В идеальном тепловом двигателе работающем по циклу. Тепловой двигатель

Тепловой двигатель - двигатель, в котором происходит превращение внутренней энергии топлива, которое сгорает, в механическую работу.

Любой тепловой двигатель состоит из трех основных частей: нагревателя , рабочего тела (газ, жидкость и др.) и холодильника . В основе работы двигателя лежит циклический процесс (это процесс, в результате которого система возвращается в исходное состояние).

Цикл Карно

В тепловых двигателях стремятся достигнуть наиболее полного превращения тепловой энергии в механическую. Максимальное КПД.

На рисунке изображены циклы, используемые в бензиновом карбюраторном двигателе и в дизельном двигателе. В обоих случаях рабочим телом является смесь паров бензина или дизельного топлива с воздухом. Цикл карбюраторного двигателя внутреннего сгорания состоит из двух изохор (1–2, 3–4) и двух адиабат (2–3, 4–1). Дизельный двигатель внутреннего сгорания работает по циклу, состоящему из двух адиабат (1–2, 3–4), одной изобары (2–3) и одной изохоры (4–1). Реальный коэффициент полезного действия у карбюраторного двигателя порядка 30%, у дизельного двигателя – порядка 40 %.

Французский физик С.Карно разработал работу идеального теплового двигателя. Рабочую часть двигателя Карно можно представить себе в виде поршня в заполненном газом цилиндре. Поскольку двигатель Карно - машина чисто теоретическая, то есть идеальная , силы трения между поршнем и цилиндром и тепловые потери считаются равными нулю. Механическая работа максимальна, если рабочее тело выполняет цикл, состоящий из двух изотерм и двух адиабат. Этот цикл называют циклом Карно .

участок 1-2: газ получает от нагревателя количество теплоты Q 1 и изотермически расширяется при температуре T 1

участок 2-3: газ адиабатически расширяется, температура снижается до температуры холодильника T 2

участок 3-4: газ экзотермически сжимается, при этом он отдает холодильнику количество теплоты Q 2

участок 4-1: газ сжимается адиабатически до тех пор, пока его температура не повысится до T 1 .

Работа, которую выполняет рабочее тело - площадь полученной фигуры 1234.

Функционирует такой двигатель следующим образом:

1. Сначала цилиндр вступает в контакт с горячим резервуаром, и идеальный газ расширяется при постоянной температуре. На этой фазе газ получает от горячего резервуара некое количество тепла.

2. Затем цилиндр окружается идеальной теплоизоляцией, за счет чего количество тепла, имеющееся у газа, сохраняется, и газ продолжает расширяться, пока его температура не упадет до температуры холодного теплового резервуара.

3. На третьей фазе теплоизоляция снимается, и газ в цилиндре, будучи в контакте с холодным резервуаром, сжимается, отдавая при этом часть тепла холодному резервуару.

4. Когда сжатие достигает определенной точки, цилиндр снова окружается теплоизоляцией, и газ сжимается за счет поднятия поршня до тех пор, пока его температура не сравняется с температурой горячего резервуара. После этого теплоизоляция удаляется и цикл повторяется вновь с первой фазы.

Современные реалии предполагают широкую эксплуатацию тепловых двигателей. Многочисленные попытки замены их на электродвигатели пока претерпевают неудачу. Проблемы, связанные с накоплением электроэнергии в автономных системах, решаются с большим трудом.

Все еще актуальны проблемы технологии изготовления аккумуляторов электроэнергии с учетом их длительного использования. Скоростные характеристики электромобилей далеки от таковых у авто на двигателях внутреннего сгорания.

Первые шаги по созданию гибридных двигателей позволяют существенно уменьшить вредные выбросы в мегаполисах, решая экологические проблемы.

Немного истории

Возможность превращения энергии пара в энергию движения была известна еще в древности. 130 год до нашей эры: Философ Герон Александрийский представил на суд зрителей паровую игрушку - эолипил. Сфера, заполненная паром, приходила во вращение под действием исходящих из нее струй. Этот прототип современных паровых турбин в те времена не нашел применения.

Долгие годы и века разработки философа считались лишь забавной игрушкой. В 1629 г. итальянец Д. Бранки создал активную турбину. Пар приводил в движение диск, снабженный лопатками.

