Резины склонны к старению под действием. Изменение свойств резины в процессе старения

Старение резины – процесс окисления при длительном хранении или в процессе эксплуатации, приводящий к изменению ее физико-механических свойств (рис. 8.4).

Основной причиной старения является окисление каучука, т. е. присоединение кислорода по месту двойных связей в каучуке, в результате чего его молекулы разрываются на части и укорачиваются.

Это приводит к потере эластичности, охрупчиванию и, наконец, появлению сетки трещин на поверхности состаренной резины.

Воздействие теплоты, света, излучения, механических деформаций и присутствие катализаторов окисления (солей металлов переменной валентности) активируют и ускоряют окисление каучуков и резины.

В связи с тем, что роль факторов, активирующих окисление, меняется в зависимости от природы и состава каучука, различают следующие виды старения.

Тепловое старение


Таблица 8.3.

Физико-механические свойства важнейших авиационных резин и их применение

Марка резины Каучук σ z , МПа ε z θ z Твердость по Шору, МПа t xp , °С Отношение к органическим растворителям Применение
%
НК НК 1.6 45…60 0,4…0,6 -50 -50 Нестойкая То же Уплотнительные детали, сальники, амортизаторы Уплотнительные детали, амортизаторы
15РИ10 НК 0,3…0,4 -55 » Камеры авиационных колес
14РИ324 НК 0,7…1,4 -56 » Авиационные покрышки
СКН 1,0…1,4 -28 Стойкая Внутренний слой и арматура для мягких топливных баков
НО-68-1 Наирнт* СКН 0,7…1,2 -55 То же Уплотнительные детали для подвижных соединений
B-14-1 СКН 1,6…1,9 -50 » Уплотнительные детали для неподвижных соединений
ИРП-1354 СКТФВ* 0,6…1,0 -70 Нестойкая Прокладки, колпачки, трубки,
ИРП-1287 СКФ 1,2…15 -25 Стойкая Уплотнительные детали, резинометаллические сальники
ТРИ-1401 СКТВ 1,0…1,8 -50 Нестойкая Шланги герметизации
ИРП-1338 СКТВ 5,0 0,7…1,2 -70 Стойкая Прокладки, колпачки, трубки

* Синтетический теплостойкий каучук с фенильным и винильным радикалами


Тепловое старение (термическое, термоокислительное) происходит при повышенных температурах 4 в результате окисления каучука, активированного теплотой. Скорость теплового старения увеличивается с повышением температуры. При тепловом воздействии старение происходит по всей массе резины.

Рис. 8.4. Влияние продолжительности старения на временное сопротивление (а ) и относительное удлинение (б ) резин на основе натурального (1 ), бутадиенстирольного (2 ) и хлоропренового (3 ) каучуков

Световое старение является результатом окисления каучука, активированного светом. В практике при эксплуатации резиновых изделий (шины, аэростаты и т. д.) всегда наблюдается совместное действие кислорода и света. Наиболее эффективно влияет фиолетовое и ультрафиолетовое световое излучение. При световом старении изменяются свойства резины, начиная с поверхностных слоев. Стойкость резины к световому старению определяется свойствами каучуков и других ингредиентов резины, которые могут выступать в роли светофильтров, светостабилизаторов, например оксид цинка или оксид титана.



Озонное старение – разрушение резины под влиянием озона является одним из наиболее активных видов старения. В отличие от кислородного старения, протекающего по всей массе, озон действует на поверхность резины. По характеру происходящих реакций озонное старение резин отличается от старения под действием атмосферного кислорода. Озон взаимодействует с каучуком по месту двойных связей с образованием озонидов:

которые, превращаясь в изоозониды

разлагаются с образованием продуктов окисления каучука. При наличии деформации на поверхности резины под действием озона возникают трещины, направленные перпендикулярно растягивающим напряжениям. Быстро разрастаясь, они приводят к разрушению резины.

При действии озона на нерастянутую резину на ее поверхности появляется хрупкая пленка, но трещины не возникают. Наличие многих противостарителей, например воска, уменьшает озонное старение.

Старение в результате механических напряжений и окислительных процессов, активированных механическим воздействием, приводит к потере прочности и пластичности резины. Некоторые виды резиновых изделий (шины, рукава, ремни и т. д.) при эксплуатации подвергаются различным видам деформаций, в результате которых с ростом амплитуды механических деформаций усиливаются окислительные процессы. Необходимо введение в резину соответствующих добавок, уменьшающих влияние динамических нагрузок на свойства резины.

