Назначение и особенности зубчатых передач. Зубчатые передачи. Общие сведения

Зубчатые передачи. Общие сведения

Зубчатой передачей называется трехзвенный механизм, в котором два подвижных зубчатых звена образуют с неподвижным звеном вращательную или поступательную пару. Зубчатое звено передачи может представлять собой колесо, сектор или рейку. Зубчатые передачи служат для преобразования вращательных движений или вращательного движения в поступательное.

Все применяемые здесь и в дальнейшем термины, определения и обозначения, относящиеся к зубчатым передачам, соответствуют ГОСТ 16530—83 «Передачи зубчатые», ГОСТ 16531—83 «Передачи зубчатые цилиндрические» и ГОСТ 19325—73 «Передачи зубчатые конические».

Зубчатое зацепление представляет собой высшую кинематическую пару, так как зубья теоретически соприкасаются между собой по линиям или точкам, причем меньшее зубчатое колесо пары называется шестерней, а большее—колесом. Сектор цилиндрического зубчатого колеса бесконечно большого диаметра называется зубчатой рейкой.

Зубчатые передачи можно классифицировать по многим признакам, а именно: по расположению осей валов (с параллельными, пересекающимися, скрещивающимися осями и соосные); по условиям работы (закрытые — работающие в масляной ванне и открытые—работающие всухую или смазываемые периодически); по числу ступеней (одноступенчатые, многоступенчатые); по взаимному расположению колес (с внешним и внутренним зацеплением); по изменению частоты вращения валов (понижающие, повышающие); по форме поверхности, на которой нарезаны зубья (цилиндрические, конические); по окружной скорости колес (тихоходные при скорости до 3 м/с, среднескоростные при скорости до 15 м/с, быстроходные при скорости выше 15 м/с); по расположению зубьев относительно образующей колеса (прямозубые, косозубые, шевронные, с криволинейными зубьями); по форме профиля зуба (эвольвентные, круговые, циклоидальные).

Кроме перечисленных существуют передачи с гибкими зубчатыми колесами, называемые волновыми.

Основные виды зубчатых передач (рис.) с параллельными осями: а — цилиндрическая прямозубая, б— цилиндрическая косозубая, в— шевронная, г — с внутренним зацеплением; с пересекающимися осями: д— коническая прямозубая, е — коническая с тангенциальными зубьями, ж — коническая с криволинейными зубьями; со скрещивающимися осями: з— гипоидная, и— винтовая; к — зубчато-реечная прямозубая (гипоидная и винтовая передачи относятся к категории гиперболоидных передач).

Зубчатая передача, оси которой расположены под углом 90°, называется ортогональной.

Достоинство зубчатых передач заключается прежде всего в том, что при одинаковых характеристиках они значительно более компактны, по сравнению с другими видами передач. Кроме того, зубчатые передачи имеют более высокий к. п. д.(до 0,99 в одной ступени), сохраняют постоянство передаточного числа, создают относительно небольшую нагрузку на опоры валов, имеют большую долговечность и надежность работы в широких диапазонах мощностей (до десятков тысяч киловатт), окружных скоростей (до 150 м/с) и передаточных чисел (до нескольких сотен).

Недостатки зубчатых передач: сложность изготовления точных передач, возможность возникновения шума и вибраций при недостаточной точности изготовления и сборки, невозможность бесступенчатого регулирования частоты вращения ведомого вала.

Зубчатые передачи являются наиболее распространенными типами механических передач и находят широкое применение во всех отраслях машиностроения, в частности в металлорежущих станках, автомобилях, тракторах, сельхозмашинах и т. д.; в приборостроении, часовой промышленности и др. Годовое производство зубчатых колес в нашей стране исчисляется сотнями миллионов штук, а габаритные размеры их от долей миллиметра до десяти и более метров. Такое широкое распространение зубчатых передач делает необходимой большую научно-исследовательскую работу по вопросам конструирования и технологии изготовления зубчатых колес и всестороннюю стандартизацию в этой области. В настоящее время стандартизованы термины, определения, обозначения, элементы зубчатых колес и зацеплений, основные параметры передач, расчет геометрии, расчет цилиндрических эвольвентных передач на прочность, инструмент для нарезания зубьев и многое другое.

Основная кинематическая характеристика всякой зубчатой передачи — передаточное число, определяемое по стандарту как отношение числа зубьев колеса к числу зубьев шестерни и обозначаемое и, следовательно,

Определение передаточного отношения остается таким же, как для других механических передач, т. е.

Потери энергии в зубчатых передачах зависят от типа передачи, точности ее изготовления, смазки и складываются из потерь на трение в зацеплении, в опорах валов и (для закрытых передач) потерь на перемешивание и разбрызгивание масла. Потерянная механическая энергия переходит в тепловую, что в некоторых случаях делает необходимым тепловой расчет передачи.

Потери в зацеплении характеризуются коэффициентом, потери в одной паре подшипников — коэффициентом и потери на перемешивание и разбрызгивание масла — коэффициентом. Общий к. п. д. одноступенчатой закрытой передачи

Ориентировочно = 0,96...0,98 (закрытые передачи), = 0,95...0,96 (открытые передачи), = 0,99...0,995 (подшипники качения), = 0,96...0,98 (подшипники скольжения), = 0,98...0,99.

Поверхности взаимодействующих зубьев колес, обеспечивающие заданное передаточное отношение, называются сопряженными. Процесс передачи движения в кинематической паре, образованной зубчатыми колесами, называется зубчатым зацеплением.


Цилиндрическая прямозубая передача

На рис. изображено цилиндрическое колесо с прямыми зубьями. Часть зубчатого колеса, содержащая все зубья, называется венцом; часть колеса, насаживаемая на вал, называется ступицей. Делительная окружность диаметром d делит зуб на две части — головку зуба высотой h a и ножку зуба высотой h f , высота зуба h = h а + h f . Расстояние между одноименными профилями соседних зубьев, измеренное по дуге делительной окружности, называется окружным делительным шагом зубьев и обозначается р. Шаг зубьев слагается из окружной толщины зуба s и ширины впадины е. Длина хорды, соответствующая окружной толщине зуба, называется толщиной по хорде и обозначается. Линейная величина, в раз меньшая окружного шага, называется окружным делительным модулем зубьев, обозначается т и измеряется в миллиметрах (впредь слова «окружной делительный» в терминах будем опускать)

Модуль зубьев — основной параметр зубчатого колеса. Для пары колес, находящихся в зацеплении, модуль должен быть одинаковым. Модули зубьев для цилиндрических и конических передач регламентированы ГОСТ 9563—60*. Значения стандартных модулей от 1 до 14 мм приведены в табл.

Модули, мм

1-й ряд 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12

2-й ряд 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14

Примечание . При назначении модулей 1-й ряд следует предпочитать 2-му.

Все основные параметры зубчатых колес выражают через модули, а именно: шаг зубьев

диаметр делительной окружности

Последняя формула позволяет определить модуль как число миллиметров диаметра делительной окружности, приходящихся на один зуб колеса.

В соответствии со стандартным исходным контуром для цилиндрических зубчатых колес высота головки зуба h a = т, высота ножки зуба h f = 1,25т. Высота зубьев цилиндрических колес

h = h а + h f = 2,25 m .

Диаметр вершин зубьев

d a = m (z + 2),

диаметр впадин

d f = m (z – 2,5).

