электродвигатели с привязкой мощностей по евростандарту DIN (CENELEC)
  • АИМ, АИМЛ, 4ВР, ВА, АВ, ВАО2, 1ВАО, 3В - взрывозащищенные электродвигатели
  • АИУ, ВРП, АВР, 3АВР, ВР - взрывозащищенные рудничные электродвигатели
  • А4, ДАЗО4, АОМ, ДАВ, АО4 - высоковольтные электродвигатели

Признак модификации электродвигателя:

  • М - модернизированный электродвигатель (например: АДМ63А2У3)
  • К - электродвигатель с фазным ротором (например: 5АНК280A6)
  • Х - электродвигатель в алюминиевой станине (например: 5АМХ180М2У3)
  • Е - однофазный электродвигатель 220В (например: АИРЕ80С2У3)
  • Н - электродвигатель защищенного исполнения с самовентиляцией (например: 5АН200М2У3)
  • Ф - электродвигатель защищенного исполнения с принудительным охлаждением (например: 5АФ180М2У3)
  • С - электродвигатель с повышенным скольжением (например: АИРС180М4У3)
  • В - встраиваемый электродвигатель (например: АДМВ63В2У3)
  • Р - электродвигатель с повышенным пусковым моментом (например: АИРР180S4У3)
  • П - электродвигатель для привода вентиляторов в птицеводческих хозяйствах («птичник») (например: АИРП80А6У2)

Общепринятое климатическое исполнение ГОСТ - распространяется на все виды машин, приборов, электродвигатели и другие технические изделия. Полная расшифровка обозначения приведена далее.

Буква обозначает климатическую зону

  • У — умеренный климат;
  • Т — тропический климат;
  • ХЛ — холодный климат;
  • М — морской умеренно-холодный климат;
  • О — общеклиматическое исполнение (кроме морского);
  • ОМ — общеклиматическое морское исполнение;
  • В — всеклиматическое исполнение.
  • 1 — на открытом воздухе;
  • 2 — под навесом или в помещении, где условия такие же, как на открытом воздухе, за исключением солнечной радиации;
  • 3 — в закрытом помещении без искусственного регулирования климатических условий;
  • 4 — в закрытом помещении с искусственным регулированием климатических условий (вентиляция, отопление);
  • 5 — в помещениях с повышенной влажностью, без искусственного регулирования климатических условий

По типу работы данные двигатели делятся на:

  • синхронные двигатели;
  • асинхронные двигатели;.

По количеству фаз двигатели бывают:

  • однофазные
  • двухфазные
  • трехфазные

Принципное отличие заключается в том, что в синхронных машинах 1-ая гармоника магнитодвижущей силы статора перемещается со скоростью вращения ротора (по этому сам ротор крутится со скоростью вращения магнитного поля в статоре), а у асинхронных — есть и остается разница меж скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле крутится быстрее ротора).

Ротор такого электродвигателя - это металлический цилиндр, в пазы которого под углом к оси вращения запрессованы или залиты токопроводящие жилы, на торцах ротора объединенные кольцами в одно целое. Переменное магнитное поле статора возбуждает в роторе, напоминающем беличье колесо, противоток и, соответственно, отталкивающее его от статора магнитное поле.

В зависимости от числа обмоток статора асинхронный двигатель может быть:

  • Однофазным - в этом случае главным недостатком двигателя становится невозможность самостоятельного запуска, так как вектор силы отталкивания проходит строго через ось вращения. Для начала работы двигателю необходим или стартовый толчок, или включение отдельной пусковой обмотки, создающей дополнительный момент силы, смещающий их суммарный вектор относительно оси якоря.
  • Двухфазный электродвигатель имеет две обмотки, в которых фазы смещены на угол, соответствующий геометрическому углу между обмотками. В этом случае в электродвигателе создается так называемое вращающееся магнитное поле (спад напряженности поля в полюсах одной обмотки происходит синхронно с нарастанием его в другой). Такой двигатель становится способным к самостоятельному запуску, однако имеет трудности с реверсом. Поскольку в современном электроснабжении не используются двухфазные сети, фактически электродвигатели этого рода применяются в однофазных сетях с включением второй фазы через фазовращающий элемент (обычно - конденсатор).
  • Трехфазный асинхронный электродвигатель - наиболее совершенный тип асинхронного мотора, так как в нем появляется возможность легкого реверса - изменение порядка включения фазных обмоток изменяет направление вращения магнитного поля, а соответственно и ротора.