Радиационное старение под действием ионизирующих излучений приводит к резкому ухудшению физико-механических свойств резины. При облучении в резине образуются свободные полимерные радикалы, которые взаимодействуют с кислородом. Кроме того, в атмосфере воздуха на процесс старения резины под действием излучения может накладываться действие озона, образующегося в результате ионизации воздуха. Скорость старения зависит от мощности дозы облучения.

Атмосферное старение резины протекает в реальных атмосферных условиях эксплуатации, когда происходит совместное влияние кислорода, озона, света, теплоты, влажности и механических напряжений. Действие всех этих факторов порождает многочисленные одновременно протекающие химические реакции, которые способствуют старению резины.

Борьба со старением заключается во введении в резиновую смесь противостарителей, а также отражателей солнечных лучей, например алюминиевой пудры. В процессе эксплуатации для повышения ресурса авиационных колес осуществляется их зарядка азотом, что существенно замедляет старение резины. Старение можно замедлить, соблюдая установленные правила эксплуатации и хранения резиновых изделий.

Эксплуатационные свойства резин определяются конкурирующим воздействием деструкции и сшивания. Наиболее устойчивы резины на основе полисилоксанов, фторкаучуков и хлорсульфированного полиэтилена. Прочность и пластичность таких резин после 10 лет открытого воздействия внешней среды изменяются не более чем на 10...15 %. На атмосферостойкость резин существенное влияние оказывает присутствие наполнителей, модификаторов, вулканизирующих добавок.

Резюме. Несмотря на существующее разнообразие пластмасс, резин, уплотнительных и герметизирующих материалов есть большая потребность в разработке новых, перспективных материалов, ориентированных на потребности космонавтики. Она возникла в связи с ужесточающимися требованиями по сокращению числа технологических процессов при производстве изделий, расширению температурного интервала, работоспособности и сроков активного существования космических аппаратов и средств выведения. Ставятся задачи по созданию новых классов пластмасс и резин, герметиков и компаундов (в том числе токопроводных резин и герметиков; термо-, морозо-, агрессивостойких резин; термо-, агрессивостойких анаэробных герметиков; теплопроводных, поглощающих СВЧ-энергию компаундов). Такие материалы позволят создать элементы конструкций, которые будут определять технический прогресс XXI в.

Насколько долго прослужат автомобильные шины, зависит от эксплуатации, технического состояния автомобиля и вашего стиля управления. Профессиональное техническое обслуживание и постоянные проверки обеспечат безопасное движение.

Шины напрямую контактируют с дорогой, поэтому очень важно поддерживать качество шин в нормальном состоянии, ведь именно от их качества зависит безопасность, экономичность топлива и комфорт. Необходимо не только правильно подбирать шины, но и следить за их состоянием для предупреждения их преждевременного старения и износа.

Основные причины повреждения и износа автомобильных шин

Неприятных сюрпризов на дороге, которые в итоге приводят к повреждению и износу шин, всегда предостаточно: камни, ямы, стекло. Их мы не можем ни предусмотреть, ни предотвратить. Но вот проблемы, возникающие из-за большой скорости, давления воздуха и перегрузки, полностью зависят от владельца автомобиля и вполне решаемы.

1. Движение с большой скоростью

Внимательно следите за скоростным режимом! При движении на большой скорости риск повреждения и износа шин наиболее вероятен, ведь шины сильнее нагреваются, и быстрее теряется давление в них.

2. Давление воздуха в шинах

Избыточное и недостаточное давление в шинах снижает срок использования шин и приводит их к преждевременному износу (перегрев шины, снижение уровня сцепления с дорожным покрытием), поэтому необходимо контролировать достаточное давление в шинах.

3. Перегрузка

Следуйте рекомендациям производителей относительно нагрузки! Чтобы избежать перегрузки шин, внимательно изучите на боковине шины индекс нагрузки. Это максимальное значение, и превышать его не нужно. При перегрузке также происходит сильный перегрев шины, а соответственно, ее преждевременное старение и износ.