Расстояние между торцами зубьев колеса называется шириной венца. Контакт пары зубьев цилиндрической прямозубой передачи теоретически происходит по линии, параллельной оси; длина линии контакта равна ширине венца. В процессе работы передачи пара зубьев входит в зацепление сразу по всей длине линии контакта (что сопровождается ударом зубьев), после чего эта линия перемещается по высоте зуба, оставаясь параллельной оси.

Межосевое расстояние цилиндрической передачи с внешним и внутренним зацеплением

называется делительным межосевым расстоянием (знак минус для внутреннего зацепления). Если межосевое расстояние отличается от делительного, то оно обозначается а w .

ГОСТ 1643—81 на допуски для цилиндрических зубчатых колес и передач установлены двенадцать степеней точности, обозначенных цифрами (первая степень — наивысшая). Для каждой степени точности установлены нормы: кинематической точности, плавности работы и контакта зубьев колес и передач.

В процессе изготовления зубчатых передач неизбежны погрешности в шаге, толщине и профиле зубьев, неизбежно радиальное биение венца, колебание межосевого расстояния при беззазорном зацеплении контролируемого и измерительного колес и т. д. Все это создает кинематическую погрешность в углах поворота ведомого колеса, выражаемую линейной величиной, измеряемой по дуге делительной окружности. Кинематическая погрешность определяется как разность между действительным и расчетным углом поворота ведомого колеса. Нормы кинематической точности регламентируют допуски на кинематическую погрешность и ее составляющие за полный оборот колеса. Нормы плавности устанавливают допуски на циклическую (многократно повторяющуюся за один оборот) кинематическую погрешность колеса и ее составляющие. Нормы контакта устанавливают размеры суммарного пятна контакта зубьев передачи (в процентах от размеров зубьев) и допуски на параметры, влияющие на этот контакт.

В машиностроении зубчатые передачи общего назначения изготовляют по 6—9-й степеням точности. Цилиндрические прямозубые колеса 6-й степени точности применяют при окружных скоростях колес до 15 м/с; 1-й степени—до 10 м/с; 8-й степени — до 6 м/с; 9-й — до 2 м/с.

Рассмотрим силы, действующие в зацеплении прямозубой цилиндрической передачи. При изображенном на этом рисунке контакте пары зубьев в полюсе П скольжение (следовательно, и трение) отсутствует, зацепление будет однопарным и силовое взаимодействие колес будет заключаться в передаче по линии давления (нормали NN ) силы нормального давления . Разложим эту силу на две взаимно перпендикулярные составляющие и , называемые соответственно окружным и радиальным усилиями, тогда

где — угол зацепления.

Если известен передаваемый вращающий момент Т и диаметр d делительной окружности, то

(так как = 20°, то ).

Сила , вызывает вращение ведомого колеса и изгибает вал колеса в горизонтальной плоскости, сила г изгибает вал в вертикальной плоскости.


Цилиндрические передачи с косыми и шевронными зубьями

Косозубыми называют колеса, у которых теоретическая делительная линия зуба является частью винтовой линии постоянного шага (теоретической делительной линией называется линия пересечения боковой поверхности зуба с делительной цилиндрической поверхностью). Линия зуба косозубых колес может иметь правое и левое направление винтовой линии. Угол наклона линии зуба обозначается.

Косозубая передача с параллельными осями имеет противоположное направление зубьев ведущего и ведомого колес и относится к категории цилиндрических зубчатых передач, так как начальные поверхности таких зубчатых колес представляют собой боковую поверхность цилиндров. Передача с косозубыми колесами, оси которых скрещиваются, имеет одинаковое направление зубьев обоих колес и называется винтовой зубчатой передачей, которая относится к категории гиперболоидных зубчатых передач, так как начальные поверхности таких зубчатых колес являются частями однополостного гиперболоида вращения; делительные поверхности этих колес — цилиндрические.

У косозубых передач контактные линии расположены наклонно по отношению к линии зуба, поэтому в отличие от прямых косые зубья входят в зацепление не сразу по всей длине, а постепенно, что обеспечивает плавность зацепления и значительное снижение динамических нагрузок и шума при работе передачи. Поэтому косозубые передачи по сравнению с прямозубыми допускают значительно большие предельные окружные скорости колес. Так, например, косозубые колеса 6-й степени точности применяют при окружной скорости до 30 м/с; 7-й степени—до 15 м/с; 8-й степени — до 10 м/с; 9-й — до 4 м/с.

Силу нормального давления в зацеплении косозубых колес можно разложить на три взаимно перпендикулярные составляющие (рис. 7.10,б): окружную силу , радиальную силу и осевую силу , равные:

где Т— передаваемый вращающий момент; — угол зацепления.

Наличие осевой силы — существенный недостаток косозубых передач. Во избежание больших осевых сил в косозубой передаче угол наклона линии зуба ограничивают значениями =8...20°, несмотря на то, что с увеличением увеличивается прочность зубьев, плавность работы передачи, ее нагрузочная способность.


В современных передачах косозубые колеса имеют преимущественное распространение.

Цилиндрическое зубчатое колесо, венец которого по ширине состоит из участков с правыми и левыми зубьями, называется шевронным. Часть венца с зубьями одинакового направления называется полушевроном. Из технологических соображений шевронные колеса изготовляют двух типов: с дорожкой посредине колеса (а) и без дорожки (б). В шевронном колесе осевые силы на полушевронах, направленные в противоположные стороны, взаимно уравновешиваются внутри колеса и на валы и опоры валов не передаются. Поэтому у шевронных колес угол наклона зубьев принимают в пределах = 25...40°, в результате чего повышается прочность зубьев, плавность работы передачи и ее нагрузочная способность. Поэтому шевронные колеса применяют в мощных быстроходных закрытых передачах. Недостатком шевронных колес является высокая трудоемкость и себестоимость изготовления.

Геометрические, кинематические и прочностные расчеты шевронной и косозубой передач аналогичны.

Материалы цилиндрических колес

Материалы для изготовления зубчатых колес в машиностроении— стали, чугуны и пластмассы; в приборостроении зубчатые колеса изготовляют также из латуни, алюминиевых сплавов и др. Выбор материала определяется назначением передачи, условиями ее работы, габаритами колес и даже типом производства (единичное, серийное или массовое) и технологическими соображениями.

Общая современная тенденция в машиностроении — стремление к снижению материалоемкости конструкций, увеличению мощности, быстроходности и долговечности машины. Эти требования приводят к необходимости уменьшения массы, габаритов и повышения нагрузочной способности силовых зубчатых передач. Поэтому основные материалы для изготовления зубчатых колес — термообработанные углеродистые и легированные стали, обеспечивающие высокую объемную прочность зубьев, а также высокую твердость и износостойкость их активных поверхностей.

Критерии работоспособности зубчатых колес и расчетная нагрузка

Под действием сил нормального давления и трения зуб колеса испытывает сложное напряженное состояние, но решающее влияние на его работоспособность оказывают два фактора: контактные напряжения и напряжения изгиба , которые действуют на зуб только во время нахождения его в зацеплении и являются, таким образом, повторно-переменными.



Повторно-переменные напряжения изгиба вызывают появление усталостных трещин у растянутых волокон основания зуба (место концентрации напряжений), которые с течением времени приводят к его поломке (рис. а, б).