С этого момента началось бурное развитие паровых машин.

Тепловая машина

Превращение топлива в энергию движения частей машин и механизмов используется в тепловых машинах.

Основные части машин: нагреватель (система получения энергии извне), рабочее тело (совершает полезное действие), холодильник.

Нагреватель предназначен для того, чтобы рабочее тело накопило достаточный запас внутренней энергии для совершения полезной работы. Холодильник отводит излишки энергии.

Основной характеристикой эффективности называют КПД тепловых машин. Эта величина показывает, какая часть затраченной на нагревание энергии расходуется на совершение полезной работы. Чем выше КПД, тем выгоднее работа машины, но эта величина не может превышать 100%.

Расчет коэффициента полезного действия

Пусть нагреватель приобрел извне энергию, равную Q 1 . Рабочее тело совершило работу A, при этом энергия, отданная холодильнику, составила Q 2 .

Исходя из определения, рассчитаем величину КПД:

η= A / Q 1 . Учтем, что А = Q 1 - Q 2.

Отсюда КПД тепловой машины, формула которого имеет вид η= (Q 1 - Q 2)/ Q 1 = 1 - Q 2 / Q 1, позволяет сделать следующие выводы:

  • КПД не может превышать 1 (или 100%);
  • для максимального увеличения этой величины необходимо либо повышение энергии, полученной от нагревателя, либо уменьшение энергии, отданной холодильнику;
  • увеличения энергии нагревателя добиваются изменением качества топлива;
  • уменьшения энергии, отданной холодильнику, позволяют добиться конструктивные особенности двигателей.

Идеальный тепловой двигатель

Возможно ли создание такого двигателя, коэффициент полезного действия которого был бы максимальным (в идеале - равным 100%)? Найти ответ на этот вопрос попытался французский физик-теоретик и талантливый инженер Сади Карно. В 1824 его теоретические выкладки о процессах, протекающих в газах, были обнародованы.

Основной идеей, заложенной в идеальной машине, можно считать проведение обратимых процессов с идеальным газом. Начинаем с расширения газа изотермически при температуре T 1 . Количество теплоты, необходимой для этого, - Q 1. После газ без теплообмена расширяется Достигнув температуры Т 2 , газ сжимается изотермически, передавая холодильнику энергию Q 2 . Возвращение газа в первоначальное состояние производится адиабатно.

КПД идеального теплового двигателя Карно при точном расчете равен отношению разности температур нагревательного и охлаждающего устройств к температуре, которую имеет нагреватель. Выглядит это так: η=(T 1 - Т 2)/ T 1.

Возможный КПД тепловой машины, формула которого имеет вид: η= 1 - Т 2 / T 1 , зависит только от значения температур нагревателя и охладителя и не может быть более 100%.

Более того, это соотношение позволяет доказать, что КПД тепловых машин может быть равен единице только при достижении холодильником температур. Как известно, это значение недостижимо.

Теоретические выкладки Карно позволяют определить максимальный КПД тепловой машины любой конструкции.

Доказанная Карно теорема звучит следующий образом. Произвольная тепловая машина ни при каких условиях не способна иметь коэффициент полезного действия больше аналогичного значения КПД идеальной тепловой машины.

Пример решения задач

Пример 1. Каков КПД идеальной тепловой машины, в случае если температура нагревателя составляет 800 о С, а температура холодильника на 500 о С ниже?

T 1 = 800 о С= 1073 К, ∆T= 500 о С=500 К, η - ?

По определению: η=(T 1 - Т 2)/ T 1.

Нам не дана температура холодильника, но ∆T= (T 1 - Т 2), отсюда:

η= ∆T / T 1 = 500 К/1073 К = 0,46.

Ответ: КПД = 46%.

Пример 2. Определите КПД идеальной тепловой машины, если за счет приобретенного одного килоджоуля энергии нагревателя совершается полезная работа 650 Дж. Какова температура нагревателя тепловой машины, если температура охладителя - 400 К?

Q 1 = 1 кДж=1000 Дж, А = 650 Дж, Т 2 = 400 К, η - ?, T 1 = ?

В данной задаче речь идет о тепловой установке, КПД которой можно вычислить по формуле:

Для определения температуры нагревателя воспользуемся формулой КПД идеальной тепловой машины:

η = (T 1 - Т 2)/ T 1 = 1 - Т 2 / T 1.

