Альтернативная и малая энергетика на паровом двигателе. Современный вариант парового двигателя Применение паровых машин в наше время

Паровые машины использовались как приводной двигатель в насосных станциях , локомотивах , на паровых судах, тягачах , паровых автомобилях и других транспортных средствах. Паровые машины способствовали широкому распространению коммерческого использования машин на предприятиях и явились энергетической основой промышленной революции XVIII века. Позднее паровые машины были вытеснены двигателями внутреннего сгорания , паровыми турбинами , электромоторами и атомными реакторами , КПД которых выше.

Паровая машина в действии

Изобретение и развитие

Первое известное устройство, приводимое в движение паром, было описано Героном из Александрии в первом столетии - это так называемая «баня Герона», или «эолипил». Пар, выходящий по касательной из дюз, закреплённых на шаре, заставлял последний вращаться. Предполагается, что преобразование пара в механическое движение было известно в Египте в период римского владычества и использовалось в несложных приспособлениях.

Первые промышленные двигатели

Ни одно из описанных устройств фактически не было применено как средство решения полезных задач. Первым применённым на производстве паровым двигателем была «пожарная установка», сконструированная английским военным инженером Томасом Сейвери в 1698 году . На своё устройство Сейвери в 1698 году получил патент. Это был поршневой паровой насос, и, очевидно, не слишком эффективный, так как тепло пара каждый раз терялось во время охлаждения контейнера, и довольно опасный в эксплуатации, так как вследствие высокого давления пара ёмкости и трубопроводы двигателя иногда взрывались. Так как это устройство можно было использовать как для вращения колёс водяной мельницы, так и для откачки воды из шахт изобретатель назвал его «другом рудокопа».

Затем английский кузнец Томас Ньюкомен в 1712 году продемонстрировал свой «атмосферный двигатель», который был первым паровым двигателем, на который мог быть коммерческий спрос. Это был усовершенствованный паровой двигатель Сейвери, в котором Ньюкомен существенно снизил рабочее давление пара. Ньюкомен, возможно, базировался на описании экспериментов Папена, находящихся в Лондонском королевском обществе , к которым он мог иметь доступ через члена общества Роберта Гука , работавшего с Папеном.

Схема работы паровой машины Ньюкомена.
– Пар показан лиловым цветом, вода - синим.
– Открытые клапаны показаны зелёным цветом, закрытые - красным

Первым применением двигателя Ньюкомена была откачка воды из глубокой шахты. В шахтном насосе коромысло было связано с тягой, которая спускалась в шахту к камере насоса. Возвратно-поступательные движения тяги передавались поршню насоса, который подавал воду наверх. Клапаны ранних двигателей Ньюкомена открывались и закрывались вручную. Первым усовершенствованием было автоматизация действия клапанов, которые приводились в движение самой машиной. Легенда рассказывает, что это усовершенствование было сделано в 1713 году мальчиком Хэмфри Поттером, который должен был открывать и закрывать клапаны; когда это ему надоедало, он связывал рукоятки клапанов верёвками и шёл играть с детьми. К 1715 году уже была создана рычажная система регулирования, приводимая от механизма самого двигателя.

Первая в России двухцилиндровая вакуумная паровая машина была спроектирована механиком И. И. Ползуновым в 1763 году и построена в 1764 году для приведения в действие воздуходувных мехов на Барнаульских Колывано-Воскресенских заводах.

Хэмфри Гэйнсборо в 1760-ых годах построил модель паровой машины с конденсатором. В 1769 году шотландский механик Джеймс Уатт (возможно, использовав идеи Гейнсборо) запатентовал первые существенные усовершенствования к вакуумному двигателю Ньюкомена, которые сделали его значительно более эффективным по расходу топлива. Вклад Уатта заключался в отделении фазы конденсации вакуумного двигателя в отдельной камере, в то время как поршень и цилиндр имели температуру пара. Уатт добавил к двигателю Ньюкомена ещё несколько важных деталей: поместил внутрь цилиндра поршень для выталкивания пара и преобразовал возвратно-поступательное движения поршня во вращательное движение приводного колеса.

На основе этих патентов Уатт построил паровой двигатель в Бирмингеме . К 1782 году паровой двигатель Уатта оказался более чем в 3 раза производительнее машины Ньюкомена. Повышение эффективности двигателя Уатта привело к использованию энергии пара в промышленности. Кроме того, в отличие от двигателя Ньюкомена, двигатель Уатта позволил передать вращательное движение, в то время как в ранних моделях паровых машин поршень был связан с коромыслом, а не непосредственно с шатуном. Этот двигатель уже имел основные черты современных паровых машин.

Дальнейшим повышением эффективности было применение пара высокого давления (американец Оливер Эванс и англичанин Ричард Тревитик). Р.Тревитик успешно построил промышленные однотактовые двигатели высокого давления, известные как «корнуэльские двигатели». Они работали с давлением 50 фунтов на квадратный дюйм , или 345 кПа (3,405 атмосферы). Однако с увеличением давления возникала и большая опасность взрывов в машинах и котлах, что приводило вначале к многочисленным авариям. С этой точки зрения наиболее важным элементом машины высокого давления был предохранительный клапан, который выпускал лишнее давление. Надёжная и безопасная эксплуатация началась только с накоплением опыта и стандартизацией процедур сооружения, эксплуатации и обслуживания оборудования.

Французский изобретатель Николас-Йозеф Куньо в 1769 году продемонстрировал первое действующее самоходное паровое транспортное средство: "fardier à vapeur" (паровую телегу). Возможно, его изобретение можно считать первым автомобилем . Самоходный паровой трактор оказался очень полезным в качестве мобильного источника механической энергии, приводившего в движение другие сельскохозяйственные машины: молотилки, прессы и др. В 1788 году пароход , построенный Джоном Фитчем, уже осуществлял регулярное сообщение по реке Делавер между Филадельфией (штат Пенсильвания) и Берлингтоном (штат Нью-Йорк). Он поднимал на борт 30 пассажиров и шёл со скоростью 7-8 миль в час . Пароход Дж. Фитча не был коммерчески успешным, поскольку с его маршрутом конкурировала хорошая сухопутная дорога. В 1802 году шотландский инженер Уильям Симингтон построил конкурентоспособный пароход, а в 1807 году американский инженер Роберт Фултон использовал паровой двигатель Уатта для привода первого коммерчески успешного парохода. 21 февраля 1804 года на металлургическом заводе Пенидаррен в Мертир-Тидвиле в Южном Уэльсе демонстрировался первый самоходный железнодорожный паровой локомотив , построенный Ричардом Тревитиком.