Повторно-переменные контактные напряжения и силы трения приводят к усталостному изнашиванию активных поверхностей зубьев. Так как сопротивление усталостному изнашиванию у опережающих поверхностей выше, чем у отстающих, то нагрузочная способность головок зубьев выше, чем ножек. Этим объясняется отслаивание и выкрашивание частиц материала на активной поверхности ножек зубьев (рис. в ) при отсутствии видимых усталостных повреждений головок. Усталостное изнашивание активных поверхностей зубьев характерно для работы закрытых передач.

В открытых передачах и в передачах с плохой (загрязняемой) смазкой усталостное изнашивание опережается абразивным износом активных поверхностей зубьев (рис. г).

В тяжелонагруженных и высокоскоростных передачах в зоне контакта зубьев возникает высокая температура, способствующая разрыву масляной пленки и образованию металлического контакта, в результате чего происходит заедание зубьев (рис. д), которое может завершиться прекращением относительного движения колес передачи.

Итак, критерием работоспособности зубчатых передач является износостойкость активных поверхностей зубьев и их изгибная прочность.

1. Введение…………………………………………………………………3 стр.

2. История возникновения зубчатого колеса…………………………….4 стр.

3. Виды зубчатых передач…………………………………………………7 стр.

4. Заключение………………………………………………………………9 стр.

5. Использованная литература…………………………………………….10 стр.

ВВЕДЕНИЕ

История появления зубчатого колеса берет своё начало с самых давних времен и по сей день играет немаловажную роль в нашей повседневной жизни и, в особенности, в жизни любого инженера. Зубчатые передачи используются не только в машиностроении,но и во многих других сферах производственной деятельности. Так что же представляет собой зубчатое колесо, без которого нельзя представить все наши механизмы?

Целью исследования является выявление смысла и значимости зубчатой передачи в технологии.

Объектом исследования является самостоятельно изготовленная деревянная модель, соответствующая выбранной тематике.

Исходя из поставленной цели, определены следующие задачи исследования:

1. Изучить различные источники информации о предмете исследования;

2. Сформировать классификацию зубчатых передач и дать характеристику их смыслового значения;

3. Исследовать изготовленный образец классической зубчатой передачи;

4. Сделать выводы из проделанной работы.

История возникновения зубчатого колеса Зубчатое колесо (зубчатка, шестерня) представляет собой колесо, на внешней поверхности которого посажены на равном расстоянии зубья .Появление зубчатого колеса является одним из ключевых изобретений в истории человечества. Сложно представить механику современных устройств без этого элемента. Сам по себе принцип работы зубчатого колеса и связанных с ним передач довольно прост и даже примитивен, но именно он дал начало огромному множеству более сложных изобретений. В истории нет конкретного автора, которому можно было бы приписать это изобретение, но у историков есть сведения, что впервые зубчатое колесо было применено ученым Ктезибием в его водяных часах (2 век до нашей эры). Также его можно найти в скульптурных работах в Риме, относящихся к работе Траяновой колонны (начало нашей эры). В записях Леонардо да Винчи имеются эскизы применения зубчатого колеса в различных механизмах, в том числе и червячных колес, причем из предлагаемых им двух форм зуба одна весьма близка к современной. Полноценное внедрение в инженерные технологии связывают с научной деятельностью ученых Средней Азии в IX-X веках, предков современных таджиков.Поиском форм очертаний зуба, обеспечивающих плавную работу зубчатого колеса, занимались датский ученый Олаф Ремер (1674) и французкий ученый Шарль Калиос (1766). В области эвольвентной формы зуба работал французкий математик Филипп Лагир (1695) и швейцарский ученый Эйлер (начала 18 в.). На основании этих работ английским профессором Уиллисом были даны основы для практического применения этих форм зуба в производстве. Изобретение американцем Джозефом Брауном фрезеров (1864) дало возможность изготовлять зубчатые колёса с фрезерованным зубом, что

являлось необходимым элементом в деле внедрения сменных шестерен с эвольвентной формой зуба. Зубчатое колесо служит для передачи вращения с одного вала на другой, для чего на оба вала насаживают по зубчатому колесу и притом так, чтобы зубья одного колеса входили в промежутки (впадины) другого. Отношение чисел оборотов валов в минуту называется передаточным числом. Передаточное число можно определить, если взять отношение диаметров зубчатого колеса или отношение чисел их зубьев.
Фрагмент гравюры с изображением бурения артезианской скважины, 1836 г.

Что же явилось стимулом в изобретении зубчатого колеса? Безусловно, потребность в промышленной переработке производимой продукции в сельском хозяйстве. Так, например, пресс, изготовленный на основе рычага Архимеда, имел низкую эффективность, и с его использованием невозможно было организовать крупное промышленное производство. А вот зубчатое колесо позволило многократно усилить приложенную к нему силу, превращая поступательное движение во вращение и обратно. Зубчатое колесо также привело к созданию первых механических часов в XI веке нашей эры. Часы тогда еще приводились в движение энергией воды. Это «чудо Востока», равно как духи, сахар, ювелирные изделия из ограненных камней, очки, цветные ткани, изделия из мягкой кожи, обработанные химическим способом, приводили Европу в изумление и пользовались громадным успехом.


Если говорить о практической пользе от этого изобретения, то в первую очередь стоит выделить его использование в добыче ископаемых. Для того, чтобы осознать всю масштабность прорыва в этой области можно взглянуть на статистику добычи. Горная промышленность региона, в котором было внедрено зубчатое колесо, достигла уровня более семидесяти процентов мировой добычи полезных ископаемых, включая металлы, драгоценные и полудрагоценные камни. Еще один малоизвестный факт: это чудо-изобретение дало начало промышленному производству бумаги. Бумага, считающаяся изобретением

Китая, стала производиться и использоваться для книгоиздательства впервые в Самарканде. В самом же Китае, бумага использовалась исключительно для изящной живописи. Свое предназначение, как носителя информации и средства распространения знаний, бумага получила в эпоху Ренессанса Согдианы, и с тех пор она прочно вошла в наш обиход. Поразительно то, что водяное и зубчатое колеса, позволили создать первые механические ткацкие станки, приводившиеся в движение силой воды. Перечислять изобретения, в которых принцип действия зубчатой передачи позволил добиться невиданных ранее результатов, можно очень долго. Сложно переоценить значимость в истории одного из основных устройств во всех механических устройствах, которые являются неизменным спутником людей во всем мире. Современную цивилизацию сложно представить без использования зубчатого колеса.

ВИДЫ ЗУБЧАТЫХ ПЕРЕДАЧ

Назначением зубчатых передач является передача вращательного движения между валами, которые могут иметь параллельные, пересекающиеся и скрещивающиеся оси. Выполнение преобразования вращательного движения в поступательное и наоборот – задача реечных передач. Усилие от одного элемента к другому передается с помощью зубьев. Зубчатое колесо передачи с меньшим числом зубьев называется шестерней , второе колесо с большим числом зубьев так и называется колесом . В случае одинакового количества зубьев у пары колес ведущее колесо является шестерней, а ведомое – колесом.Зубчатые колеса можно разделить на цилиндрические и конические. Цилиндрическиеколеса бывают трех типов: прямозубые, косозубые и шевронные.