Выполнив математические преобразования, получим:

Т 1 = Т 2 /(1- η).

Т 1 = Т 2 /(1- A / Q 1).

Вычислим:

η= 650 Дж/ 1000 Дж = 0,65.

Т 1 = 400 К /(1- 650 Дж/ 1000 Дж) = 1142,8 К.

Ответ: η= 65%, Т 1 = 1142,8 К.

Реальные условия

Идеальный тепловой двигатель разработан с учетом идеальных процессов. Работа совершается только в изотермических процессах, ее величина определяется как площадь, ограниченная графиком цикла Карно.

В действительности создать условия для протекания процесса изменения состояния газа без сопровождающих его изменений температуры невозможно. Нет таких материалов, которые исключили бы теплообмен с окружающими предметами. Адиабатный процесс осуществить становится невозможно. В случае теплообмена температура газа обязательно должна меняться.

КПД тепловых машин, созданных в реальных условиях, значительно отличаются от КПД идеальных двигателей. Заметим, что протекание процессов в реальных двигателях происходит настолько быстро, что варьирование внутренней тепловой энергии рабочего вещества в процессе изменения его объема не может быть скомпенсировано притоком количества теплоты от нагревателя и отдачей холодильнику.

Иные тепловые двигатели

Реальные двигатели работают на иных циклах:

  • цикл Отто: процесс при неизменном объеме меняется адиабатным, создавая замкнутый цикл;
  • цикл Дизеля: изобара, адиабата, изохора, адиабата;
  • процесс, происходящий при постоянном давлении, сменяется адиабатным, замыкает цикл.

Создать равновесные процессы в реальных двигателях (чтобы приблизить их к идеальным) в условиях современной технологии не представляется возможным. КПД тепловых машин значительно ниже, даже с учетом тех же температурных режимов, что и в идеальной тепловой установке.

Но не стоит уменьшать роль расчетной формулы КПД поскольку именно она становится точкой отсчета в процессе работы над повышением КПД реальных двигателей.

Пути изменения КПД

Проводя сравнение идеальных и реальных тепловых двигателей, стоит отметить, что температура холодильника последних не может быть любой. Обычно холодильником считают атмосферу. Принять температуру атмосферы можно только в приближенных расчетах. Опыт показывает, что температура охладителя равна температуре отработанных в двигателях газов, как это происходит в двигателях внутреннего сгорания (сокращенно ДВС).

ДВС - наиболее распространенная в нашем мире тепловая машина. КПД тепловой машины в этом случае зависит от температуры, созданной сгорающим топливом. Существенным отличием ДВС от паровых машин является слияние функций нагревателя и рабочего тела устройства в воздушно-топливной смеси. Сгорая, смесь создает давление на подвижные части двигателя.

Повышения температуры рабочих газов достигают, существенно меняя свойства топлива. К сожалению, неограниченно это делать невозможно. Любой материал, из которого изготовлена камера сгорания двигателя, имеет свою температуру плавления. Теплостойкость таких материалов - основная характеристика двигателя, а также возможность существенно повлиять на КПД.

Значения КПД двигателей

Если рассмотреть температура рабочего пара на входе которой равна 800 К, а отработавшего газа - 300 К, то КПД этой машины равно 62%. В действительности же эта величина не превышает 40%. Такое понижение возникает вследствие тепловых потерь при нагревании корпуса турбин.

Наибольшее значение внутреннего сгорания не превышает 44%. Повышение этого значения - вопрос недалекого будущего. Изменение свойств материалов, топлива - это проблема, над которой работают лучшие умы человечества.

6.3. Второй закон термодинамики

6.3.1. Коэффициент полезного действия тепловых двигателей. Цикл Карно

Второе начало термодинамики возникло из анализа работы тепловых двигателей (машин). В формулировке Кельвина оно выглядит следующим образом: невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу.

Схема действия тепловой машины (теплового двигателя) представлена на рис. 6.3.

Рис. 6.3

Цикл работы теплового двигателя состоит из трех этапов:

1) нагреватель передает газу количество теплоты Q 1 ;

2) газ, расширяясь, совершает работу A ;

3) для возвращения газа в исходное состояние холодильнику передается теплота Q 2 .