Паровые машины с возвратно-поступательным движением

Двигатели с возвратно-поступательным движением используют энергию пара для перемещения поршня в герметичной камере или цилиндре. Возвратно-поступательное действие поршня может быть механически преобразовано в линейное движение поршневых насосов или во вращательное движение для привода вращающихся частей станков или колёс транспортных средств.

Вакуумные машины

Ранние паровые машины назывались вначале «огневыми машинами», а также «атмосферными » или «конденсирующими» двигателями Уатта. Они работали на вакуумном принципе и поэтому известны также как «вакуумные двигатели». Такие машины работали для привода поршневых насосов , во всяком случае, нет никаких свидетельств о том, что они использовались в иных целях. При работе паровой машины вакуумного типа в начале такта пар низкого давления впускается в рабочую камеру или цилиндр. Впускной клапан после этого закрывается, и пар охлаждается, конденсируясь. В двигателе Ньюкомена охлаждающая вода распыляется непосредственно в цилиндр, и конденсат сбегает в сборник конденсата. Таким образом создаётся вакуум в цилиндре. Атмосферное давление в верхней части цилиндра давит на поршень, и вызывает его перемещение вниз, то есть рабочий ход.

Постоянное охлаждение и повторное нагревание рабочего цилиндра машины было очень расточительным и неэффективным, тем не менее, эти паровые машины позволяли откачивать воду с большей глубины, чем это было возможно до их появления. В году появилась версия паровой машины, созданная Уаттом в сотрудничестве с Мэттью Боултоном, основным нововведением которой стало вынесение процесса конденсации в специальную отдельную камеру (конденсатор). Эта камера помещалась в ванну с холодной водой, и соединялась с цилиндром трубкой, перекрывающейся клапаном. К конденсационной камере была присоединена специальная небольшая вакуумная помпа (прообраз конденсатного насоса), приводимая в движение коромыслом и служащая для удаления конденсата из конденсатора. Образовавшаяся горячая вода подавалась специальным насосом (прообразом питательного насоса) обратно в котёл. Ещё одним радикальным нововведением стало закрытие верхнего конца рабочего цилиндра, в верхней части которого теперь находился пар низкого давления. Этот же пар присутствовал в двойной рубашке цилиндра, поддерживая его постоянную температуру. Во время движения поршня вверх этот пар по специальным трубкам передавался в нижнюю часть цилиндра, для того, чтобы подвергнуться конденсации во время следующего такта. Машина, по сути, перестала быть «атмосферной», и её мощность теперь зависела от разницы давлений между паром низкого давления и тем вакуумом, который удавалось получить. В паровой машине Ньюкомена смазка поршня осуществлялась небольшим количеством налитой на него сверху воды, в машине Уатта это стало невозможным, поскольку в верхней части цилиндра теперь находился пар, пришлось перейти на смазку смесью тавота и нефти. Такая же смазка использовалась в сальнике штока цилиндра.

Вакуумные паровые машины, несмотря на очевидные ограничение их эффективности, были относительно безопасны, использовали пар низкого давления, что вполне соответствовало общему невысокому уровню котельных технологий XVIII века . Мощность машины ограничивалась низким давлением пара, размерами цилиндра, скоростью сгорания топлива и испарения воды в котле, а также размерами конденсатора. Максимальный теоретический КПД был ограничен относительно малой разницей температур по обе стороны поршня; это делало вакуумные машины, предназначенные для промышленного использования, слишком большими и дорогими.

Сжатие

Выпускное окно цилиндра паровой машины перекрывается несколько раньше, чем поршень доходит до своего крайнего положения, что оставляет в цилиндре некоторое количество отработанного пара. Это означает, что в цикле работы присутствует фаза сжатия, формирующая так называемую «паровую подушку» , замедляющую движение поршня в его крайних положениях. Кроме того, это устраняет резкий перепад давления в самом начале фазы впуска, когда в цилиндр поступает свежий пар.

Опережение

Описанный эффект «паровой подушки» усиливается также тем, что впуск свежего пара в цилиндр начинается несколько раньше, чем поршень достигнет крайнего положения, то есть присутствует некоторое опережение впуска. Это опережение необходимо для того, чтобы перед тем, как поршень начнёт свой рабочий ход под действием свежего пара, пар успел бы заполнить то мёртвое пространство, которое возникло в результате предыдущей фазы, то есть каналы впуска-выпуска и неиспользуемый для движения поршня объем цилиндра.

Простое расширение

Простое расширение предполагает, что пар работает только при расширении его в цилиндре, а отработанный пар выпускается напрямую в атмосферу или поступает в специальный конденсатор. Остаточное тепло пара при этом может быть использовано, например, для обогрева помещения или транспортного средства, а также для предварительного подогрева воды, поступающей в котёл.

Компаунд

В процессе расширения в цилиндре машины высокого давления температура пара падает пропорционально его расширению. Поскольку теплового обмена при этом не происходит (адиабатический процесс), получается, что пар поступает в цилиндр с большей температурой, чем выходит из него. Подобные перепады температуры в цилиндре приводят к снижению эффективности процесса.

Один из методов борьбы с этим перепадом температур был предложен в 1804 году английским инженером Артуром Вульфом, который запатентовал Компаундную паровую машину высокого давления Вульфа . В этой машине высокотемпературный пар из парового котла поступал в цилиндр высокого давления, а после этого отработанный в нем пар с более низкой температурой и давлением поступал в цилиндр (или цилиндры) низкого давления. Это уменьшало перепад температуры в каждом цилиндре, что в целом снижало температурные потери и улучшало общий коэффициент полезного действия паровой машины. Пар низкого давления имел больший объём, и поэтому требовал большего объёма цилиндра. Поэтому в компаудных машинах цилиндры низкого давления имели больший диаметр (а иногда и большую длину) чем цилиндры высокого давления.

Такая схема также известна под названием «двойное расширение», поскольку расширение пара происходит в две стадии. Иногда один цилиндр высокого давления был связан с двумя цилиндрами низкого давления, что давало три приблизительно одинаковых по размеру цилиндра. Такую схему было легче сбалансировать.

Двухцилиндровые компаундные машины могут быть классифицированы как:

  • Перекрёстный компаунд - Цилиндры расположены рядом, их паропроводящие каналы перекрещены.
  • Тандемный компаунд - Цилиндры располагаются последовательно, и используют один шток.
  • Угловой компаунд - Цилиндры расположены под углом друг к другу, обычно 90 градусов, и работают на один кривошип.