Как уберечь шины от преждевременного старения и износа

Даже самые качественные и дорогие шины недолговечны. Износ и старение шины - лишь дело времени, но в наших силах увеличить сроки использования шин до максимума. Что же сделать, чтобы продлить жизнь шинам и уберечь их от износа? Вот несколько простых советов:

  • Периодически проверяйте состояние шин. Проверка отнимает всего-то несколько минут, зато позволяет сэкономить средства. Проверять состояние шин нужно раз в неделю.
  • После пяти лет использования шин, тщательно проверяйте их раз в год.
  • Проверяйте давление в шинах примерно раз в месяц. Правильное давление – это гарантия безопасности движения и сохранения характеристик шин. В руководстве по эксплуатации автомобиля можно найти то самое правильное давление, причем давление нужно проверять лишь в холодных шинах.
  • Проверяйте глубину протектора, уровень износа шин хотя бы один раз в месяц.
  • Размер глубины протектора меньше 1.6 мм указывает на значительный износ шин, и их нужно поменять.
  • Периодически проверяйте регулировку углов установки колес во время планового технического обслуживания или незадолго до официального технического обслуживания. Неправильные углы установки не всегда заметны, обычно они меняются при наезде на ямы и бордюры.
  • Производите балансировку колес при их перестановке (раз в полгода). Не путайте такие понятия, как «регулировка углов установки колес» и «балансировка колес». При регулировке устанавливается правильное геометрическое положение колес, а при балансировке колеса устанавливаются так, чтобы вращение было без вибрации. Балансировка уберегает колеса от преждевременного старения и износа, обеспечивает сохранность подвески и подшипников колес.
  • Переставляйте шины. Избежать быстрого износа шин поможет их перестановка. Каждые 6-7 тыс. мыль их можно переставлять, не забывайте также про «запаску». Переставляя шины, вы сэкономить средства и продлите срок их использования, ведь шины будут изнашиваться более равномерно.
  • При замене шин меняйте вентили. Вентиль – важная деталь, обеспечивающая герметичность шины. Высокое давление и существенные нагрузки при вращении колеса воздействуют на вентиль. Поэтому при замене шин необходимо менять и вентили, это продлит срок службы шины и сбережет от износа. Экономия на вентилях напрямую влияет на срок службы ваших шин.
  • Когда нужно поменять шины?

    Еженедельная проверка шин (осмотр глубины протектора, давления воздуха в шинах, имеющихся повреждений на боковинах шин, появление следов неравномерного износа) позволяет реально оценить степень износа и старения шин. Если в вашу голову закрались сомнения в безопасности использования шин, то обратитесь к опытному специалисту для консультации по поводу дальнейшей эксплуатации.

    Шина подлежит замене в случае:

  • Прокола (возможны не только внешние, но и скрытые повреждения)
  • Сильного износа протектора
  • Наличия следов старения и «усталости» (трещины с внешней стороны, на бортовой и плечевой зоне, деформация шины и т. д.). Такие шины не обеспечивают должного сцепления.
  • Повреждения шины
  • Неравномерного износа по краям, в центре, на отдельных участках
  • Несоответствия автомобилю (необходима установка колес одного типа)
  • Срок службы шин

    Сроки службы шин сильно отличаются, поэтому предугадать, сколько будет служить та или иная шина, практически невозможно. В состав шины входят различные ингредиенты и материалы резиновой смеси, влияющие на сроки эксплуатации. Погодные условия, условия использования и хранения также могут продлить или сократить срок службы шин. Поэтому чтобы увеличить сроки эксплуатации шин, уберечь их от износа и старения, следите за их внешним видом, поддержанием давления в шинах, появлением следующих эффектов: шум, вибрация или увод в сторону автомобиля при движении, и конечно, правильно храните их.

    Правила хранения автомобильных шин

    Даже если шины лежат и не используются или используются редко, они стареют. Желательно не хранить ненакачанные или демонтированные шины долгое время в штабелях. Также нельзя хранить на шинах какие-либо посторонние, особенно тяжелые предметы. Избегать нахождения рядом с шинами раскаленных предметов, пламени, искрообразующих источников и генераторов. При взаимодействии с шинами рекомендуется пользоваться защитными перчатками.