Коллекторные двигатели переменного тока используются в тех случаях, когда требуется получение высоких частот вращения (асинхронные электродвигатели не могут превышать скорость вращения магнитного потока в статоре - для промышленной сети 50 Гц это 3000 об/мин). Кроме того, они выигрывают в пусковом крутящем моменте (здесь он пропорционален току, а не оборотам) и имеют меньший пусковой ток, меньше перегружая электросеть при запуске. Также они позволяют легко управлять своими оборотами.

Обратной стороной этих достоинств становится дороговизна (требуется изготовление ротора с наборным сердечником, несколькими обмотками и коллектором, который к тому же сложнее балансировать) и меньший ресурс. Помимо необходимости в регулярной замене стирающихся щеток, со временем изнашивается и сам коллектор.

Синхронный электродвигатель имеет ту особенность, что магнитное поле ротора индуцируется не магнитным полем статора, а собственной намоткой, подключенной к отдельному источнику постоянного тока. Благодаря этому частота его вращения равна частоте вращения магнитного поля статора, откуда и происходит сам термин «синхронный».

Как и двигатель постоянного тока, синхронный двигатель переменного тока является обратимым: при подаче напряжения на статор он работает как электродвигатель, при вращении от внешнего источника он сам начинает возбуждать в фазных обмотках переменный ток. Основная область использования синхронных электродвигателей - высокомощные приводы. Здесь увеличение КПД относительно асинхронных электромоторов означает значительное снижение потерь электроэнергии.

Также синхронные двигатели используются в электротранспорте. Однако, для управления скоростью в этом случае требуются мощные частотные преобразователи, зато при торможении возможен возврат энергии в сеть.

Так как постоянный ток не способен создать изменяющееся магнитное поле, обеспечение непрерывного вращения ротора требует принудительной перекоммутации обмоток, или дискретного изменения направления магнитного поля.

Старейший из известных способов - это использование электромеханического коллектора. В этом случае якорь электродвигателя имеет несколько разнонаправленных обмоток, соединенных с находящимися в соответствующем положении относительно щеток ламелями коллектора. В момент включения питания возникает импульс в обмотке, соединенной со щетками, после чего ротор проворачивается, и в том же месте относительно полюсов статора включается новая обмотка.

Так как намагниченность статора во время работы коллекторного электродвигателя постоянного тока не изменяется, вместо сердечника с обмотками могут использоваться мощные постоянные магниты, что сделает мотор компактнее и легче.

Данные двигатели с наличием щёточно-коллекторного узла бывают:

  • Колекторные - электрическое устройство, в котором датчиком положения ротора и переключателем тока в обмотках является одно и то же устройство — щёточно-коллекторный узел.
  • Бесколекторные - замкнутая электромеханическая система, состоящая из синхронного устройства с синусоидальным распределением магнитного поля в зазоре, датчика положения ротора, преобразователя координат и усилителя мощности. Более дорогой вариант в сравнение с колекторными двигателями.

Коллекторный двигатель не лишен ряда недостатков. Это:

  • высокий уровень помех, как передаваемых в питающую сеть при переключении обмоток якоря, так и возбуждаемых искрением щеток;
  • неизбежный износ коллектора и щеток;
  • повышенная шумность при работе.

Современная силовая электроника позволила избавиться от этих недостатков, применяя так называемый шаговый двигатель - в нем ротор имеет постоянную намагниченность, а внешнее устройство последовательно меняет направление тока в нескольких обмотках статора. Фактически за единичный импульс тока ротор проворачивается на фиксированный угол (шаг), откуда и пошло название электромоторов такого типа.

Шаговые электродвигатели бесшумны, а также позволяют в широчайших пределах регулировать как крутящий момент (амплитудой импульсов), так и обороты (частотой), а также легко реверсируются изменением порядка следования сигналов. По этой причине они широко используются в сервоприводах и автоматике, однако их максимальная мощность определяется возможностями силовой управляющей схемы, без которой шаговые двигатели неработоспособны.

Электродвигатель однофазный асинхронный

Устройство представляет собой асинхронный электромотор, в котором на статоре имеется только одна рабочая обмотка. Оборудование предназначено для подключения к однофазной сети переменного тока. Агрегат применяется для комплектации приводных систем промышленной и бытовой техники небольшой мощности — насосов, станков, шлифовальных машин, соковыжималок, мясорубок, вентиляторов, компрессоров и т. д.