После 1880-х годов компаундные паровые машины получили широкое распространение на производстве и транспорте и стали практически единственным типом, используемым на пароходах. Использование их на паровозах не получило такого широкого распространения, поскольку они оказались слишком сложными, частично из-за того, что сложными были условия работы паровых машин на железнодорожном транспорте . Несмотря на то, что компаундные паровозы так и не стали массовым явлением (особенно в Великобритании, где они были очень мало распространены и вообще не использовались после 1930-х годов), они получили определённую популярность в нескольких странах.

Множественное расширение

Упрощённая схема паровой машины с тройным расширением.
Пар высокого давления (красный цвет) от котла проходит через машину, выходя в конденсатор при низком давлении (голубой цвет).

Логичным развитием схемы компаунда стало добавление в неё дополнительных стадий расширения, что увеличивало эффективность работы. Результатом стала схема множественного расширения, известная как машины тройного или даже четверного расширения. Такие паровые машины использовали серии цилиндров двойного действия, объем которых увеличивался с каждой стадией. Иногда вместо увеличения объёма цилиндров низкого давления использовалось увеличение их количества, так же, как и на некоторых компаундных машинах.

Изображение справа показывает работу паровой машины с тройным расширением. Пар проходит через машину слева направо. Блок клапанов каждого цилиндра расположен слева от соответствующего цилиндра.

Появление этого типа паровых машин стало особенно актуальным для флота, поскольку требования к размеру и весу для судовых машин были не очень жёсткими, а главное, такая схема позволяла легко использовать конденсатор, возвращающий отработанный пар в виде пресной воды обратно в котёл (использовать солёную морскую воду для питания котлов было невозможно). Наземные паровые машины обычно не испытывали проблем с питанием водой и потому могли выбрасывать отработанный пар в атмосферу. Поэтому такая схема для них была менее актуальной, особенно с учётом её сложности, размера и веса. Доминирование паровых машин множественного расширения закончилось только с появлением и широким распространением паровых турбин. Однако в современных паровых турбинах используется тот же принцип разделения потока на цилиндры высокого, среднего и низкого давления.

Прямоточные паровые машины

Прямоточные паровые машины возникли в результате попытки преодолеть один недостаток, свойственный паровым машинам с традиционным парораспределением. Дело в том, что пар в обычной паровой машине постоянно меняет направление своего движения, поскольку и для впуска и для выпуска пара применяется одно и то же окно с каждой стороны цилиндра. Когда отработанный пар покидает цилиндр, он охлаждает его стенки и парораспределительные каналы. Свежий пар, соответственно, тратит определённую часть энергии на их нагревание, что приводит к падению эффективности. Прямоточные паровые машины имеют дополнительное окно, которое открывается поршнем в конце каждой фазы, и через которое пар покидает цилиндр. Это повышает эффективность машины, поскольку пар движется в одном направлении, и температурный градиент стенок цилиндра остается более или менее постоянным. Прямоточные машины одинарного расширения показывают примерно такую же эффективность, как компаундные машины с обычным парораспределением. Кроме того, они могут работать на более высоких оборотах, и потому до появления паровых турбин часто применялись для привода электрогенераторов, требующих высокой скорости вращения.

Прямоточные паровые машины бывают как одинарного, так и двойного действия.

Паровые турбины

Паровая турбина представляет собой серию вращающихся дисков, закрепленных на единой оси, называемых ротором турбины, и серию чередующихся с ними неподвижных дисков, закрепленных на основании, называемых статором. Диски ротора имеют лопатки на внешней стороне, пар подается на эти лопатки и крутит диски. Диски статора имеют аналогичные лопатки, установленные под противоположным углом, которые служат для перенаправления потока пара на следующие за ними диски ротора. Каждый диск ротора и соответствующий ему диск статора называются ступенью турбины. Количество и размер ступеней каждой турбины подбираются таким образом, чтобы максимально использовать полезную энергию пара той скорости и давления, который в нее подается. Выходящий из турбины отработанный пар поступает в конденсатор. Турбины вращаются с очень высокой скоростью, и поэтому при передаче вращения на другое оборудование обычно используются специальные понижающие трансмиссии . Кроме того, турбины не могут изменять направление своего вращения, и часто требуют дополнительных механизмов реверса (иногда используются дополнительные ступени обратного вращения).

Турбины превращают энергию пара непосредственно во вращение и не требуют дополнительных механизмов преобразования возвратно-поступательного движения во вращение. Кроме того, турбины компактнее возвратно-поступательных машин и имеют постоянное усилие на выходном валу. Поскольку турбины имеют более простую конструкцию, они, как правило, требуют меньшего обслуживания.

Другие типы паровых двигателей

Применение

Паровые машины могут быть классифицированы по их применению следующим образом:

Стационарные машины

Паровой молот

Паровая машина на старой сахарной фабрике, Куба

Стационарные паровые машины могут быть разделены на два типа по режиму использования:

  • Машины с переменным режимом, к которым относятся машины металлопрокатных станов , паровые лебёдки и подобные устройства, которые должны часто останавливаться и менять направление вращения.
  • Силовые машины, которые редко останавливаются и не должны менять направление вращения. Они включают энергетические двигатели на электростанциях , а также промышленные двигатели, использовавшиеся на заводах, фабриках и на кабельных железных дорогах до широкого распространения электрической тяги. Двигатели малой мощности используются на судовых моделях и в специальных устройствах.

Паровая лебёдка в сущности является стационарным двигателем, но установлена на опорной раме, чтобы её можно было перемещать. Она может быть закреплена тросом за якорь и передвинута собственной тягой на новое место.

Транспортные машины

Паровые машины использовались для привода различных типов транспортных средств, среди них:

  • Сухопутные транспортные средства:
    • Паровой автомобиль
    • Паровой трактор
    • Паровой экскаватор, и даже
  • Паровой самолёт.

В России первый действующий паровоз был построен Е. А. и М. Е. Черепановыми на Нижне-Тагильском заводе в 1834 году для перевозки руды. Он развивал скорость 13 вёрст в час и перевозил более 200 пудов (3,2 тонны) груза. Длина первой железной дороги составляла 850 м.