Прямозубые колеса являются самым распространенным видом. Их зубья расположены в радиальных плоскостях, а линия контакта зубьев обеих шестерен параллельна оси вращения. При этом оси вращения обеих шестерен также должны располагаться строго параллельно. Прямозубые колеса имеют наименьшую стоимость, но, в то же время, предельный крутящий момент таких колес ниже, чем косозубых и шевронных.

Косозубые колёса являются усовершенствованным вариантом прямозубых. Их зубья располагаются под углом к оси вращения, а по форме образуют часть спирали. Зацепление таких колёс происходит более плавно, чем у прямозубых, и с меньшим шумом. Площадь контакта увеличена по сравнению с прямозубой передачей, таким образом их сила тоже больше. Но при работе косозубого колеса возникает сила, направленная вдоль оси, что вызывает необходимость применения упорных подшипников. Кроме того, увеличение площади трения зубьев вызывает дополнительные потери мощности на нагрев, которое приходится компенсировать применением специальных смазок. Основные недостатки – это возникновение механической силы, которая направлена вдоль оси, плюс увеличение площади трения. Возникает необходимость применения подшипников для установки вала и использования специальной смазки. Косозубые колёса используются в механизмах, требующих передачи большого усилия на высоких скоростях, либо имеющих жёсткие ограничения по шумности.

Шевронные колеса. Зубья таких колёс изготавливаются в виде буквы «V» (либо они получаются стыковкой двух косозубых колёс со встречным расположением зубьев). Передачи, основанные на таких зубчатых колёсах, обычно называют «шевронными». Шевронные колёса решают проблему осевой силы. Осевые силы обеих половин такого колеса взаимно компенсируются, поэтому отпадает необходимость в установке валов на упорные подшипники. При этом передача является самоустанавливающейся в осевом направлении, по причине чего в редукторах с шевронными колесами один из валов устанавливают на плавающих опорах (как правило - на подшипниках с короткими цилиндрическими роликами).

Во многих машинах осуществление требуемых движений механизма связано с необходимостью передать вращение с одного вала на другой при условии, что оси этих валов пересекаются. В таких случаях применяют коническую зубчатую передачу. Различают виды конических колёс, отличающихся по форме линий зубьев: с прямыми, тангенциальными, круговыми и криволинейными зубьями. Конические колёса с прямым зубом, например, применяются в автомобильных дифференциалах, используемых для передачи момента от двигателя к колёсам.

Заключение

Человечество прошло очень длинный путь от изобретения простого колеса до появления первых прототипов зубчатых колес, послуживших для первых зубчатых передач. Значимость зубчатого колеса оказалась настолько большой для всех видов производства, что его вид стал настоящим символом для многих видов деятельности и для всей технологии в частности. Облик всех окружающих нас вещей в очень большой степени оказался под влиянием этого ключевого изобретения. При ближайшем рассмотрении механизма становится очевидным насколько он прост в своей работе и эффективен в выполнении самых различных технологических задач, связанных с передачей энергии. Насколько важно понимание роли его работы для начинающего деятеля в сфере технологии? Я думаю, что это осознание является необходимым, ведь в какую бы область не подался ученик-инженер, он обязательно столкнется с применением разновидностей самых различных зубчатых передач, а также с потребностью в обслуживании их работы. Еще начиная со средних веков, когда его использование открыло эру воды и ветра для наших предков, зубчатое колесо всегда участвовало в технологическом прогрессе, дойдя до наших дней и найдя еще более глубокое применение во всех наших атрибутах повседневной жизни.Есть все основания предполагать, что из-за своей базисной и фундаментальной функции от него едва ли откажутся полностью и в будущем. Вся человеческая цивилизация обязана своим существованием зубчатому колесу.

Использованная литература

Гинзбург Е.Г., Голованов Н.Ф. и др. Зубчатые передачи. Справочник. М.: Машиностроение, 1980. – 326 с

G. Sarton, “Introduction to the history of science,” Williams and Wilkins, Baltimore, 1927

Материалы всероссийской студенческой научно-практической конференции «В мире научных открытий»/ - Ульяновск:, ГСХА им. П.А. Столыпина, 2012, т. III - 462 с

Б.Г. Гафуров. Таджики. Душанбе. «Ирфон». 1989. Т.1. стр. 33-55;

Полнотекстовый поиск:

Где искать:

везде
только в названии
только в тексте

Выводить:

описание
слова в тексте
только заголовок

Главная > Реферат >Промышленность, производство


1 Основные понятия о зубчатых передачах

1.1 Общие сведения

В зубчатой передаче движение передается с помощью зацепления пары зубчатых колес (рис. 1, а - в). Меньшее зубчатое колесо принято называть шестерней , большее - колесо м . Термин «зубчатое колесо» относится как к шестерне, так и к колесу. Параметрам шестерни приписывают индекс 1, параметрам колеса - индекс 2. Зубчатые передачи - самый распространенный вид механических передач, так как могут надежно передавать мощности от долей до десятков тысяч киловатт при окружных скоростях до 275 м/с.

Рис. 1. Цилиндрические зубчатые передачи внешнего зацепления

Зубчатые передачи широко применяют во всех отраслях машиностроения и приборостроения.

Достоинства. 1. Высокая надежность работы в широком диапазоне нагрузок и скоростей. 2. Малые габариты. 3. Большая долговечность. 4. Высокий к.п.д. 5. Сравнительно малые нагрузки на валы и подшипники. 6. Постоянство передаточного числа. 7. Простота обслуживания.

Недостатки. 1. Относительно высокие требования к точности изготовления и монтажа. 2. Шум при больших скоростях.

Классификация. В зависимости от взаимного расположения геометрических осей валов зубчатые передачи бывают: ц и л и н дрические- при параллельных осях (рис. 1); к о н и ч е с к и е - при пересекающихся осях (рис. 2, а, б); в и н т о вые - при скрещивающихся осях (рис. 3). Винтовые зубчатые передачи характеризуются повышенным скольжением в зацеплении и низкой нагрузочной способностью, поэтому имеют ограниченное применение.




Рис. 2. Конические зубчатые передачи: а - прямозубая; Рис. 3. Винтовая зубчатая

б- с круговым зубом; передача

Для преобразования вращательного движения в поступательное и наоборот применяют реечную передачу (рис. 4), которая является частным случаем цилиндрической зубча той передачи. Рейку рассматривают как колесо, диаметр которого увеличен до бесконечности.


Рис. 4. Реечная передача Рис. 5. Цилиндриче ская прямозубая пере дача внутреннего Ы. за цеплении

В зависимости от расположения зубьев на ободе колес различают (см. рис. 1) передачи: прямозубые (а), к о с о з у б ы е (б), ш е в р о н н ы е (в) и с круговыми зубьями (см. рис. 2, б).

В зависимости от формы профиля зуба передачи бывают: эвольвентные, с зацеплением Новикова, циклоидальные. В современном машиностроении широко применяют эвольвентное зацепление .

В 1954 г. М. Л. Новиков предложил принципиально новое зацепление, в котором профиль зуба очерчен дугами окружностей. Это зацепление возможно лишь при косых зубьях.

Циклоидальное зацепление в настоящее время сохранилось в приборах и часах.

В зависимости от взаимного расположения колес зубчатые передачи бывают в н е ш н е г о (см. рис. 1) и в н у т р е н н е г о (рис. 5) зацепления. Ниже рассматриваются передачи внешнего зацепления, как наиболее распространенные.