Преимущества этого оборудования:

  • простая конструкция;
  • экономичное расходование электроэнергии;
  • универсальность (однофазный электродвигатель применяется во многих производственных сферах);
  • приемлемый уровень вибрации и шума во время работы;
  • повышенный срок эксплуатации;
  • устойчивость к различным типам перегрузок.

Отдельным плюсом однофазных электродвигателей указанных производителей является возможность подключения агрегата к сети 220 Вольт. Благодаря этому устройство может использоваться не только на производстве, но и для решения повседневных задач бытового плана. Представленные однофазные асинхронные электродвигатели легко подключаются и не требуют специального технического обслуживания

Электродвигатель трехфазный асинхронный

Агрегат представляет собой асинхронный мотор переменного тока, состоящий из ротора и статора с тремя обмотками. Устройство предназначено для подключения к трехфазной сети переменного тока. Этот асинхронный электродвигатель нашел широкое применение в промышленности: его нередко используют для комплектации мощного оборудования, например, компрессоров, дробилок, мельниц и центрифуг. Кроме того, агрегат включен в конструкцию многих устройств автоматики и телемеханики, медицинских приборов, а также различных станков и пил, предназначенных для применения в бытовых условиях.

Среди достоинств представленных устройств следует отметить:

  • высокие показатели эффективности и производительности;
  • универсальность (трехфазный асинхронный электродвигатель применяется в различных сферах деятельности);
  • низкий уровень вибрации и шума во время работы;
  • легкий, но при этом надежный и износостойкий корпус;
  • соответствие строгим требованиям европейских стандартов качества.

Кроме того, трехфазные асинхронные электродвигатели характеризуются простотой установки и длительным сроком службы. Стоит отметить, что на модели некоторых производителей можно установить дополнительные модули по запросу клиента. Например, трехфазные электродвигатели серии BN могут быть оснащены системой принудительного охлаждения, которая позволяет обеспечить исправную и эффективную работу агрегата на низких оборотах.

mirprivoda.ru, eltechbook.ru

Двигатель внутреннего сгорания (ДВС) – одно из главных устройств в , служащее для преобразования энергии топлива в механическую энергию, которая, в свою очередь, выполняет полезную работу. построен на том, что топливо в соединении с воздухом образуют воздушную смесь. Циклически сгорая в камере сгорания, воздушно-топливная смесь обеспечивает высокое давление, направленное на поршень, а тот, в свою очередь, вращает коленчатый вал через . Его энергия вращения передается автомобиля.

Для запуска двигателя внутреннего сгорания часто используется – обычно электрический двигатель, проворачивающий коленвал. В более тяжелых дизельных двигателях в качестве стартера и для той же цели применяется вспомогательный ДВС («пускач»).

Существуют следующие типы двигателей (ДВС) :

  1. бензиновые
  2. дизельные
  3. газовые
  4. газодизельные
  5. роторно-поршневые

Также ДВС классифицируются: по виду топлива, по числу и расположению цилиндров, по способу формирования топливной смеси, по количеству тактов работы двигателя внутреннего сгорания и т.д.

Бензиновые и дизельные двигатели

Бензиновые двигатели внутреннего сгорания – наиболее распространенные из автомобильных двигателей. Топливом для них служит бензин . Проходя через , бензин попадает через распыляющие форсунки в карбюратор или впускной коллектор, а затем эта воздушно-топливная смесь подается в цилиндры, сжимается под воздействием поршневой группы, поджигается искрой от свечей зажигания.

Карбюраторная система считается устаревшей, поэтому сейчас повсеместно используется инжекторная система подачи топлива. Распыляющие топливо форсунки (инжекторы) осуществляют впрыск либо непосредственно в цилиндр, либо во впускной коллектор. Инжекторные системы делятся на механические и электронные. Во-первых для дозации топлива используются механические рычаговые механизмы плунжерного типа, с возможностью электронного контроля топливной смеси. Во вторых процесс составления и впрыска топлива полностью возложен на электронный блок управления (ЭБУ). Инжекторные системы необходимы для более тщательного сгорания топлива и минимизации вредных продуктов горения.

Дизельные ДВС используют специальное дизтопливо . Двигатели автомобиля подобного типа не имеют : топливная смесь, попадающая в цилиндры через форсунки, способна взрываться под действием высокого давления и температуры, которые обеспечивает поршневая группа.