Преимущества паровых машин

Основным преимуществом паровых машин является то, что они могут использовать практически любые источники тепла для преобразования его в механическую работу. Это отличает их от двигателей внутреннего сгорания, каждый тип которых требует использования определённого вида топлива. Наиболее заметно это преимущество при использовании ядерной энергии, поскольку ядерный реактор не в состоянии генерировать механическую энергию, а производит только тепло, которое используется для выработки пара, приводящего в движение паровые машины (обычно паровые турбины). Кроме того, есть и другие источники тепла, которые не могут быть использованы в двигателях внутреннего сгорания, например, солнечная энергия. Интересным направлением является использование энергии разности температур Мирового Океана на разных глубинах.

Подобными свойствами также обладают другие типы двигателей внешнего сгорания, такие как двигатель Стирлинга , которые могут обеспечить весьма высокую эффективность, но имеют существенно большие вес и размеры, чем современные типы паровых двигателей.

Паровые локомотивы неплохо показывают себя на больших высотах, поскольку эффективность их работы не падает в связи с низким атмосферным давлением. Паровозы до сих пор используются в горных районах Латинской Америки, несмотря на то, что в равнинной местности они давно были заменены более современными типами локомотивов.

В Швейцарии (Brienz Rothhorn) и в Австрии (Schafberg Bahn) новые паровозы, использующие сухой пар, доказали свою эффективность. Этот тип паровоза был разработан на основе моделей Swiss Locomotive and Machine Works (SLM) -х годов, со множеством современных усовершенствований, таких, как использование роликовых подшипников, современная теплоизоляция, сжигание в качестве топлива лёгких нефтяных фракций, улучшенные паропроводы, и т.д. В результате такие паровозы имеют на 60% меньшее потребление топлива и значительно меньшие требования к обслуживанию. Экономические качества таких паровозов сравнимы с современными дизельными и электрическими локомотивами.

Кроме того, паровые локомотивы значительно легче, чем дизельные и электрические, что особенно актуально для горных железных дорог. Особенностью паровых двигателей является то, что они не нуждаются в трансмиссии, передавая усилие непосредственно на колёса.

Коэффициент полезного действия

Паровой двигатель, выпускающий пар в атмосферу, будет иметь практический КПД (включая котёл) от 1 до 8 %, однако двигатель с конденсатором и расширением проточной части может улучшить КПД до 25 % и даже более.

Ровно 212 лет назад, 24 декабря 1801 года, в небольшом английском городе Камборне механик Ричард Тревитик продемонстрировал общественности первый автомобиль с паровым двигателем Dog Carts. Сегодня это событие можно было бы смело отнести в разряд хоть и примечательных, но несущественных, тем более что паровой двигатель был известен и ранее, и даже применялся на транспортных средствах (хотя назвать их автомобилями было бы очень большой натяжкой)… Но вот что интересно: именно сейчас технический прогресс породил ситуацию, поразительно напоминающую эпоху великой «битвы» пара и бензина в начале XIX века. Только бороться предстоит аккумуляторам, водороду и биотопливу. Хотите узнать, чем все закончится и кто победит? Не буду подсказывать. Намекну: технологии ни при чем…

1. Увлечение паровыми двигателями прошло, и наступило время двигателей внутреннего сгорания. Для пользы дела повторю: в 1801 году по улицам Камборна покатился четырёхколёсный экипаж, способный с относительным комфортом и небыстро перевозить восемь пассажиров. Автомобиль приводился в движение одноцилиндровым паровым двигателем, а топливом служил уголь. Созданием паровых транспортных средств занялись с энтузиазмом, и уже в 20-х годах XIX века пассажирские паровые омнибусы перевозили пассажиров со скоростью до 30 км/час, а средний межремонтный пробег достиг 2,5–3 тыс. км.

Теперь сопоставим эти сведения с другими. В том же 1801 году француз Филипп Лебон получил патент на конструкцию поршневого двигателя внутреннего сгорания, работавшего на светильном газе. Случилось так, что через три года Лебон погиб, и развивать предложенные им технические решения пришлось другим. Лишь в 1860 году бельгийский инженер Жан Этьен Ленуар собрал газовый двигатель с зажиганием от электрической искры и довёл его конструкцию до степени пригодности к установке на транспортное средство.

Итак, автомобильные паровой двигатель и двигатель внутреннего сгорания – практически ровесники. КПД паровой машины той конструкции и в те годы составлял около 10%. КПД двигателя Ленуара был всего 4%. Только через 22 года, к 1882-му, Август Отто усовершенствовал его настолько, что КПД теперь уже бензинового двигателя достиг… аж 15%.

2. Паровая тяга - всего лишь краткий миг в истории прогресса. Начавшись в 1801 году, история парового транспорта активно продолжалась без малого 159 лет. В 1960-м (!) в США всё ещё строились автобусы и грузовики с паровыми двигателями. Паровые машины за это время усовершенствовались весьма значительно. В 1900 году в США 50% парка автомобилей были «на пару». Уже в те годы возникла конкуренция между паровыми, бензиновыми и - внимание! - электрическими экипажами. После рыночного успеха «Модели-Т» Форда и, казалось бы, поражения парового двигателя новый всплеск популярности паровых авто пришёлся на 20-е годы прошлого столетия: стоимость топлива для них (мазут, керосин) была значительно ниже стоимости бензина.

Фирма Stanley производила до 1927-го примерно 1 тыс. паровых автомобилей в год. В Англии паровые грузовики успешно конкурировали с бензиновыми до 1933 года и проиграли лишь по причине введения властями налога на тяжёлый грузовой транспорт и снижения тарифов на импорт жидких нефтепродуктов из США.

3. Паровая машина неэффективна и неэкономична. Да, когда-то это было именно так. «Классический» паровой двигатель, который выпускал отработанный пар в атмосферу, имеет КПД не более 8%. Однако паровой двигатель с конденсатором и профилированной проточной частью имеет КПД до 25–30%. Паровая турбина обеспечивает 30–42%. Парогазовые установки, где используются «в связке» газовые и паровые турбины, имеют КПД до 55–65%. Последнее обстоятельство подвигло инженеров компании BMW начать проработки вариантов использования этой схемы в автомобилях. К слову сказать, КПД современных бензиновых двигателей составляет 34%.

Стоимость изготовления парового двигателя во все времена была ниже стоимости карбюраторного и дизельного моторов той же мощности. Расход жидкого топлива в новых паровых двигателях, работающих в замкнутом цикле на перегретом (сухом) пару и оснащённых современными системами смазки, качественными подшипниками и электронными системами регулирования рабочего цикла, составляет всего 40% от прежнего.

4. Паровой двигатель медленно запускается. И это было когда-то… Даже серийные автомобили фирмы Stanley «разводили пары» от 10 до 20 минут. Усовершенствование конструкции котла и внедрение каскадного режима нагрева позволило сократить время готовности до 40–60 секунд.