В зависимости от конструктивного исполнения различают о т к р ы т ы е и з а к р ы т ы е зубчатые передачи. В открытых передачах зубья колес работают всухую или периодически смазываются пластичным смазочным материалом и не защищены от влияния внешней среды. Закрытые передачи помещаются в пыле- и влагонепроницаемые корпуса (картеры) и работают в масляной ванне (зубчатое колесо погружают в масло на глубину до ⅓ радиуса).

В зависимости от числа ступеней зубчатые передачи бывают о д н о- и м н о г о с т у п е н ч а т ы е.

В зависимости от относительного характера движения валов различают р я д о в ы е зубчатые передачи (рис. 1) и п л а н е т а р н ы е.

1.2 Основы теории зубчатого зацепления


Профили зубьев пары колес должны быть сопряженными, т. е. заданному профилю зуба одного колеса должен соответствовать вполне определенный профиль зуба другого колеса. Чтобы обеспечить постоянство передаточного числа, профили зубьев нужно очертить такими кривыми, которые удовлетворяли бы требованиям основной теоремы зацепления.

Рис. 6. Схема к доказательству основной теоремы зацепления


Основная теорема зацепления. Для доказательства теоремы рассмотрим пару сопряженных зубьев в зацеплении (рис. 6). Профили зубьев шестерни и колеса касаются в точке S, называемой т о ч к о й з а ц е п л е н и я. Центры вращения О 1 и О 2 расположены на неизменном расстоянии a w друг от друга. Зуб шестерни, вращаясь с угловой скоростью w 1 , оказывает силовое действие на зуб колеса, сообщая последнему угловую скорость w 2 . Проведем через точку S общую для обоих профилей касательную ТТ и нормаль NN. Окружные скорости точки S относительно центров вращения О 1 и О 2:

v 1 = O 1 S w 1 и v 2 = O 2 S w 2

Разложим v 1 и v 2 на составляющие v" 1 и v" 2 по направлению нормали NN и составляющие v"" 1 и v"" 2 по направлению касательной ТТ. Для обеспечения постоянного касания профилей необходимо соблюдение условия v" 1 = v" 2 , в противном случае при v" 1 v" 2 произойдет врезание зубьев. Опустим из центров O 1 и О 2 перпендикуляры O 1 B и О 2 С на нормаль NN.

Из подобия треугольников aeS и BSO 1 v" 1 / v 2 = O 1 B / O 1 S,

Из подобия треугольников afS и CS0 2 v" 2 / v 2 = O 2 C / O 2 S, откуда v" 2 = (v 2 /0 2 S) O 2 C = w 2 *O 2 C. Ho v" 1 = v" 2 , следовательно, w 1 * O 1 B = w 2 * O 2 C.

П е р е д а т о ч н о е ч и с л о

u = w 1 / w 2 = O 2 C / O 1 B. (1)

Нормаль NN пересекает линию центров О 1 О 2 в точке П, называемой п о л ю с о м з а ц е п л е н и я. Из подобия треугольников О 2 ПС и О 1 ПВ

O 2 C / O 1 B = O 2 П / O 1 П = r w1 / r w2 (2)

Сравнивая отношения (1) и (2), получаем

Таким образом, основная теорема зацепления формулируется: для обеспечения постоянного передаточного числа зубчатых колес профили их зубьев должны очерчиваться по кривым, у которых общая нормаль NN , проведенная через точку касания профилей, делит расстояние между центрами O 1 O 2 на части, обратно пропорциональные угловым скоростям.

Полюс зацепления П сохраняет неизменное положение на линии центров O 1 O 2 , следовательно, радиусы r w 1 и r w 2 также неизменны.

Окружности радиусов r w 1 и r w 2 называют н а ч а л ь н ы м и. При вращении зубчатых колес начальные окружности перекатываютсяч друг по другу без скольжения, о чем свидетельствует равенство их окружных скоростей w 1 r w 1 = w 2 r w 2 , полученное из формулы (3).

Из множества кривых, удовлетворяющих требованиям основной теоремы зацепления, практическое применение в современном машиностроении получила э в о л ь в е н т а о к р у ж н о с т и, которая:

а) позволяет сравнительно просто и точно получить профиль зуба в процессе нарезания;

б) без нарушения правильности зацепления допускает некоторое изменение межосевого расстояния a w (это изменение может возникнуть в результате неточностей изготовления и сборки).

Эвольвента окружности (рис. 8.7). Эвольвентой окружности называют кривую, которую описывает точка S прямой NN, перекатываемой без скольжения по окружности радиуса г b . Эта окружность называется эволютой или о с н о в н о й о к р у ж н о с т ь ю, а перекатываемая прямая NN - п р о и з в о д я щ е й п р я м о й.

Характер эвольвентного зубчатого зацепления определяется свойствами эвольвенты.

    Производящая прямая NN является одновременно касательной к основной окружности и нормалью ко всем производимым ею эвольвентам.

    Две эвольвенты одной и той же основной окружности эквидистантны *.

    С увеличением радиуса r b основной окружности эвольвента становится более пологой и при r b → ∞ обращается в прямую.

    Радиус кривизны эвольвенты в точке S 2 равен длине дуги S 0 B основной окружности. Центр кривизны эвольвенты в данной точке находится на основной окружности.

1.3 Изготовление зубчатых колес

Заготовки зубчатых колес получают литьем, ковкой в штампах или свободной ковкой в зависимости от материала, формы и размеров. Зубья колес изготовляют накатыванием, нарезанием, реже литьем.

Накатывание зубьев . Применяется в массовом производстве . Предварительное формообразование зубьев цилиндрических и конических колес производится г о р я ч и м н а к а т ы в а н и е м. Венец стальной заготовки нагревают токами высокой частоты до температуры ~ 1200 °С, а затем обкатывают между колесами-накатниками. При этом на венце выдавливаются зубья. Для получения колес более высокой точности производят последующую механическую обработку зубьев или холодное накатывание - калибровку.

Х о л о д н о е н а к а т ы в а н и е зубьев применяется при модуле до 1 мм. Зубонакатывание - высокопроизводительный метод изготовления колес, резко сокращающий отход металла в стружку.

Нарезание зубьев . Существует два метода нарезания зубьев: копирование и обкатка. М е т о д к о п и р о в а н и я заключается в прорезании впадин между зубьями модульными фрезами (рис. 8): дисковыми (а) или пальцевыми (б). После прореза-ния каждой впадины заготовку поворачивают на шаг зацепления. Профиль впадины представляет собой копию профиля режущих кромок фрезы, отсюда и название - метод копирования. Метод копирования - малопроизводительный и неточный, применяется преимущественно в ремонтном деле.

Рис. 7. Схема нарезания

зубьев методом

обкатки


Нарезание зубьев м е т о д о м о б к а т к и основано на воспроизведении зацепления зубчатой пары, одним из элементов которой является режущий инструмент - червячная фреза (рис. 9, а), долбяк (рис.9, б) или реечный долбяк - гребенка (см. рис. 7). Червячная фреза имеет в осевом сечении

форму инструментальной рейки. При нарезании зубьев заготовка и фреза вращаются вокруг своих осей, обеспечивая непрерывность процесса.

Нарезание зубьев червячными фрезами широко применяют для изготовления


цилиндрических колес с внешним расположени ем зубьев. Для нарезания колес с внутренним расположением зубьев применяют долбяки. Гребенками нарезают прямозубые и косозубые колеса с большим модулем зацепления.