Из первого закона термодинамики для циклического процесса

Q = A ,

где Q - количество теплоты, полученное газом за цикл, Q = Q 1 − Q 2 ; Q 1 - количество теплоты, переданное газу от нагревателя; Q 2 - количество теплоты, отданное газом холодильнику.

Поэтому для идеальной тепловой машины справедливо равенство

Q 1 − Q 2 = A .

Когда потери энергии (за счет трения и рассеяния ее в окружающую среду) отсутствуют, при работе тепловых машин выполняется закон сохранения энергии

Q 1 = A + Q 2 ,

где Q 1 - теплота, переданная от нагревателя рабочему телу (газу); A - работа, совершенная газом; Q 2 - теплота, переданная газом холодильнику.

Коэффициент полезного действия тепловой машины вычисляется по одной из формул:

η = A Q 1 ⋅ 100 % , η = Q 1 − Q 2 Q 1 ⋅ 100 % , η = (1 − Q 2 Q 1) ⋅ 100 % ,

где A - работа, совершенная газом; Q 1 - теплота, переданная от нагревателя рабочему телу (газу); Q 2 - теплота, переданная газом холодильнику.

Наиболее часто в тепловых машинах используется цикл Карно , так как он является самым экономичным.

Цикл Карно состоит из двух изотерм и двух адиабат, показанных на рис. 6.4.

Рис. 6.4

Участок 1–2 соответствует контакту рабочего вещества (газа) с нагревателем. При этом нагреватель передает газу теплоту Q 1 и происходит изотермическое расширение газа при температуре нагревателя T 1 . Газ совершает положительную работу (A 12 > 0), его внутренняя энергия не изменяется (∆U 12 = 0).

Участок 2–3 соответствует адиабатному расширению газа. При этом теплообмена с внешней средой не происходит, совершаемая положительная работа A 23 приводит к уменьшению внутренней энергии газа: ∆U 23 = −A 23 , газ охлаждается до температуры холодильника T 2 .

Участок 3–4 соответствует контакту рабочего вещества (газа) с холодильником. При этом холодильнику от газа поступает теплота Q 2 и происходит изотермическое сжатие газа при температуре холодильника T 2 . Газ совершает отрицательную работу (A 34 < 0), его внутренняя энергия не изменяется (∆U 34 = 0).

Участок 4–1 соответствует адиабатному сжатию газа. При этом теплообмена с внешней средой не происходит, совершаемая отрицательная работа A 41 приводит к увеличению внутренней энергии газа: ∆U 41 = −A 41 , газ нагревается до температуры нагревателя T 1 , т.е. возвращается в исходное состояние.

Коэффициент полезного действия тепловой машины, работающей по циклу Карно, вычисляется по одной из формул:

η = T 1 − T 2 T 1 ⋅ 100 % , η = (1 − T 2 T 1) ⋅ 100 % ,

где T 1 - температура нагревателя; T 2 - температура холодильника.

Пример 9. Идеальная тепловая машина совершает за цикл работу 400 Дж. Какое количество теплоты передается при этом холодильнику, если коэффициент полезного действия машины равен 40 %?

Решение . Коэффициент полезного действия тепловой машины определяется формулой

η = A Q 1 ⋅ 100 % ,

где A - работа, совершаемая газом за цикл; Q 1 - количество теплоты, которое передается от нагревателя рабочему телу (газу).

Искомой величиной является количество теплоты Q 2 , переданное от рабочего тела (газа) холодильнику, не входящее в записанную формулу.

Связь между работой A , теплотой Q 1 , переданной от нагревателя газу, и искомой величиной Q 2 устанавливается с помощью закона сохранения энергии для идеальной тепловой машины

Q 1 = A + Q 2 .

Уравнения образуют систему

η = A Q 1 ⋅ 100 % , Q 1 = A + Q 2 , }

которую необходимо решить относительно Q 2 .

Для этого исключим из системы Q 1 , выразив из каждого уравнения

Q 1 = A η ⋅ 100 % , Q 1 = A + Q 2 }

и записав равенство правых частей полученных выражений:

A η ⋅ 100 % = A + Q 2 .

Искомая величина определяется равенством

Q 2 = A η ⋅ 100 % − A = A (100 % η − 1) .