5. Паровой автомобиль слишком нетороплив. Это не так. Рекорд скорости 1906 года - 205,44 км/час – принадлежит паровому автомобилю. В те годы автомобили на бензиновых моторах так быстро ездить не умели. В 1985-м на паровом автомобиле разъезжали со скоростью 234,33 км/час. А в 2009 году группа британских инженеров сконструировала паротурбинный «болид» с паровым приводом мощностью 360 л. с., который был способен перемещаться с рекордной средней скоростью в заезде – 241,7 км/час.

6. Паровой автомобиль дымит, он неэстетичен. Рассматривая старинные рисунки, на которых изображены первые паровые экипажи, выбрасывающие из своих труб густые клубы дыма и огня (что, кстати, свидетельствует о несовершенстве топок первых «паровиков»), понимаешь, откуда взялась стойкая ассоциация паровой машины и копоти.

Что касается внешнего вида машин, дело тут, конечно, зависит от уровня дизайнера. Вряд ли кто-то скажет, что паровые автомобили Абнера Добля (США) некрасивы. Напротив, они элегантны даже по теперешним представлениям. И ездили к тому же бесшумно, плавно и быстро - до 130 км/час.

Интересно, что современные изыскания в области водородного топлива для автомобильных моторов породили ряд «боковых ответвлений»: водород в качестве топлива для классических поршневых паровых двигателей и в особенности для паротурбинных машин обеспечивает абсолютную экологичность. «Дым» от такого мотора представляет собой… водяной пар.

7. Паровой двигатель капризен. Это неправда. Он конструктивно значительно проще двигателя внутреннего сгорания, что само по себе означает большую надёжность и неприхотливость. Ресурс паровых моторов составляет многие десятки тысяч часов непрерывной работы, что не свойственно другим типам двигателей. Однако этим дело не ограничивается. В силу принципов работы паровой двигатель не теряет эффективности при понижении атмосферного давления. Именно по этой причине транспортные средства на паровой тяге исключительно хорошо подходят для использования в высокогорье, на тяжёлых горных перевалах.

Интересно отметить и ещё одно полезное свойство парового двигателя, которым он, кстати, схож с электромотором постоянного тока. Снижение частоты вращения вала (например, при возрастании нагрузки) вызывает рост крутящего момента. В силу этого свойства автомобилям с паровыми моторами принципиально не нужны коробки передач - сами по себе весьма сложные и порой капризные механизмы.

Зачастую при упоминании "паровых двигателей" на ум приходят паровозы или автомобили Стэнли Стимер, но применение этих механизмов не ограничивается перевозками. Паровые двигатели, которые впервые были созданы в примитивном виде около двух тысячелетий назад, за последние три столетия стали крупнейшими источниками электропитания, а сегодня паровые турбины производят около 80 процентов мировой электроэнергии. Чтобы глубже понять природу физических сил, на основе которых работает такой механизм, мы рекомендуем вам сделать свой собственный паровой двигатель из обычных материалов, воспользовавшись одним из предложенных здесь способов! Для начала переходите к Шагу 1.

Шаги

Паровой двигатель из жестяной банки (для детей)

    Отрежьте нижнюю часть алюминиевой банки на расстояние 6,35 см. При помощи ножниц по металлу ровно отрежьте нижнюю часть алюминиевой банки примерно на треть высоты.

    Загните и прижмите ободок при помощи плоскогубцев. Чтобы не было острых краев, загните ободок банки внутрь. Выполняя это действие, следите за тем, чтобы не пораниться.

    Надавите на дно банки изнутри, чтобы сделать его плоским. У большинства алюминиевых банок из-под напитков основание будет круглым и выгнутым вовнутрь. Выровняйте дно, надавив на него пальцем или воспользовавшись небольшим стаканом с плоским дном.

    Выполните два отверстия в противоположных сторонах банки, отступив 1,3 см от верха. Для выполнения отверстий подойдет как бумажный дырокол, так и гвоздь с молотком. Вам потребуются отверстия диаметром чуть более трех миллиметров.

    Разместите по центру банки маленькую греющую свечу. Скомкайте фольгу и положите ее под низ и вокруг свечки, чтобы она не двигалась. Такие свечки обычно идут в специальных подставках, поэтому воск не должен плавиться и вытекать в алюминиевую банку.

    Обмотайте центральную часть медной трубки длиной 15-20 см вокруг карандаша на 2 или 3 витка, чтобы получился змеевик. Трубка диаметром 3 мм должна легко сгибаться вокруг карандаша. Вам потребуется достаточное количество изогнутой трубки, чтобы протянуть поперек банки через верх, плюс дополнительные прямые 5 см с каждой из сторон.

    Проденьте концы трубок в отверстия в банке. Центр змеевика должен расположиться над фитилем свечи. Желательно, чтобы прямые участки трубки с обеих сторон банки были одинаковой длины.

    Согните концы труб при помощи плоскогубцев, чтобы получился прямой угол. Согните прямые участки трубки таким образом, чтобы с разных сторон банки они смотрели в противоположные направления. Затем снова согните их, чтобы они опустились ниже основания банки. Когда все будет готово, должно получиться следующее: змеевидная часть трубки находится по центру банки над свечкой и переходит в два наклонных, смотрящих в противоположные стороны "сопла" с двух сторон банки.

    Опустите банку в миску с водой, при этом концы трубки должны погрузиться. Ваша "лодка" должна надежно держаться на поверхности. Если концы трубки недостаточно погружены в воду, попытайтесь немного утяжелить банку, но ни в коем случае не утопите ее.

    Заполните трубку водой. Самым простым способом будет опустить один конец в воду и потянуть с другого конца как через соломинку. Также можно пальцем перекрыть один выход из трубки, а второй подставить под струю воды из-под крана.

    Зажгите свечу. Через время вода в трубке нагреется и закипит. По мере превращения в пар она будет выходить через "сопла", в результате чего вся банка начнет вращаться в миске.

Паровой двигатель из банки из-под краски (для взрослых)

    Прорежьте прямоугольное отверстие возле основания четырехлитровой банки из-под краски. Сделайте горизонтальное прямоугольное отверстие размером 15 x 5 см сбоку банки возле основания.