Нарезание зубьев конических колес методом обкатки производится строганием (рис. 10, а), фрезерованием (рис. 10, б), инструментом с прямобочным профилем или резцовыми головками.

Отделка зубьев. Зубья точных зубчатых колес после нарезания подвергают отделке шевингованием, шлифованием, притиркой или обкаткой.

Ш е в и н г о в а н и е применяют для тонкой обработки неза каленных колес. Выполняют инструментом - шевером, имеющим вид зубчатого колеса с узкими канавками на поверхности зубьев. Вращаясь в зацеплении с обрабатываемым колесом, шевер снимает режущими кромками канавок волосообразные стружки с зубьев колеса.

Ш л и ф о в а н и е применяют для обработки закаленных зубьев. Выполняют шлифовальными кругами способом копирования или обкатки.


П р и т и р к у используют для отделки закаленных зубьев колес. Выполняют притиром – чугунным точно изготовленным колесом с использованием притирочных абразивных паст.

О б к а т к а применяется для сглаживания шероховатостей на рабочих поверхностях зубьев незакаленных колес. В течение 1…2 мин зубчатое колесо обкатывается под нагрузкой с эталонным колесом большой твердости.

1.4 Материалы зубчатых колес

Выбор материала зубчатых колес зависит от назначения передачи и условий ее работы. В качестве материалов колес применяют стали, чугуны и пластмассы.

Стали. Основными материалами для зубчатых колес служат термически обрабатываемые стали. В зависимости от твердости стальные зубчатые колеса делятся на две группы.

П е р в а я г р у п п а - колеса с твердостью поверхностей зубьев Н ≤ 350 НВ. Применяются в слабо- и средненагруженных передачах. Материалами для колес этой группы служат углеродистые стали 35, 40, 45, 50, 50Г, легированные стали 40Х, 45Х, 40ХН и др. Термообработку - улучшение производят до нарезания зубьев. Колеса при твердости поверхностей зубьев Н ≤ 350 НВ хорошо прирабатываются и не подвержены хрупкому разрушению.

Для равномерного изнашивания зубьев и лучшей их прираба-тываемости твердость шестерни прямозубой передачи должна быть на (25...50) НВ больше твердости колеса.

Для косозубых передач твердость НВ рабочих поверхностей зубьев шестерни желательна возможно большая.

В т о р а я г р у п п а - колеса с твердостью поверхностей Н>350 НВ. Высокая твердость рабочих поверхностей зубьев достигается объемной и поверхностной закалкой, цементацией, азотированием, цианированием. Эти виды термообработки позволяют в несколько раз повысить нагрузочную способность передачи по сравнению с улучшенными сталями.

Зубья колес с твердостью поверхностей Н>350 НВ не прирабатываются. Для неприрабатывающихся зубчатых передач обеспечивать разность твердостей зубьев шестерни и колеса не требуется.

П о в е р х н о с т н а я з а к а л к а зубьев с нагревом токами высокой частоты (т.в.ч.) целесообразна для шестерен с модулем m ≥ 2 мм, работающих с улучшенными колесами, ввиду хорошей приработке зубьев. При малых модулях мелкий зуб прокаливается насквозь, что делает его хрупким и сопровождается короблением. Для закалки т.в.ч. используют стали 45, 40Х, 40ХН, 35ХМ.

Ц е м е н т а ц и ю применяют для колес, размеры которых должны быть минимальные (авиация, транспорт и т.п.). Для цементации используют стали 20Х, 12ХН3А и др.

А з о т и р о в а н и е обеспечивает особо высокую твердость поверхностных слоев зубьев. Для передач, в которых отсутствует абразивное изнашивание зубьев, можно применять азотирование. Оно сопровождается малым короблением и позволяет получать зубья 7-й степени точности без отделочных операций. Для повышения прочности сердцевины зуба заготовку колеса подвергают улучшению. Для азотирования применяют стали 40ХНМА, 40Х2НМА, 38ХМЮА, 38Х2Ю.

Колеса с твердостью Н > 350 НВ нарезают до термообработки. Отделку зубьев производят после тармообработки.

Выбор марок сталей для зубчатых колес. Без термической обработки механические характеристики всех сталей близки, поэтомуприменение легированных сталей без термообработки недопустимо.

Прокаливаемость сталей различа: высоколегированных – наибольшая, углеродистых – наименьшая. Стали с плохой прокаливавемостью при больших сечениях заготовок нельзя термически обработать на высокую твердость. Поэтому марку стали для зубчатых колес выбирают с учетом размеров их заготовок.


Характеристики сталей зависят не только от химического состава и вида термообработки, но также и от предельных размеров заготовок: диаметра заготовки шестерни или червяка D npe д и наибольшей толщины сечения заготовки колеса S пред.

Стальное литье. Применяют при изготовлении крупных зубчатых колес (d a ≥ 500 мм). Употребляют стали 35Л...55Л. Литые колеса подвергают нормализации.

Чугуны. Применяют при изготовлении зубчатых колес тихоходных открытых передач. Рекомендуются чугуны СЧ18...СЧ35. Зубья чугунных колес хорошо прирабатываются, но имеют пониженную прочность на изгиб.

Пластмассы. Применяют в быстроходных слабонагруженных передачах для шестерен, работающих в паре с металлическими колесами. Зубчатые колеса из пластмасс отличаются бесшумностью и плавностью хода. Наиболее распространены текстолит, лигнофоль, капролон, полиформальдегид.

1.5. Виды разрушения зубьев и критерии работоспособности зубчатых передач

В процессе работы на зубья действуют силы передаваемой нагрузки и силы трения. Для каждого зуба напряжения изменяются во времени по прерывистому отнулевому циклу. Повторно-переменные напряжения являются причиной усталостного разрушения зубьев: их поломки и выкрашивания рабочих поверхностей. Трение в зацеплении вызывает изнашивание и заедание зубьев.

Поломка зубьев. Это наиболее опасный вид разрушения. Излом зубьев является следствием возникающих в зубьях повторно-переменных напряжении изгиба и перегрузки. Усталостные трещины образуются у основания зуба на той стороне, где от изгиба возникают наибольшие


напряжения растяжения. Прямые короткие зубья выламываются полностью, а длинные, особенно косые, обламываются по косому сечению (рис. 12, а). Усталостную поломку предупреждают расчетом на прочность по напряжениям изгиба σ f , применением коррекции, а также увеличением точности изготовления и монтажа передачи.

Усталостное выкрашивание рабочих поверхностей зубьев. Основной вид разрушения зубьев для большинства закрытых передач. Возникает вследствие действия повторно-переменных контактных напряжений σ н. Разрушение начинается на ножке зуба в околополюсной зоне, где развивается наибольшая сила трения, способствующая пластическому течению металла и образованию микротрещин на поверхности зубьев. Развитию трещин способствует расклинивающнй эффект смазочного материала, который запрессовывается и трещины зубьев при зацеплении. Развитие трещин приводит к выкрашиванию частиц поверхности, образованию вначале мелких ямок (рис. 12, б), переходящих далее в раковины. При выкрашивании нарушаются условия образования сплошной масляной пленки (масло выжимается в ямки), что приводит к быстрому изнашиванию и задиру зубьев. Возрастают динамические нагрузки, шум, температура.