Расчет дает значение:

Q 2 = 400 ⋅ (100 % 40 % − 1) = 600 Дж.

Количество теплоты, переданной за цикл от газа холодильнику идеальной тепловой машины, составляет 600 Дж.

Пример 10. В идеальной тепловой машине от нагревателя к газу поступает 122 кДж/мин, а от газа холодильнику передается 30,5 кДж/мин. Вычислить коэффициент полезного действия данной идеальной тепловой машины.

Решение . Для расчета коэффициента полезного действия воспользуемся формулой

η = (1 − Q 2 Q 1) ⋅ 100 % ,

где Q 2 - количество теплоты, которое передается за цикл от газа холодильнику; Q 1 - количество теплоты, которое передается за цикл от нагревателя рабочему телу (газу).

Преобразуем формулу, выполнив деление числителя и знаменателя дроби на время t :

η = (1 − Q 2 / t Q 1 / t) ⋅ 100 % ,

где Q 2 /t - скорость передачи теплоты от газа холодильнику (количество теплоты, которое передается газом холодильнику в секунду); Q 1 /t - скорость передачи теплоты от нагревателя рабочему телу (количество теплоты, которое передается от нагревателя газу в секунду).

В условии задачи скорость передачи теплоты задана в джоулях в минуту; переведем ее в джоули в секунду:

  • от нагревателя газу -

Q 1 t = 122 кДж/мин = 122 ⋅ 10 3 60 Дж/с;

  • от газа холодильнику -

Q 2 t = 30,5 кДж/мин = 30,5 ⋅ 10 3 60 Дж/с.

Рассчитаем коэффициент полезного действия данной идеальной тепловой машины:

η = (1 − 30,5 ⋅ 10 3 60 ⋅ 60 122 ⋅ 10 3) ⋅ 100 % = 75 % .

Пример 11. Коэффициент полезного действия тепловой машины, работающей по циклу Карно, равен 25 %. Во сколько раз увеличится коэффициент полезного действия, если температуру нагревателя увеличить, а температуру холодильника уменьшить на 20 %?

Решение . Коэффициент полезного действия идеальной тепловой машины, работающей по циклу Карно, определяется следующими формулами:

  • до изменения температур нагревателя и холодильника -

η 1 = (1 − T 2 T 1) ⋅ 100 % ,

где T 1 - первоначальная температура нагревателя; T 2 - первоначальная температура холодильника;

  • после изменения температур нагревателя и холодильника -

η 2 = (1 − T ′ 2 T ′ 1) ⋅ 100 % ,

где T ′ 1 - новая температура нагревателя, T ′ 1 = 1,2 T 1 ; T ′ 2 - новая температура холодильника, T ′ 2 = 0,8 T 2 .

Уравнения для коэффициентов полезного действия образуют систему

η 1 = (1 − T 2 T 1) ⋅ 100 % , η 2 = (1 − 0,8 T 2 1,2 T 1) ⋅ 100 % , }

которую необходимо решить относительно η 2 .

Из первого уравнения системы с учетом значения η 1 = 25 % найдем отношение температур

T 2 T 1 = 1 − η 1 100 % = 1 − 25 % 100 % = 0,75

и подставим во второе уравнение

η 2 = (1 − 0,8 1,2 ⋅ 0,75) ⋅ 100 % = 50 % .

Искомое отношение коэффициентов полезного действия равно:

η 2 η 1 = 50 % 25 % = 2,0 .

Следовательно, указанное изменение температур нагревателя и холодильника тепловой машины приведет к увеличению коэффициента полезного действия в 2 раза.

Когда мы говорим об обратимости процессов, следует учитывать, что это некоторая идеализация. Все реальные процессы необратимы, поэтому и циклы, по которым работают тепловые машины, также необратимы, а значит и неравновесны. Однако для упрощения количественных оценок таких циклов необходимо считать их равновесными, то есть как если бы они состояли только из равновесных процессов. Этого требует хорошо разработанный аппарат классической термодинамики.

Знаменитый цикл идеального двигателя Карно считается равновесным обратным круговым процессом. В реальных условиях любой цикл не может быть идеальным, так как существуют потери. Он совершается между двумя источниками теплоты с постоянными температурами у теплоотдатчика Т 1 и теплоприемника Т 2 , а также рабочим телом, в качестве которого принят идеальный газ (рис. 3.1).