Газовые двигатели

Газовые двигатели используют газ в качестве топлива – сжиженный, генераторный, сжатый природный. Распространение таких двигателей было обусловлено растущими требованиями к экологической безопасности транспорта. Исходное топливо хранится в баллонах под большим давлением, откуда через испаритель попадает в газовый редуктор, теряя давление. Далее процесс аналогичен инжекторным бензиновым ДВС. В некоторых случаях газовые системы питания могут не использовать в своем составе испарители.

19.04.2016

Современные легковые автомобили различаются не только функциональным, но и техническим наполнением. Производители соревнуются друг перед другом в качестве и надежности моделей, стараясь предоставить клиентам надежный, управляемый и доступный по цене продукт. С момента зарождения автомобилестроения серьезных изменений познала одна из главных составляющих - двигатель автомобиля. Какие же виды моторов сегодня бывают? В чем особенности существующих типов двигателей легковых автомобилей?




Классификации

Первое, с чего стоит начать - общей классификации двигателей легковых автомобилей, которая дает общее представление о конструкциях и особенностях этих узлов.



Все моторы по типу смесеобразования можно разбить на две основные группы:





В основе классификации поршневых моторов внутреннего сгорания лежит тип топлива, который применяется для работы силового узла:


  • Газ. В случае с применением газообразного топлива может применяться газ генераторного, сжиженного или природного типа.


  • Жидкое горючее. Такое топливо является продуктом переработки нефтяных продуктов, в результате чего образуется дизельное топливо, керосин или бензин.


  • Смешанный вид топлива. Газожидкостные моторы способны работать на смеси различных типов горючего - жидкого и газообразного. При этом в основе лежит именно газ, а жидкая форма горючего применяется только в роли зажигательной смеси. Существуют и многотопливные моторы, которые могут длительное время функционировать с применением различных типов топлива, начиная от сырой нефти и заканчивая бензином с высоким октановым числом.



Если классифицировать моторы внутреннего сгорания, то они различаются по ряду признаков:


  • По особенностям зажигания подготовленной горючей смеси - с зажиганием от силы сжатия или с зажиганием от свечи (принудительное воспламенение).


  • По типу реализации рабочего цикла - с 2-мя и 4-мя тактами, с наддувом или без него.



Кроме этого, ДВС классифицируются по ряду типов:


  • По особенностям системы охлаждения (может быть воздушным или жидкостным).


  • По типу образования смеси - с внутренним и внешним образованием горючей смеси. К первому типу относятся бензиновые моторы с впрыском смеси в цилиндр и дизельные агрегаты, а ко второму - моторы на газу и карбюраторные типы.


  • По позиции цилиндров - оппозитные, с V-образным расположением (2-рядные), с вертикальным и горизонтальным положением.



Бензиновый и дизельный мотор

Наибольшее распространение в автомобилестроении получили два типа мотора (по типу применяемого топлива) - бензиновый и дизельный. Именно им стоит уделить наибольшее внимание:


1. Бензиновый силовой агрегат. В двигателе, который работает на бензине, подразумевается воспламенение смеси с помощью обычной искры. Бензиновые моторы можно классифицировать по типу питания:


  • Карбюраторный мотор. Особенность таких агрегатов в том, что смешивание воздуха и топлива происходит в карбюраторе, а далее процесс продолжается уже в трубопроводе впуска. Главные минусы такого типа - низкий уровень экологичности, чрезмерная «прожорливость», меньший уровень надежности (в сравнении с другими типами мотора). Именно по этим причинам такие типы силовых агрегатов потеряли свою популярность и почти не выпускаются;


  • Впрысковый мотор. Здесь главным элементом является инжектор, подающий горючую смесь через главный трубопровод (прямой тип впрыска). Топливо может подаваться одним или несколькими форсунками, установленными перед клапанами. В последнем случае речь идет о распределительном впрыске, управляемом ЭБУ;


  • Силовой узел с непосредственным впрыском. Особенность такого агрегата в том, что подача горючей смеси осуществляется прямо в камеру сгорания. Благодаря такой конструкции, удалось решить сразу две проблемы - устранить вредные вещества из выхлопа и уменьшить потребление топлива.