    • Необходимо убедиться, что в этой банке (и в еще одной используемой) была только латексная краска, а также тщательно вымыть ее мыльной водой перед использованием.
  1. Отрежьте полоску металлической сетки 12 x 24 см. По длине с каждого края отогните по 6 см под углом 90 o . У вас получиться квадратная "платформа" 12 x 12 см с двумя "ножками" по 6 см. Установите ее в банку "ножками" вниз, выровняв ее по краям прорезанного отверстия.

    Сделайте полукруг из отверстий по периметру крышки. Впоследствии вы будете сжигать в банке уголь, чтобы обеспечить паровой двигатель теплом. При нехватке кислорода уголь будет плохо гореть. Чтобы в банке была необходимая вентиляция, просверлите или пробейте в крышке несколько отверстий, которые образуют полукруг вдоль краев.

    • В идеале диаметр вентиляционных отверстий должен быть около 1 см.
  2. Сделайте змеевик из медной трубки. Возьмите около 6 м трубки из мягкой меди диаметром 6 мм и отмерьте с одного конца 30 см. Начиная с этой точки, выполните пять витков диаметром 12 см. Оставшуюся длину трубы согните в 15 витков диаметром по 8 см. У вас должно остаться около 20 см.

    Пропустите оба конца змеевика в вентиляционные отверстия в крышке. Согните оба конца змеевика таким образом, чтобы они были направлены вверх и пропустите оба через одно из отверстий в крышке. Если длины трубы не хватает, то потребуется немного разогнуть один из витков.

    Поместите змеевик и древесный уголь в банку. Поместите змеевик на сетчатую платформу. Заполните пространство вокруг и внутри змеевика древесным углем. Плотно закройте крышку.

    Просверлите отверстия под трубку в банке меньшего размера. По центру крышки литровой банки просверлите отверстие диаметром 1 см. Сбоку банки просверлите два отверстия диаметром 1 см – одно возле основания банки, а второе над ним возле крышки.

    Вставьте закупоренную пластмассовую трубку в боковые отверстия меньшей банки. При помощи концов медной трубки проделайте отверстия в центре двух пробок. В одну пробку вставьте жесткую пластмассовую трубку длиной 25 см, а в другую пробку – такую же трубку длиной 10 см. Они должны плотно сидеть в пробках и немного выглядывать наружу. Вставьте пробку с более длинной трубкой в нижнее отверстие меньшей банки, а пробку с более короткой трубкой в верхнее отверстие. Закрепите трубки в каждой пробке при помощи хомутов.

    Соедините трубку большей банки с трубкой меньшей банки. Разместите меньшую банку над большей, при этом трубка с пробкой должна быть направлена в противоположную сторону от вентиляционных отверстий большей банки. При помощи металлической ленты закрепите трубку из нижней пробки с трубкой, выходящей из нижней части медного змеевика. Затем аналогичным образом закрепите трубку из верхней пробки с трубкой, выходящей из верхней части змеевика.

    Вставьте медную трубку в соединительную коробку. При помощи молотка и отвертки удалите центральную часть круглой металлической электрораспределительной коробки. Зафиксируйте хомут под электрический кабель стопорным кольцом. Вставьте 15 см медной трубки диаметром 1,3 см в хомут кабеля, чтобы трубка выходила на несколько сантиметров ниже отверстия в коробке. Затупите края этого конца вовнутрь при помощи молотка. Вставьте этот конец трубки в отверстие в крышке меньшей банки.

    Вставьте шпажку в дюбель. Возьмите обычную деревянную шпажку для барбекю и вставьте ее в один конец полого деревянного дюбеля длиной 1,5 см и диаметром 0,95 см. Вставьте дюбель со шпажкой в медную трубку внутри металлической соединительной коробки таким образом, чтобы шпажка была направлена вверх.

    • Во время работы нашего двигателя шпажка и дюбель будут действовать как "поршень". Чтобы движения поршня было лучше видно, можно прикрепить к нему небольшой бумажный "флажок".
  3. Подготовьте двигатель к работе. Снимите соединительную коробку с меньшей верхней банки и заполните верхнюю банку водой, позволяя ей выливаться в медный змеевик, пока банка не будет заполнена водой на 2/3. Проверьте отсутствие утечек во всех местах соединений. Плотно закрепите крышки банок, застучав их молотком. Снова установите соединительную коробку на место над меньшей верхней банкой.

  4. Запускайте двигатель! Скомкайте куски газеты и положите их в пространство под сеткой в нижней части двигателя. Когда древесный уголь разгорится, дайте ему прогореть около 20-30 минут. По мере нагревания воды в змеевике в верхней банке начнет накапливаться пар. Когда пар достигнет достаточного давления, он вытолкнет дюбель и шпажку наверх. После сброса давления поршень опустится вниз под действием силы тяжести. При необходимости, срежьте часть шпажки, чтобы снизить вес поршня – чем он легче, тем чаще будет "всплывать". Постарайтесь сделать шпажку такого веса, чтобы поршень "ходил" в постоянном темпе.

    • Можно ускорить процесс горения, усилив приток воздуха в вентиляционные отверстия феном.
  5. Соблюдайте безопасность. Полагаем, само собой разумеется, что при работе и обращении с самодельным паровым двигателем необходимо соблюдать осторожность. Никогда не запускайте его в помещении. Никогда не запускайте его возле таких воспламеняющихся материалов, как сухие листья или нависающие ветви деревьев. Используйте двигатель только на прочной негорючей поверхности вроде бетона. Если вы работаете с детьми или подростками, то они не должны оставаться без присмотра. Детям и подросткам запрещается подходить к двигателю, когда в нем горит древесный уголь. Если вам не известна температура двигателя, то считайте, что он настолько горячий, что к нему нельзя прикасаться.

    • Удостоверьтесь, что пар может выходить из верхнего "котла". Если по какой-либо причине поршень застрянет, то внутри меньшей банки может накопиться давление. При самом худшем раскладе банка может взорваться, что очень опасно.
  • Поместите паровой двигатель в пластмассовую лодку, опустив оба конца в воду, чтобы получилась паровая игрушка. Можно вырезать лодку простой формы из пластиковой бутылки из-под газировки или отбеливателя, чтобы ваша игрушка получилась более "экологичной".

Н а самом деле это относится не столько к автомобильной марке, сколько к людям, ее учредившим. Братьям Добл, Абнеру и Джону, уже в 1910 году удалось совместить древнюю технологию с передовыми стилистическими решениями. Впрочем, технологию эту им тоже пришлось изрядно улучшить. Джон сделал это во время обучения в Массачусетском технологическом – уже тогда талантливый инженер мог позволить себе содержать персональную мастерскую, в которой протестировал уникальный конденсатор собственной разработки. Устройство предназначалось для конденсации отработанного пара и было сделано в виде сотового радиатора. С таким новшеством прототип на 90 литрах воды проезжал до 2 000 километров, превысив стандартный пробег «паромобиля» почти в 20 раз!