Рис. 3.1. Цикл теплового двигателя

Полагаем, что Т 1 > Т 2 и отвод тепла от теплоотдатчика и подвод тепла к теплоприемнику не влияют на их температуры, T 1 и T 2 остаются постоянными. Обозначим параметры газа при левом крайнем положении поршня теплового двигателя: давление – Р 1 объем – V 1 , температура Т 1 . Это точка 1 на графике на осях P-V. В этот момент газ (рабочее тело) взаимодействует с теплоотдатчиком, температура которого также Т 1 . При движении поршня вправо давление газа в цилиндре уменьшается, а объем увеличивается. Это будет продолжаться до прихода поршня в положение, определяемые точкой 2, где параметры рабочего тела (газа) примут значения P 2 , V 2 , T 2 . Температура в этой точке остается неизменной, так как температура газа и теплоотдатчика одинакова в процессе перехода поршня от точки 1 к точке 2 (расширение). Такой процесс, при котором Т не изменяется, называется изотермическим, а кривая 1–2 называется изотермой. В этом процессе от теплоотдатчика к рабочему телу переходит теплота Q 1 .

В точке 2 цилиндр полностью изолируется от внешней среды (теплообмена нет) и при дальнейшем движении поршня вправо уменьшение давления и увеличение объема происходит по кривой 2–3, которая называется адиабатой (процесс без теплообмена с внешней средой). Когда поршень переместится в крайнее правое положение (точка 3), процесс расширения закончится и параметры будут иметь значения Р 3 , V 3 , а температура станет равной температуре теплоприемника Т 2 . При этом положении поршня изоляция рабочего тела снижается и оно взаимодействует с теплоприемником. Если теперь увеличивать давление на поршень, то он будет перемещаться влево при неизменной температуре Т 2 (сжатие). Значит, этот процесс сжатия будет изотермическим. В этом процессе теплота Q 2 перейдет от рабочего тела к тепло-приемнику. Поршень, двигаясь влево, придет в точку 4 с параметрами P 4 , V 4 и T 2 , где рабочее тело вновь изолируется от внешней среды. Дальнейшее сжатие происходит по адиабате 4–1 с повышением температуры. В точке 1 сжатие заканчивается при параметрах рабочего тела P 1 , V 1 , T 1 . Поршень возвратился в исходное состояние. В точке 1 изоляция рабочего тела от внешней среды снимается и цикл повторяется.

Коэффициент полезного действия идеального двигателя Карно.

В теоретической модели теплового двигателя рассматриваются три тела: нагреватель , рабочее тело и холодильник .

Нагреватель – тепловой резервуар (большое тело), температура которого постоянна.

В каждом цикле работы двигателя рабочее тело получает некоторое количество теплоты от нагревателя, расширяется и совершает механическую работу. Передача части энергии, полученной от нагревателя, холодильнику необходима для возвращения рабочего тела в исходное состояние.

Так как в модели предполагается, что температура нагревателя и холодильника не меняется в ходе работы теплового двигателя, то при завершении цикла: нагревание-расширение-остывание-сжатие рабочего тела считается, что машина возвращается в исходное состояние.

Для каждого цикла на основании первого закона термодинамики можно записать, что количество теплоты Q нагр, полученное от нагревателя, количество теплоты |Q хол|, отданное холодильнику, и совершенная рабочим телом работа А связаны между собой соотношением:

A = Q нагр – |Q хол|.

В реальных технических устройствах, которые называются тепловыми машинами, рабочее тело нагревается за счет тепла, выделяющегося при сгорании топлива. Так, в паровой турбине электростанции нагревателем является топка с горячим углем. В двигателе внутреннего сгорания (ДВС) продукты сгорания можно считать нагревателем, а избыток воздуха – рабочим телом. В качестве холодильника в них используется воздух атмосферы или вода природных источников.

КПД теплового двигателя (машины)

Коэффициентом полезного действия теплового двигателя (КПД) называется отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

Коэффициент полезного действия любого теплового двигателя меньше единицы и выражается в процентах. Невозможность превращения всего количества теплоты, полученного от нагревателя, в механическую работу является платой за необходимость организации циклического процесса и следует из второго закона термодинамики.