2. Дизельный силовой агрегат. Главная особенность, которая выделяет «дизели» - способность воспламенять горючую смесь не за счет образуемой свечи, а благодаря мощному сжатию. Если рассматривать принцип действия дизеля, то можно выделить четыре такта, в каждом из которых происходят определенные действия:



  • Сжатие. В этом случае поршень идет вверх и сжимает расположенный внутри воздух. В пиковый момент внутрь камеры сгорания происходит выброс дизельного горючего;


  • Рабочих ход. Наличие огромного давления и воздуха способствует воспламенению смеси. Теперь создается обратное давление газов, которое выталкивает поршень и заставляет опускаться его в нижнюю точку;


  • Выпуск. Поршень начинает движение вверх. Одновременно с этим открываются выпускные клапана, обеспечивающие выход из камеры сгорания лишних продуктов сгоревшего топлива.


Все дизельные моторы можно классифицировать и по типу камеры сгорания. Последняя бывает распределенной или нераспределенной. В первом случае горючая смесь подается сначала в дополнительную, а уже потом в основную камеру. Такой тип исполнения позволяет добиться большей экономии топлива. Что касается моторов с нераспределенной камерой, то их особенность - в расположении камеры и подаче дизельного горючего в пространство над поршнем. Плюс - экономичность. Минус - высокий уровень шума.




Бензиновый и дизельный мотор: особенности




  • Дизельное топливо обходится дешевле бензина;


  • Потребление дизеля ниже, что и обуславливает дополнительную экономию. Если брать современные модели авто, то потребление дизельных моторов может быть на 50-60% ниже, что экономит средства в кошельке;


  • Ресурс силового агрегата, который работает на дизеле, выше, чем у его собрата.


Нельзя не отметить и ряд минусов - дороговизна дизельного мотора и сложность обслуживания.



2. Момент вращения. Если рассматривать крутящий момент, как ключевую характеристику, то здесь в лидерах дизель. Эта особенность хороша не только для легковушек, но и для грузовых авто. Именно высокий момент вращения способствует быстрому троганию транспорта и успешному маневрированию при большой нагрузке и небольших скоростях.



3. Эксплуатация. Не менее важный момент - удобство использования автомобиля с тем или иным мотором. Здесь стоит выделить главный недостаток дизеля - необходимость переходить на зимний тип топливной смеси. Если своевременно не осуществить переход, то вместо жидкости в баке можно увидеть затвердевшую смесь. В итоге придется не только греть машину, но и ремонтировать многие элементы топливной системы.





5. Шум. Если анализировать уровень шума, то здесь впереди бензиновый силовой агрегат. Многим автолюбителя не нравится раздражающий «дизельный» стук. С другой стороны, повышенный шум будет иметь место лишь при неправильной настройке. Кроме этого, производители делают все возможное, чтобы уровни шума бензиновых и дизельных моторов почти не различались.



6. Экологическая составляющая. Не менее важный момент - экологичность двигателя (особенно сегодня). Современные моторы выпускают в окружающую среду меньший объем окиси углерода, являющегося главным загрязнителем атмосферы. К сожалению, на дорогах пока много автомобилей, имеющих высокий уровень вредных элементов в выбросе, и загрязняющих окружающую среду. В плане экологичности лидером является бензиновый мотор, ведь здесь конструкторам удалось создать множество типов узлов, улучшающих состав выхлопных газов и снижающих их уровень вреда.



7. Пожароопасность. С позиции вероятности воспламенения более безопасным считается дизель, ведь его топливо загорается лишь при смешивании и кислородом и под высоким давлением. Что касается бензина, то он летуч, а его пары могут воспламениться от малейшей искры.




Основные схемы

При рассмотрении типов двигателей для легковых автомобилей нельзя пропустить тему конструктивной особенности агрегата. Здесь более чем за сотню лет ученым удалось создать множество вариантов моторов, отличающихся не только числом, но и расположением цилиндров. Из основных схем двигателей легковых авто стоит выделить:


  • Рядный мотор. Этот тип силового агрегата появился первым. Число цилиндров в таких двигателя может различаться и бывает от двух до восьми. Для легковых машин больше характерны 4-цилидровые моторы. Некоторые производители предпочитают устанавливать «шестерки» из-за лучшей балансировки. Что касается 8-цилиндровых моторов, то они уже не пользуются спросом. Преимущества рядного типа мотора - простота в эксплуатации и надежность. Расположение силового агрегата (несмотря на массивность) может быть различным - поперек или вдоль. Собственно, размеры и повышенная масса являются главными минусами этого мотора. В противовес стоит выделить уравновешенность.