Для своего времени это была сенсация. После шумихи в прессе братья тут же обзавелись инвесторами, чьих средств оказалось достаточно, чтобы учредить компанию General Engineering с уставным капиталом в $200 тысяч. Там велись все дальнейшие разработки и усовершенствования автомобилей на пару.

1 / 5

2 / 5

3 / 5

4 / 5

5 / 5

Для концепта Нью-Йоркского автосалона 1917 года Джон Добл, самый головастый участник предприятия, придумал систему электрического зажигания, в которой керосин под давлением проходил через карбюратор и поджигался запальной свечой.

Затем горящая смесь поступала в камеру сгорания, где и нагревала воду в котле. Процесс запускался одним нажатием кнопки, а чтобы достичь нужного уровня давления пара и тронуть машину с места, двигателю хватало лишь 90 секунд! Все эти мифические характеристики сделали паромобиль Доблов едва ли не самой яркой премьерой – уже к концу года в General Engineering поступило более 5 тысяч заказов от покупателей. Если бы не Первая мировая, лишившая компанию железа, кто знает, на чем бы мы передвигались сейчас…

В 1921 году Джон умирает после тяжелой болезни. Однако на его место приходят сразу два других брата – семейство Доблов оказалось необычайно большим. Вскоре Абнер, Билл и Уоренн создают новый бренд, теперь уже имени себя – Doble Steam Motors, и анонсируют усовершенствованный проект – паромобиль Model E. Через три года команда вновь отправляется в Нью-Йорк, на зимнюю выставку, где демонстрирует всем необычайный эксперимент: машина Доблов всю ночь стоит в неотапливаемом гараже, а затем еще час находится на улице, где мороз крепчает сильнее. Затем на глазах у специалистов зажигание активируется, двигатель заводится, и спустя 23 секунды машина может ехать.

Предельная скорость Model E тогда составила 160 км/ч, а до сотни она разогналась всего за 8 секунд! Это произошло благодаря новому четырехцилиндровому мотору, в коем пар сначала доставлялся в два цилиндра высокого давления, а остаточную энергию получали два цилиндра низкого давления, отправлявшие «пустой» пар в конденсатор. Эврика, не иначе!

1 / 7

2 / 7

3 / 7

4 / 7

5 / 7

6 / 7

7 / 7

Конечно, тонкие технические решения требовали лучших материалов, которые соответствующе влияли на итоговый ценник. Так, паромобиль производства Doble Steam Motors с надежной электрикой Bosch на борту и роскошным салоном, облицованным деревом и даже слоновой костью, стоил $18 000. При здравствовавшей тогда 800-долларовой «Железной Лиззи» Форда это было неприлично дорого. А значит, позволить себе прокатиться на совершенном паромобиле могли либо крупные промышленники, либо грабители банков. Жаль, что последние тоже предпочитали Ford. Если бы хоть немного разбирался в автомобилях, возможно, Doble Steam Motors и не прекратили бы свое существование в 1931-м, выпустив на рынок всего 50 серийных экземпляров.

Особенности:

Заслугой братьев Добл не стало изобретение парового двигателя. Они преуспели в другом, сделав машину на пару современным, быстрым и комфортабельным средством передвижения. На Model Е ездил сам Говард Хьюз, что уже говорит о многом. К тому же силовая установка производства Doble Steam Motors не исчезла бесследно: в 1933 году ее успешно испытала авиационная фирма Bessler. Немногим позже паровой аэроплан Джонстона также отличился бесшумным полётом и малой посадочной скоростью. А это значит, что передовые идеи могут попасть на небо еще при жизни...

Лучший из «худших»

Еще один яркий пример родственной сплоченности показали миру братья Стэнли, в 1906 году построив паровую «Ракету». Данный аппарат появился на свет с единственной целью – установить рекорд скорости. В действие машину приводил двухцилиндровый паровой агрегат горизонтального расположения, максимальная мощность которого достигала 150 л.с.! Экзотичную внешность этот паромобиль позаимствовал у индейских каноэ – острый обтекаемый силуэт позволил инженерам добиться невероятных аэродинамических показателей. Со временем его переняли все гонщики, кто хоть как-то состоял в родстве со здравым смыслом.

1 / 2

2 / 2

Отважился пилотировать столь экстремальную технику только один человек, Фред Мариотт. Соляное озеро Бонневилль еще не пользовалось среди гонщиков популярностью, поэтому для проведения рекордных заездов использовали пляж Ормонд, расположенный недалеко от Дайтона-бич, что во Флориде. С первой же попытки «Ракета» братьев Стэнли преодолела скоростной рубеж в 205 км/ч при заезде на 1 милю и 195 км/ч при заезде на 1 км (отмеренном внутри этой мили). Таких показатель в то время не удавалось добиться никому. Это был час подлинного триумфа братьев Стэнли и всей паровой технологии!

Годом позже команда сумасшедших экспериментаторов Stanley Rocket взялась форсировать свой болид. Ведь потенциал этой силы пара был не до конца раскрыт – так они считали. Замахнувшись на скоростной рубеж в 322 км/ч (200 миль/ч), они увеличили мощность мотора, решив этот вопрос за счет повышения давления пара. В итоге цилиндры получили давление в 90 бар, а сам болид обзавелся более мощной тормозной системой.

1 / 5

2 / 5

3 / 5

4 / 5

5 / 5

Конструктивно «Ракета» Стэнли могла выдержать все нагрузки и выдержала бы, окажись под ее колесами идеально ровное покрытие. Плачевный итог едва не стоил жизни Фреду Мариотту – болид подпрыгнул на кочке и развалился по частям. После этого братья Стэнли свои эксперименты приостановили. Ненадолго...

Особенности:

Скандал, раздутый газетчиками вокруг поражения Stanley Rocket, едва не затмил его же триумф. Многие пытались взять высоту, которую играючи одолела паровая «Ракета». До недавнего времени об ее рекорд сломалось множество копий, топоров и другого оружия, которым со злости кидались в победителя остальные гонщики-лузеры. А сила пара по-прежнему рулит!