При твердости поверхностей зубьев Н блюдаться ограниченное выкрашивание, возникающее лишь на участках с концентрацией напряжений. После приработки зубьев такое выкрашивание прекратится.

Прогрессирующее выкрашивание возникает при твердости поверхности зубьев Н > 350 НВ, оно постепенно поражает всю рабочую поверхность ножек зубьев.

Усталостное выкрашивание зубьев предупреждают расчетом на прочность по контактным напряжениям, повышением твердости поверхности зубьев, применением коррекции, повышением степени точности, правильным выбором сорта масла.

В открытых передачах выкрашивания не наблюдается, так как изнашивание поверхности зубьев опережает развитие усталостных трещин.

Изнашивание зубьев. Основной вид разрушения зубьев открытых передач. По мере изнашивания зуб утоняется (рис. 12, в), ослабляется его ножка, увеличиваются зазоры в зацеплении, что в конечном счете приводит к поломке зубьев. Разрушению зубьев предшествует возникновение повышенного шума при работе передачи. Изнашивание можно уменьшить защитой от попадания абразивных частиц, повышением твердости и понижением шероховатости рабочих поверхностей зубьев, уменьшением скольжения зубьев путем коррекции.

Заедание зубьев . Заключается в приваривании частиц одного зуба к другому вследствие местного повышения температур в зоне зацепления. Образовавшиеся наросты на зубьях задирают рабочие поверхности других зубьев, бороздя их в направлении скольжения (рис. 12, г). Заедание зубьев предупреждают повышением твердости и понижением шероховатости рабочих поверхностей зубьев, применением коррекции, правильным подбором противозадирных масел.

2 ЦИЛИНДРИЧЕСКИЕ КОСОЗУБЫЕ ПЕРЕДАЧИ

1.1 Общие сведения

Цилиндрические колеса, у которых зубья расположены по винтовым линиям на делительном цилиндре, называют к о с о з у б ы м и (см. рис. 1, б). В отличие от прямозубой в косозубой передаче зубья входят в зацепление не сразу по всей длине, а постепенно. Увеличивается время контакта одной пары зубьев, в течение которого входят новые пары зубьев, нагрузка передается по большому числу контактных линий, что значительно снижает шум и динамические нагрузки.

Чем больше угол наклона линии зуба β, тем выше плавность зацепления. У пары сопряженных косозубых колес с внешним зацеплением углы β равны, но противоположны по направлению.

Если к передачам не предъявляют специальных требований, то колеса нарезают правыми, а шестерни - левыми.

У косозубого колеса (рис. 13) расстояние между зубьями можно измерить в торцовом, или окружном (t t ) , и нормальном (п – n ) направлениях. В первом случае получим окружной шаг p t , во втором - нормальный шаг р. Различными в этих направлениях будут и модули зацепления:

Рис. 13. Геометрические размеры

косозубого колеса


где m t и m - окружной и нормальный модули зубьев.

Согласно рис. 13

следовательно,

где β - угол наклона зуба на делительном цилиндре.

Нормальный модуль m должен соответствовать стандарту и являться исходной величиной при геометрических расчетах.

Делительный и начальный диаметры

Косозубое колесо нарезают тем же инструментом, что и прямозубые. Наклон зуба получают поворотом инструмента на угол β. Профиль косого зуба в нормальном сечении соответствует исходному контуру инструментальной рейки и, следовательно, совпадает с профилем прямого зуба модуля т.

Высоты головки косого зуба h a и ножки h f соответственно равны:

Диаметр вершин

Межосевое расстояние

В косозубой передаче, меняя значение угла β, можно незначительно изменить а w .

Прямозубую передачу можно рассматривать как частный случай косозубой, у которой которой β = 0

1.2 Эквивалентное колесо


Как указывалось выше, профиль косого зуба в нормальном сечении А - А (рис. 14) соответствует исходному контуру инструментальной рейки и, следовательно, совпадает с профилем прямозубого колеса. Расчет косозубых колес ведут, используя параметры эквивалентного прямозубого колеса.

Делительная окружность косозубого колеса в нормальном сечении А - А (см. рис. 14) образует эллипс, радиус кривизны которого в полюсе зацепления

Профиль зуба в этом сечении почти совпадает с профилем условного прямозубого колеса, называемого эквивалентным, делительный диаметр которого

d v = 2 p v = d / cos 2 β = m t z / cos 2 β = mz / cos 3 β = mz v ,

откуда э к в и в а л е н т н о е ч и с л о з у б ь е в

где z – действительное число зубьев косозубого колеса.

Из этой формулы следует, что с увеличением β возрастает z v .

1.3. Силы в зацеплении

В косозубой передаче нормальная сила F n составляет угол β с торцом колеса (рис. 15). Разложив F n на составляющие, получим:

радиальную силу

где F t = 2T 2 / d 2 - окружная сила;

осевую силу

При определении направлений сил учитывают направление вращения колес и направление наклона зуба (правое или левое).



Осевая сила F a дополнительно нагружает подшипники, возрастая с увеличением β. По этой причине для косозубых колес принимают β = 8...18°. Наличие в зацеплении осевых сил является недостатком косозубой передачи.

1.4. Расчет на контактную прочность

Вследствие наклонного расположения зубьев в косозубом зацеплении одновременно находится несколько пар зубьев, что уменьшает нагрузку на один зуб, повышая его прочность. Наклонное расположение зубьев уменьшает динамические нагрузки. Все эти особенности трудно учесть при выводе расчетных формул, поэтому расчет на прочность косозубых передач ведут по формулам эквивалентных прямозубых передач с введением в них поправочных коэффициентов. По условиям прочности габариты косозубых передач получаются меньше, чем прямозубых.

Проектировочный расчет. Аналогично расчету прямозубой передачи межосевое расстояние для стальной косозубой пары

где Т 2 - в Н * мм; [ σ] н - в Н / мм 2 .

Проверочный расчет. Аналогично расчету прямозубой передачи контактные напряжения в поверхностном слое косых зубьев

где дополнительно по стандарту:

Z H ≈ 1,76 cos β - коэффициент, учитывающий форму сопряженных поверхностей зубьев. Среднее значение Z H ≈ 1,71;

Коэффициент, учитывающий перекрытие зубьев. Среднее значение Z ε ≈ 0,8;

Z М = 275 Н 1/2 /мм - для стальных колес.

Следовательно,

где F t - в Н; d 2 , b 2 - в мм; K H α - коэффициент, учитывающий распределение нагрузки между зубьями. Для косозубых колес 7...8-й степени точности:

К Н α = 1,04...1,09 при υ ≤5 м/с,

К Н α = 1,07...1,13 при υ = 5...10 м/с;

К Н β - коэффициент неравномерности нагрузки по ширине венца;

К Н υ - коэффициент динамической нагрузки. Для косозубых передач рекомендуется:

К Н υ = 1,02...1,06 при любой твердости зубьев и υ ≤ 10 м/с,

К Н υ = 1,1 при твердости зубьев Н ≤ 350 НВ и υ = 10...20 м/с,

К Н υ = 1,05 при твердости зубьев Н > 350 НВ и υ = 10...20 м/с.