  • Мотор V-образного типа. Особенность таких моторов - расположение цилиндров в виде буквы V. Подобная конструкция была разработана в «Старом свете» и там нашла применение во многих моделях автомобилей. Сегодня V-образные моторы в большей части устанавливаются на машинах производства США. Главные плюсы таких двигателей - компактность и особое расположение цилиндров (под углом друг к другу). Минусы конструкции - чрезмерная «прозорливость» и низкий уровень уравновешенности. Да и высокую стоимость сложно отнести к преимуществам.


  • Оппозитные моторы. Однажды конструкторы разработали горизонтальный тип мотора, который позволил опустить центр тяжести и улучшить развесовку транспортного средства. Количество цилиндров - четыре. Несмотря на ряд плюсов, оппозитные моторы встречаются редко. Главный минус - большие габариты и сложность конструкции. Автолюбители часто жалуются и на дороговизну ремонтных работ.



Есть ли альтернатива?

Кроме описанных выше моторов (бензиновых и дизельных) стоит выделить еще два типа:


  • Роторно-поршенвой мотор. Главное отличие в том, что поршень осуществляет не поступательные движения (как это происходит обычно), а вращается по определенной траектории. Благодаря такой особенности, роторно-поршневой двигатель быстрее набирает обороты. Нельзя не выделить и ряд минусов - небольшой ресурс, высокая цена, плохие параметры экологии.


  • «Гибриды». Все большим спросом пользуются гибридные силовые установки, в составе которых находится электромотор, поршневой силовой агрегат, генератор и АКБ. В зависимости от особенностей эксплуатации, режим работы «гибрида» может быть различным. Так, при активном разгоне электрический и поршневой мотор работают в паре. Во время торможения осуществляется подзаряд АКБ, а в режиме города работает лишь электрический мотор.



Итоги

Сегодня разработано множество разных типов двигателей для легковых автомобилей, каждый из которых имеет особенности, минусы и плюсы. При этом практика применения и действующие требования способствуют выбору только лучших вариантов, которые и применяются на современном транспорте.


По сравнению со старыми автомобилями, новые отличаются конструктивными особенностями отдельных узлов. С каждым годом современные и ведущие производители усовершенствуют не только модели машин, но и учитывают другие важные элементы, связанные с деталями. С появлением новейших инновационных технологий, изменилось многое.

Для того чтобы узнать какие существуют виды , необходимо внимательно прочитать статью и прислушаться к советам профессионалов. В первую очередь следует детально ознакомиться с особенностями ДВС. Двигатель является устройством, которое преобразовывается в механическую работу в процессе сгорания топлива. Каждый совершает работу исключительно по циклу, которые состоит из 4 фаз.

Классификация двигателей

Вначале впускается воздух или смесь с наличием горючего, например, бензина или дизеля, а затем, сжимается рабочая смесь. Вследствие чего происходит действие рабочего хода. Когда, наконец, сгорает рабочая смесь, выпускается отработавший газ. Важно отметить, что самыми распространенными считаются поршневые, бензиновые двигатели.

Бензиновый двигатель пользуется большой популярностью. Этот распространенный тип двигателя обладает специальной конструкцией, которая отличается надежностью и долговечностью.

Всем известно, что бензин и его разновидность - это самый распространенный и доступный источник энергии. Подобный силовой агрегат внедрен сложнейшими инновационными технологиями, которые распределяют фазу и обеспечивают электронное управление вспрыском топлива. Для ремонта данной конструкции не потребуется потратить много средств и усилий. Так как процесс достаточно легок и прост.

Современный агрегат, функционирующий на бензине, обладает определенным преимуществом. То есть происходит действие зажигания топливовоздушных смесей при помощи загорания искровых свечей. Однако, топливочная система питания, делится на несколько основных категорий.

Следовательно, бензин смешивается с воздухом в карбюраторном устройстве. Процесс осуществляется через впускной трубопровод. Подобные двигатели отличаются от других агрегатов особой экономичностью.

Впрысковые двигатели подают горючее при помощи инжектора. Топливо поступает в впускной трубопровод. В данном агрегате увеличивается мощность до максимума и, соответственно, горячее расходуется экономичнее. Естественно, уменьшается токсичность отработавшего горючего (газа). Этот процесс осуществляется за счет поступления топлива. Процесс подачи энергии проходит под воздействием специально установленных электронных систем.