Грузовик на дровах

А еще на угле и даже торфе! Да, подобные словосочетания возникли не на голом месте - и конечно, . Но как ни странно, шуточная метафора в 1948 году – в эпоху тотального дефицита и экономии – была претворена в жизнь и работала! Разоренную Второй мировой страну нужно было поднимать, индустриализировать, обеспечивать. А потому вслед за Постановлением Совета Министров СССР от 07.08.1947 г. «О механизации лесозаготовок и освоении новых лесных районов» НАМИ поручили разработать силовой агрегат и конструкцию лесовоза, который работал бы на дровах. А что, вроде бы все логично – в обширной лесополосе топлива навалом...

1 / 5

2 / 5

3 / 5

4 / 5

5 / 5

Уже в мае 1949-го ведущая проект группа инженеров, возглавляемая Юрием Шебалиным и Николаем Коротоношко, получила авторское свидетельство на паровой двигатель, что работал на низкокалорийном топливе. Паросиловая установка повышенного давления снабжалась водотрубным котлом с естественной циркуляцией и 3-цилиндровым мотором однократного расширения. Заправочный материал, так называемые «швырки» (околыши среднего размера), загружались в два топливных бункера, расположенных друг на друге, и поступали в горелку «самоходом», по мере сгорания. Регулировать этот процесс можно было вручную либо автоматически – три положения передачи предусматривали 20%, 40% и 75% заполнения цилиндра двигателя. Таким образом, запас хода экспериментального грузовика НАМИ-012 составлял 80-120 км.

К тому времени, когда завершились испытания прототипов «дровяных» тягачей, то есть летом 1951 года, во всем мире прекратили производство транспорта с паровым двигателем. Мнение наблюдательной комиссии, включавшей представителей практически всех автомобильных организаций, также сложилось не в пользу НАМИ-012. Груженые машины показали отличную проходимость, но с порожним ходом обнаружились проблемы – все из-за перегрузки передней оси.

1 / 5

2 / 5

3 / 5

4 / 5

5 / 5

Тогда было решено продолжить исследования и сделать полноприводный прототип. За оным закрепился индекс НАМИ-018. Внешне тот отличался от своего предшественника лишь вертикальной решеткой моторного отсека. Инженерам удалось стабилизировать порожний тягач, но минусов в его эксплуатации все равно обнаружилось больше, чем плюсов. Чтобы проехать «злосчастные» 100 км пути, грузовик должен был везти почти полтонны дров, заготовленных впрок и уже просушенных. При этом зимой необходимо было сливать на ночь воду (аж 200 литров), чтобы она не замерзла и не разорвала котел изнутри, а утром заливать ее снова. В 1954 году, когда Советы получили доступ к нефти, а соответственно, и к дешевому жидкому топливу, подобные жертвы были уже не оправданы.

Особенности:

Вердикт комиссии, сообщавший «Паровой автомобиль НАМИ-018 отвечает всем параметрам лесной промышленности, но может быть использован только в районах, куда доставка жидкого топлива затруднена или высока по стоимости», фактически приговорил тягач на дровах к смерти. Немногочисленные прототипы были безжалостно уничтожены, даже секретный НАМИ-012Б, который мог работать на одном лишь мазуте. Все, что осталось от них сегодня – это несколько фотографий, размытых из-за вечно дымящего паровика...

Кит-кары не парятся

Отчаянная все же страна эта Австралия. То ли солнца там много, то ли смешных животных. То ли просто сумасшедшие идеи носятся в соленом воздухе и достаются энтузиастам задаром... Последние, к примеру, возьмут, да и устроят гонки на просто от скуки. Да ладно устроят, так еще и где-то денег на свой проект найдут! Причем подвержены таким вот процессам не только коренные австралийцы, но и люди приезжие, вроде англичанина Питера Пелландайна, который выкроил из стеклопластика парочку суперлегких кит-каров, а потом зачем-то решил приделать к ним паровой двигатель...

Есть два направления современных паромобилей: рекордные машины, предназначенные для скоростных заездов, и самоделки энтузиастов парового движения.

Inspiration (2009). Современный паровой автомобиль №1, рекордный болид, спроектированный шотландцем Гленном Боушером для того, чтобы побить рекорд скорости для паровых автомобилей, установленный на машине Stanley Steamer в далёком 1906 году. 26 августа 2009 года, 103 года спустя, Inspiration разогнался до 239 км/ч, став самым быстрым паровым автомобилем в истории.


Pellandini Mk 1 Steam Cat (1977). Попытка австралийца Питера Пелландайна, владельца небольшой компании по производству лёгких спорткаров, внедрить практически применимый и удобный паровой автомобиль. Он даже сумел «выбить» под этот проект деньги из руководства штата Южная Австралия.


Pelland Steam Car Mk II (1982). Второй паровой болид Питера Пелландайна. На нём он пытался поставить рекорд скорости для паровых машин. Но не получилось. Хотя машина получилась очень динамичной и разгонялась до сотни за 8 секунд. Позже Пелландайн построил ещё две версии машины.


Keen Steamliner No. 2 (1963). В 1943 и 1963 годах инженер Чарльз Кин построил два самодельных паровых автомобиля, известных соответственно как Keen Steamliner No. 1 и No. 2. Про второй автомобиль очень много писали в прессе и даже предполагали его промышленное производство. Кин использовал стеклопластиковый кузов от кит-кара Victress S4, но всю ходовую часть и двигатель собрал самостоятельно.


Steam Speed America (2012). Рекордный паровой автомобиль, построенный группой энтузиастов для заездов в Бонневилле в 2014 году. Воз, правда, и ныне там, после неудачных заездов (аварии) 2014 года Steam Speed America находится на уровне испытаний и рекордных заездов больше не проводил.


Cyclone (2012). Прямой конкурент предыдущего болида, даже названия команд очень похожи (эта называется Team Steam USA). Рекордный болид был представлен в Орландо, но пока так и не принял участия в полноценных заездах.


Barber-Nichols Steamin" Demon (1977). В 1985 году на этой машине, для которой использовался кузов от кит-кара Aztec 7, пилот Боб Барбер разогнался до 234,33 км/ч. Рекорд не был официально признан FIA из-за нарушений в правилах заездов (Барбер провёл оба заезда в одну сторону, в то время как правила требуют провести их в противоположных, причём в течение часа). Тем не менее, именно эта попытка была первый реальным успехом на пути к преодолению рекорда 1906 года.


Chevelle SE-124 (1969). Конверсия классического Chevrolet Chevelle в паромобиль, выполненная Биллом Беслером по заказу General Motors. GM исследовала ходовые и экономические возможности паровых двигателей в применении к дорожным автомобилям.



Поделиться