В реальных тепловых двигателях КПД определяют по экспериментальной механической мощности N двигателя и сжигаемому за единицу времени количеству топлива. Так, если за время t сожжено топливо массой m и удельной теплотой сгорания q , то

Для транспортных средств справочной характеристикой часто является объем V сжигаемого топлива на пути s при механической мощности двигателя N и при скорости . В этом случае, учитывая плотность r топлива, можно записать формулу для расчета КПД:

Второй закон термодинамики

Существует несколько формулировок второго закона термодинамики . Одна из них гласит, что невозможен тепловой двигатель, который совершал бы работу только за счет источника теплоты, т.е. без холодильника. Мировой океан мог бы служить для него, практически, неисчерпаемым источником внутренней энергии (Вильгельм Фридрих Оствальд, 1901).

Другие формулировки второго закона термодинамики эквивалентны данной.

Формулировка Клаузиуса (1850): невозможен процесс, при котором тепло самопроизвольно переходило бы от тел менее нагретых к телам более нагретым.

Формулировка Томсона (1851): невозможен круговой процесс, единственным результатом которого было бы производство работы за счет уменьшения внутренней энергии теплового резервуара.

Формулировка Клаузиуса (1865): все самопроизвольные процессы в замкнутой неравновесной системе происходят в таком направлении, при котором энтропия системы возрастает; в состоянии теплового равновесия она максимальна и постоянна.

Формулировка Больцмана (1877): замкнутая система многих частиц самопроизвольно переходит из более упорядоченного состояния в менее упорядоченное. Невозможен самопроизвольный выход системы из положения равновесия. Больцман ввел количественную меру беспорядка в системе, состоящей из многих тел – энтропию .

КПД теплового двигателя с идеальным газом в качестве рабочего тела

Если задана модель рабочего тела в тепловом двигателе (например, идеальный газ), то можно рассчитать изменение термодинамических параметров рабочего тела в ходе расширения и сжатия. Это позволяет вычислить КПД теплового двигателя на основании законов термодинамики.

На рисунке показаны циклы, для которых можно рассчитать КПД, если рабочим телом является идеальный газ и заданы параметры в точках перехода одного термодинамического процесса в другой.

Изобарно-изохорный

Изохорно-адиабатный

Изобарно-адиабатный

Изобарно-изохорно-изотермический

Изобарно-изохорно-линейный

Цикл Карно. КПД идеального теплового двигателя

Наибольшим КПД при заданных температурах нагревателя T нагр и холодильника T хол обладает тепловой двигатель, где рабочее тело расширяется и сжимается по циклу Карно (рис. 2), график которого состоит из двух изотерм (2–3 и 4–1) и двух адиабат (3–4 и 1–2).

Теорема Карно доказывает, что КПД такого двигателя не зависит от используемого рабочего тела, поэтому его можно вычислить, используя соотношения термодинамики для идеального газа:

Экологические последствия работы тепловых двигателей

Интенсивное использование тепловых машин на транспорте и в энергетике (тепловые и атомные электростанции) ощутимо влияет на биосферу Земли. Хотя о механизмах влияния жизнедеятельности человека на климат Земли идут научные споры, многие ученые отмечают факторы, благодаря которым может происходить такое влияние:

  1. Парниковый эффект – повышение концентрации углекислого газа (продукт сгорания в нагревателях тепловых машин) в атмосфере. Углекислый газ пропускает видимое и ультрафиолетовое излучение Солнца, но поглощает инфракрасное излучение, идущее в космос от Земли. Это приводит к повышению температуры нижних слоев атмосферы, усилению ураганных ветров и глобальному таянию льдов.
  2. Прямое влияние ядовитых выхлопных газов на живую природу (канцерогены, смог, кислотные дожди от побочных продуктов сгорания).
  3. Разрушение озонового слоя при полетах самолетов и запусках ракет. Озон верхних слоев атмосферы защищает все живое на Земле от избыточного ультрафиолетового излучения Солнца.

Выход из создающегося экологического кризиса лежит в повышении КПД тепловых двигателей (КПД современных тепловых машин редко превышает 30%); использовании исправных двигателей и нейтрализаторов вредных выхлопных газов; использовании альтернативных источников энергии (солнечные батареи и обогреватели) и альтернативных средств транспорта (велосипеды и др.).



Поделиться