    Шины хранятся в сухом помещении с хорошей вентиляцией, с постоянной поддерживаемой температурой, которое защищено от осадков и воздействия прямых солнечных лучей. Во избежание изменения структуры резины не храните рядом с шинами химические средства и растворители. Избегайте хранения вблизи шин острых металлических, деревянных и других предметов, которые могут их повредить. Чёрная резина боится переизбытка тепла и мороза, а чрезмерная влажность приводит к ее старению. Шины нельзя мыть под сильной водяной струей, достаточно мыла или специального средства.

    Из всего сказанного напрашивается вывод, что сберечь шины от износа и старения поможет правильное хранение, эксплуатация и всесторонняя проверка их состояния.

    Озонное старение , озонное растрескивание (ozone cracking, Ozonri βbildung, vieillissement а l, ozone ) -это растянутых резин под действием озона. Озонное старение – это один из видов так называемого коррозионного растрескивания , которое наблюдается при действии химически или физически активных сред на напряженные материалы (например, аммиака на латунь, детергентов на , кислот или щелочей на резины из полисулъфидных каучуков, HF на резины из кремнийорганических каучуков). Растягивающие напряжения возникают в резинах при статическом или динамическом одномерном или двумерном растяжении или при деформации сдвига.

    Для того чтобы произошло озонное старение, достаточно присутствия даже следов озона, который всегда содержится в атмосфере (2-6)·10 -6 % ; (здесь и далее указана объемная концентрация озона) и, кроме того, может образоваться в определенных условиях в закрытых помещениях. Основная причина присутствия озона в атмосфере - воздействие коротковолновой части солнечной радиации на кислород воздуха.

    Озон образуется также в результате фотохимического окисления содержащихся в воздухе органических примесей с участием двуокиси азота. Особенно интенсивно этот процесс протекает в больших городах, где загрязнение воздуха выхлопными газами двигателей обусловливает высокую концентрацию озона [до (50-100)·10 -6 % ] .

    В закрытых помещениях озон может образоваться под действием УФ -света, γ -лучей, рентгеновских лучей, при электрических разрядах, а также при окислении органических соединений.

    Механизм озонного старения

    Механизм озонного старения заключается в резком ускорении разрушения напряженных резин, обусловленном присоединением озона по кратным связям макромолекул каучука: Напряжение, которое возникает в резине при малых деформациях, способствуя деструкции макромолекулы и препятствуя рекомбинации макрорадикалов, ускоряет появление и разрастание микротрещин, первоначально направленных вдоль оси растяжения. Разрыв слабых перемычек между этими микротрещинами приводит к возникновению видимых глазом поперечных трещин. При больших деформациях (сотни процентов) трещины по мере их роста остаются продольными, так как вследствие эффекта ориентации перемычки между трещинами приобретают большую прочность.

    Кинетика озонного старения полимерных материалов

    При статическом напряжении σ (или деформации ε ) в процессе озонного старения можно выделить 2 основные стадии озонного старения:

    1. индукционный период τ и , окончание которого практически совпадает с моментом появления трещин;
    2. период развития видимых трещин τ вт , которое происходит в основном на стадии стационарной скорости их роста τ ст (рисунок 1).


    С ростом напряжения его разрушающее действие увеличивается, но развивающаяся одновременно ориентация макромолекул приводит к упрочнению полимера, что затрудняет его дальнейшее разрушение. Поскольку в первой стадии озонного старения , происходящего на поверхности резины, разрушающая роль напряжения усиливается из-за возрастания доли свежей, вновь образованной поверхности, то τ и обычно монотонно уменьшается с ростом ε (рисунок 1 ). В развитии трещин в глубине образца состояние его поверхности не играет роли; на этой стадии озонного старения в большей степени проявляется ориентационное упрочнение , в связи с чем скорость роста трещин проходит через максимум в области так называемой критической деформации ε кр (рисунок 2 ).


    Время до разрыва τ р = τ и + τ вт зависит от σ (или ε ) так же, как τ и (рисунок 1 ), или проходит через минимум в области ε кр (при больших деформациях - через максимум, обусловленный исчерпанием эффекта ориентационного упрочнения (рисунок 2 ). Первая зависимость, характерная для озоностойких резин, наблюдается в том случае, когда τ р определяется продолжительностью τ и (τ и /τ р ≈1 ), вторая - если τ р определяется продолжительностью периода τ вт (τ и / τ р <<1).

    Значение ε кр определяется двумя факторами: степенью уменьшения τ р с ростом σ и степенью увеличения τ р с развитием эффекта ориентации.