В дизельном устройстве воспламеняется смесь топлива при взаимодействии с воздухом. Этот процесс происходит в том случае, если повышается температура при сжатии топлива. Сравнивая бензиновый двигатель с дизельным можно четко сказать, что соотношение экономичности достигает от пятнадцати до двадцати процентов.

При установке дизельного устройства улучшается горение топливовоздушной смеси. Отсутствие дроссельных заслонок способствует созданию сопротивления движения воздуха, когда происходит процесс впуска и, соответственно, увеличению расхода горючего.

Газовый агрегат считается сжатым природным, генераторным и сжиженным топливом. Распространенный двигатель и другие виды агрегата обеспечивают экологическую безопасность транспортного средства. В некоторых случаях газ хранят в специальном баллоне, который постепенно теряет давление при поступлении через испаритель. Газовая система, может, даже и не использоваться в составе испарителя.

Старые дизельные конструкции менее экономичны и практичны. Мощность сжатия составляет в полутора раза больше, происходит увеличение давления в цилиндре. Ранние модели слишком шумные из-за того, что горит топливо. Происходит также меньший оборот коленвала. Теперь вам известные все типы автомобильных двигателей, которые наиболее востребованы и популярны.

Какие бывают новые и современные типы двигатели кроме дизельных и бензиновых

Теперь, рассмотрим виды двигателей, которые отличаются новыми технологиями. Рядный агрегат рекомендован для употребления небольшого цилиндра. Наиболее практичным и удобным считается 6 цилиндровый двигатель. Применение V-образного двигателя способствует уменьшению длины агрегата.

Однако, при этом увеличивается его ширина. Каждый цилиндр данного устройства расположен в 2 разных плоскостях и обозначается «V». В основном шести и восьми цилиндровые двигатели оснащены данной моделью.

Угол развала оппозитного двигателя составляет 180 градусов. В результате чего высота двигателя считается наименьшей. Угол развала VR двигателя составляет примерно пятнадцать градусов.

Благодаря этим параметрам происходит уменьшение как продольного, так и поперечного размера двигателя. Например, W-двигатель оснащен двумя вариантами компоновки, то есть содержание трех цилиндров и большой угол развала. Компактные цилиндры выпускаются серией W8 и W12.

Следует упомянуть о рогативных и звездообразных агрегатах. Например, звездообразное устройство по-другому называют радиальным. ДВС обладает цилиндрами, расположенные под воздействием радиальных лучей. Коленчатый вал окружен жданными цилиндрами, которые проходят через равные углы. Небольшая длина агрегата способствует удобному размещению большого количества цилиндров. В основном этот агрегат применяется в авиации.

Для рогативного агрегата характерно вращение цилиндров. Цилиндры же, в свою очередь, представлены в нечетных количествах. В них также присутствует воздушный винт и картер. Эти изделия закрепляются на моторных рамах. Рогативные агрегаты широко применялись в военный период.

Основные параметры агрегатов

Имеют специальные параметры. Показатель двигателей определяется силой, которая осуществляет действие в цилиндре. Соответственно, при этом действии учитывается система зажигания и питания агрегата, а также степень износа каждой детали.

Рассмотрев и основные характеристики, можно сделать вывод о каждом отдельном устройстве. Принцип действия агрегата определяется по предохранительному клапану, свечами зажигания, выпуску, рубашкой водяного охлаждения, цилиндром с наличием впускных и выпускных окон, воздухопроводом, приводным нагревателем, выпускным КШМ, впускным КШМ.

Современные автомобили оснащены от двух до шестнадцати цилиндров. Различие определяется лишь при подсчете мощности и объема. Однако, существуют и другие параметры. Стоит также отметить тот факт, что для изготовления новых моделей, разработчики воспользовались тремя типами материалов, например, чугуном либо другими ферросплавами, которые обладают наибольшей прочностью.

Вот, к примеру, алюминий обладает малым весом и средней прочностью, магниевые сплавы наименьшим весом и высокой прочностью. Но для приобретения данного средства придется потратить немало денег.

Специалисты, утверждают, что все эти параметры разделяют лишь звуковибрационное и ресурсное качество. Во всех остальных особенностях они практически схожи.

Отдачу максимального уровня измеряют в лошадиных силах или в киловаттах. Для определения максимального тягового усилия приходится измерять в ньютонах-метрах. Теперь вы знаете, какие бывают двигатели и как следует определять определенные модели.



Поделиться