1.5. Расчет на изгиб

Аналогично расчету прямозубой передачи условия прочности на изгиб зубьев шестерни и колеса косозубой передачи

где Y F - коэффициент формы зуба, выбирают по эквивалентному числу зубьев z v ;

Y β = 1 - β /140° - коэффициент, учитывающий наклон зуба;

К Fa - коэффициент, учитывающий распределение нагрузки между зубьями. Для косозубых колес при υ ≤ 10 м/с и 7...8-й степеней точности К Fa = 0,81...0,91;

К F β - коэффициент, учитывающий распределение нагрузки по ширине венца;

К F υ - коэффициент, учитывающий динамическую нагрузку в зацеплении. Для косозубых передач при υ ≤ 10 м/с:

К F υ = 1,2 при твердости зубьев колеса Н ≤ 350 НВ,

К F υ = 1,l при твердости зубьев колеса Н > 350 НВ.

1.7 Шевронные цилиндрические передачи

Шевронное колесо представляет собой сдвоенное косозубое колесо, выполненное как одно целое (см. рис. 1, в). Вследствие разного направления зубьев на полушевронах осевые силы F a /2 взаимно уравновешиваются на колесе и на подшипники не передаются (рис. 16). Это обстоятельство позволяет принимать у шевронных колес угол наклона зуба β = 25...40°, что повышает прочность зубьев и плавность передачи.

Шевронные зубчатые колеса изготовляют с дорожкой в середине колеса для выхода режущего инструмента (червячной фрезы на рис. 16) или без дорожки (нарезаются долбяком или гребенкой со специальной заточкой, см. рис. 1, в).

Шевронные колеса без дорожки нарезают на специальных малопроизводительных и дорогих станках, поэтому их применяют реже, чем колеса с дорожкой. Ширина дорожки а = (10...15) m .

Шевронный зуб требует строго определенного осевого положения шестерни относительно колеса, поэтому пары монтируют в подшипниках, допускающих осевую «игру» вала.

Недостатком шевронных колес является большая стоимость их изготовления. Применяются в мощных быстроходных закрытых передачах.

Геометрический и прочностной расчет шевронной передачи аналогичны расчетам косозубой передачи. Для шевронной передачи коэффициент ширины обода колеса ψ а = 0,4…0,8.

При строгой параллельности зубьев и осей О 2 О 2 и O 1 O 1 прямые зубья входят в зацепление по всей длине В (рис. 17, а)

Если колесо шириной В , имеющее прямые зубья, разрезать нa ряд тонких колес 1, 2, 3, 4, 5 (рис. 17, б) и каждое из них повернуть на оси относительно предыдущего на некоторый угол, чтобы зуб сместился на дугу s, то получится колесо со ступенчатым зубом. При вращении колес в зацепление последовательно" >удут входить участки 1 - 1, 2-2, 3 - 3 и т. д. В такой же последовательности они будут и выходить из зацепления.

Взяв бесконечно большое число бесконечно тонких колес, получим косой (винтовой) зуб, наклоненный к оси вращения под углом β (рис. 17, в). Косые зубья работают более плавно по сравнению с прямыми зубьями, так как одновременно в зацеплении находится большее число зубьев при той же ширине колес В . Существенным недостатком косозубых колес является наличие осевого усилия Р ос , стремящегося

сдвинуть колеса вдоль оси вала. Из рис. 17, в видно, что чем больше будет угол β, тем больше будет и осевое усилие Р ос при одном и том же окружном усилии Р 0кр . На рис. 17, в показано направление давления зуба шестерни на зуб колеса.

Для исключения осевой нагрузки на опоры на валу устанавливают два косозубых колеса с наклоном зубьев в противоположные стороны. При этом следует иметь в виду, что при неточной продольной установке колес на валу может оказаться, что будет соприкасаться только одна пара зубьев из двух сопряженных пар колес, например левая, как показано на рис. 18 (как правило, один из валов делают самоустанавливающимся относительно другого).

Осевая сила Р ос стремится сдвинуть влево вал вместе с закрепленным на нем колесом. Для распределения окружного усилия Р окр поровну на оба колеса необходимо предусмотреть

продольный так называемый монтажный зазор е между опооой и бортиком вала.

После сдвига шестерни (и вала) влево под действием силы Р ос давление на обе половины колеса и шестерни распределяется поровну.

1.8 Зубчатые передачи с зацеплением М. Л. Новикова

Эвольвентное зацепление , распространенное в современном машиностроении, является л и н е й ч а т ы м, так как контакт зубьев происходит по линии (практически по узкой площадке), расположенной вдоль зуба (рис. 19). Вследствие малого приведенного радиуса кривизны контактная прочность эвольвентного зацепления сравнительно невысока, поэтому для современных мощных передач важен вопрос повышения несущей способности зубчатых передач.

М.Л. Новиковым было предложено новое т о ч е ч н о е з а ц е п л е н и е, в котором профили зубьев колес в торцовом сечении очерчены по дугам окружности (рис. 20). Зуб шестерни делается выпуклым, а зуб колеса - вогнутым, что увеличивает их приведенный радиус кривизны, значительно повышая контактную прочность передачи.

В зацеплении Новикова контакт зубьев происходит в точке и зубья касаются только в момент прохождения профилей через эту точку (рис. 20), а непрерывность передачи движения обеспечивается винтовой формой зубьев. Поэтому зацепление Новикова может быть только косозубым с углом наклона зубьев ß=15...20° . Положение точки контакта зубьев характеризуется ее смещением от полюса, а линия зацепления располагается параллельно оси колеса. В результате упругой деформации и приработки под нагрузкой точечный контакт переходит в контакт по малой площадке (рис. 20). При взаимном перекатывании зубьев контактная площадка перемещается вдоль зуба с большой скоростью, превышающей окружную скорость колес примерно в три раза, что создает благоприятные условия для образования устойчивого масляного слоя между зубьями. По этой причине потери на трение в передаче Новикова значительно меньше.

Применяют передачи Новикова с одной линией зацепления - заполюсные (реже - дополюсные) и с двумя линиями зацепления - дозаполюсные. В передачах с одной линией зацепления профиль зуба одного колеса (как правило, шестерни) выпуклый (см. рис. 20), а другого-вогнутый. Если ведущим звеном является шестерня с выпуклым профилем зубьев, то точка контакта расположена за полюсом и передачу называют з а п о л ю с н о й. Если ведущим является колесо с вогнутым профилем, то передача становится

д о п о л ю с н о й.

Д о з а п о л ю с н у ю передачу (рис.21) можно представить как сочетание дополюсной и заполюсной передач. Головки зубьев шестерни и колеса имеют выпуклый профиль, а ножки - вогнутый. Эта передача обладает большей контактной и изгибной прочностью.

Для нарезания выпуклых и вогнутых зубьев заполюсной (дополюсной) передачи требуются разные инструменты. Зубья дозаполюсной передачи нарезают одним инструментом.

Существенным н е д о с т а т к о м зацепления Новикова является повышенная чувствительность к изменению межосевого расстояния и колебаниям нагрузок.

Расчет передач с зацеплением Новикова ведут аналогично расчету передач с эвольвентным зацеплением, но с учетом их особенностей.

3. СПИСОК ЛИТЕРАТУРЫ:

    Н. Г. Куклин, Г. С. Куклина, «Детали машин». Москва, Высшая школа, 1987г.

    Я. М. Павлов, «Детали машин». Ленинград, Издательство «Машиностроение», 1969г.



Поделиться