    Факторы, влияющие на скорость озонного старения

    Межмолекулярное взаимодействие

    Увеличение , затрудняя ориентацию макромолекул при деформации и способствуя повышению долговечности резин, может привести к сдвигу ε кр в сторону ее больших значений. Такая зависимость наблюдается, в частности, в ряду ненаполненных вулканизатов следующих полимеров:

    натуральный каучук < гуттаперча < хлоропреновый каучук.

    Значение ε кр возрастает также и при введении активных наполнителей в каучуки со сравнительно слабо выраженным межмолекулярным взаимодействием. Так, при увеличении количества газовой канальной сажи в натуральном каучуке от 0 до 90 маcсовых частей ε кр возрастает от 15 до 50% . В случае значительного уменьшения межмолекулярных взаимодействий (например, при введении дибутилфталата в хлоропреновый каучук) значение ε кр резко уменьшается. Изменением межмолекулярного взаимодействия объясняется также влияние на значение ε кр температуры, и других факторов.

    Характер и частота деформаций

    В сравнении со скоростью озонного при статических деформациях , при многократных деформациях с постоянной частотой может наблюдаться как ускорение озонного старения (в резинах из бутадиен-нитрильных каучуков), так и его замедление (в резинах из натурального каучука).

    В некоторых резинах с увеличением частоты деформации проявляется релаксационное упрочнение , приводящее к уменьшению озонного старения. В области малых частот (до 100 колебаний в минуту) наибольшая скорость озонного старения большинства резин наблюдается при частоте 10 колебаний в минуту. Резины, содержащие воскообразные вещества, слой которых на поверхности резины при многократных деформациях легко разрушается, значительно сильнее подвержены в этих условиях озонного старения, чем при статических деформациях.

    Концентрация озона

    Уменьшение концентрации озона С резко замедляет озонное старение, причем вплоть до его атмосферных концентраций сохраняется зависимость τ = kС -n , где k и n - постоянные, а τ может быть как τ и , так и τ р . В случае больших τ (годы) применение этой зависимости осложняется изменением условий экспозиции резин (релаксация напряжения, миграция на поверхность резин антиозонантов и др.), оказывающих влияние на значения k и n .

    Концентрация озона не влияет на положение ε кр и значение энергии активации озонного старения. Последняя очень мала (десятки кдж/моль, или несколько ккал/моль) и, следовательно, изменение скорости озонного старения с температурой обусловлено главным образом изменением подвижности макромолекул. Это подтверждается тем, что скорость разрастания трещин подчиняется уравнению Вильямса - Лэндела - Ферри (см. Вязкотекучее состояние), описывающему релаксационные процессы.

    Влияние температуры, влаги и солнечного излучения на скорость озонного старения

    Понижение температуры приводит к резкому замедлению озонного старения; в условиях испытаний при постоянном значении ε озонное старение практически прекращается при температурах, на 15-20 °С превышающих температуру стеклования полимера.

    Солнечное излучение сильно ускоряет озонное старение вследствие фотоокисления резины , сопровождающегося деструкцией макромолекул, увеличения подвижности макрорадикалов, а также в результате общего повышения температуры резины. Влага , сорбируясь сравнительно гидрофильными резинами (например, из натурального или хлоропренового каучука) и способствуя более равномерному распределению напряжений на их поверхности, несколько замедляет озонное старение этих резин.

    Озоностойкость резин (классификация резин по озоностойкости)

    Способность резин сопротивляться озонному старению существенно зависит от типа каучука.

    По стойкости к озонному старению (в условиях статической деформации до 50%) резины на основе различных каучуков можно условно разделить на четыре группы:

    • Особо стойкие резины не разрушаются в течение длительного времени (годы) при атмосферных концентрациях озона и устойчивы более 1 часа при концентрациях O 3 порядка 0,1 - 1%. Такими свойствами обладают резины на основе насыщенных каучуков - фторсодержащих, этилен-пропиленовых, полиизобутилена, хлорсульфированного полиэтилена и, в меньшей степени, резины из кремнийорганического каучука; последние разрушаются веществами кислого характера, легко образующимися в присутствии озона.
    • Стойкие резины не разрушаются в течение нескольких лет в атмосферных условиях и устойчивы более 1 ч при концентрациях O 3 около 0,01% . К этой группе относятся резины на основе каучуков, слабо взаимодействующих с озоном вследствие небольшого содержания в них кратных связей (например, резины из бутилкаучука) или благодаря присутствию связей, мало активных к озону (например, резины из уретановых и полисульфидных каучуков), а также резины из хлоропреновых каучуков, стабилизированных антиозонантами.
    • Умеренно стойкие резины устойчивы в атмосферных условиях от нескольких месяцев до 1-2 лет, а при концентрациях O 3 около 0,001% - более 1 часа. В эту группу входят резины из нестабилизированного хлоропренового каучука и из других ненасыщенных каучуков (натурального, синтетического изопренового, бутадиен-стирольных, бутадиен-нитрильных), содержащих антиозонанты . Большая стойкость хлоропренового каучука к озонного объясняется особенностями его физической структуры (легкой кристаллизуемостью, сильными межмолекулярными полярными взаимодействиями), обусловливающими образование тупоугольных, округлых, медленно растущих трещин.
    • Нестойкие резины устойчивы в атмосферных условиях от нескольких дней до 1 месяца, а при концентрациях O 3 - 0,0001% - более 1 часа. К нестойким относят резины из нестабилизированных каучуков предыдущей группы, за исключением резин из хлоропренового каучука. Повышение стойкости резин этой группы к озонному старения достигается введением в них антиозонантов и восков , нанесением на резины озоностойких покрытий из хлоропренового каучука, хлорсульфированного полиэтилена и др., химической обработкой (например, гидрированием) поверхности резин для уменьшения содержания в макромолекулах ненасыщенных связей, а также изменением конструкции изделий с целью снижения в условиях их эксплуатации растягивющих напряжений.

    О способах защиты резин от озонного старения см. также Антиозонанты.

    Помимо типа каучука, на стойкость резин к озонному старению влияет состав резиновых смесей. Так, в условиях испытаний при одинаковой деформации ε значения τ и и τ р для резин, содержащих наполнители и пластификаторы , будут меньше, чем для ненаполненных.

    Ухудшение озоностойкости обусловлено следующими причинами:

    • ростом напряжения, связанным с введением наполнителей,
    • снижением прочностных свойств резин вследствие введения пластификаторов.

    Стойкость резин к озонному старению оценивают по изменению следующих характеристик растянутых образцов:

    1)степени растрескивания (для этого по фотографиям образцов составляют условную 4-, 6- или 10-балльную шкалу);

    2)времени до появления трещин τ и ;

    3)времени до разрыва τ р .

    За кинетикой развития трещин удобно следить по спаду усилия Р в растянутом озонируемом образце. При этом τ р соответствует моменту, когда Р = 0 .

    Испытание в среде озона - эффективный метод исследования долговечности резин при малых деформациях (десятки процентов), характерных для условий эксплуатации большинства резиновых изделий. Результаты испытаний при повышенных концентрациях озона позволяют также прогнозировать резин, нестойких к действию озона, поскольку в этом случае долговечность определяется сопротивляемостью резин озонному старению.

    Список литературы: Зуев Ю. С, Разрушение полимеров под действием агрессивных сред, 2 изд., М., 1972. Ю. С. Зуев,

    РТИ или резино-технические изделия имеют особые показатели, благодаря которым остаются очень востребованными. Особенно современные. Они имеют улучшенные показатели упругости, непроницаемости для иных материалов и веществ. Также обладают высокими показателями электроизоляционных и иных качеств. Не удивительно, что именно РТИ все чаще применяются не только в автомобилестроении, но и авиации.

    Когда средство передвижения эксплуатируется активно и имеет большой пробег, техническое состояние РТИ значительно снижается.

    Немного об особенностях износа РТИ

    Старение каучука и некоторых видов полимеров происходит в условиях, на которые влияет:

    • тепло;
    • свет;
    • кислород;
    • озон;
    • напряжения/сжатия/растяжения;
    • трения;
    • рабочая среда;
    • эксплуатационный срок.

    Резкий перепад условий, особенно климатических, имеет непосредственное влияние на состояние РТИ. Их качество ухудшается. Поэтому все чаще используются полимерные сплавы, которые не боятся понижений градусов и их повышения.

    При снижении качества резино-технических изделий, они быстро выходят из строя. Часто именно весенне-летний период, после зимнего холода, является переломным. При повышении температуры на градуснике, скорость старения РТИ увеличивается в 2 раза.

    Чтобы обеспечить потерю эластичности, для резино-технических изделий достаточно пережить значительное и резкое похолодание. Но если накладки и втулки изменяют свои геометрические формы, появляются мелкие порывы и трещины, это приведет к отсутствию герметичности, что, в свою очередь, влечет к поломкам систем и соединений в авто. Минимум, что может проявиться – это течь.

    Если сравнивать каучуковые изделия, лучше неопрен. Более подвержены изменениям каучуковые РТИ. Если не защищать и те, и другие от солнца, ГСМ, кислотных или агрессивных жидкостей, механических повреждений, они не смогут пройти даже минимальный, определенный производителем, эксплуатационный срок.

    Особенности разных РТИ

    Свойства полиуретановых и каучуковых резино-технических изделий – совершенно разные. Поэтому и условия для хранения будут отличаться.

    Полиуретан отличается тем, что он:

    • пластичен;
    • эластичен;
    • не подвержен крошению (в отличие от резиновых изделий);
    • не застывает, как каучук, при понижениях температуры;
    • не теряет геометрических форм;
    • при упругости, достаточно тверд;
    • устойчив к абразивным веществам и агрессивным средам.

    Полученный путем жидкого смешивания, этот материал получил широкое распространение в автомобилестроении. Синтетический полимер сильнее каучука. При однородном составе полиуретан оставляет свои свойства в разных условиях, что упрощает условия и характеристики его применения.

    Как видно из выше изложенного материала, полиуретан выигрывает по свойствам у резинотехнических изделий. Но он не применяется повсеместно. Кроме того, появляются силиконовые сплавы. И что лучше – понимает далеко не каждый водитель.

    Полиуретан технологически изготавливается дольше. 20 минут уходит на выпуск резинового РТИ. И 32 часа – на полиуретан. Но резина – материал, рожденный путем механического смешивания. Это влияет на ее неоднородность состава. А также влечет потерю эластичности и однородность компонентов. Именно резиновые шланги и герметичные накладки при хранении застывают и становятся жестче, растрескиваются на поверхности и становятся мягкими внутри. Их срок – всего 2 – 3 года.

    Уход и хранение

    От состояния и качества РТИ зависит очень важный процесс – контроль над управлением. Чтобы понимать важность резино-технических изделий, надо знать, что нарушения в их структуре ведут у следующим последствиям:

    • повышенному износу шин при большой нагрузке по причине неправильной работы некоторых систем и соединений;
    • неравномерности в пути торможения;
    • ощутимым нарушениям в обратной связи с управлением через руль;
    • разрушениям деталей-соседей или в близлежащих узлах.

    РТИ необходимо хранить:

    1. Складывать свободно, чтобы не было чрезмерной нагрузки или уплотнения;
    2. Контролировать необходимый температурный режим в пределах от нуля до плюс 25 градусов по Цельсию;
    3. В условиях, где нет повышенной влажности, выше 65%;
    4. В помещениях, где нет люминисцентных ламп (лучше их заменить на приборы освещения накаливания);
    5. В условиях, где нет поступления озона в большом количестве или аппаратов, вырабатывающих его;
    6. Обращая внимание на наличие/отсутствие прямых лучей солнца (никакого попадания УФ напрямую не может быть также, как условий, создающих тепловой перегрев для резино-технических изделий).

    При колебаниях температуры в холодный период и жаркое время года, необходимо понимать, что гарантийный срок хранения РТИ сужается до цифры, равной 2 месяца.

    Каучуки и их вулканизаты, как всякие ненасыщенные соедине­ния, способны к различного рода химическим превращениям. Важ­нейшей реакцией, которая непрерывно происходит при хранении и эксплуатации резиновых изделий, является окисление резины, ведущее к изменению ее химических, физических и механических свойств. Только эбонит, превращающийся в полностью насыщен­ное соединение за счет присоединения к макромолекулам каучука предельно возможного количества серы, представляет собой хи­мически инертный материал. Совокупность всех изменений, про­исходящих в резине в процессе длительного окисления, принято называть ее старением.

    Старение принадлежит к категории сложных многостадийных превращений, на определенных этапах которого значительно умень­шаются эластичность, износостойкость и в некоторой степени прочность резины. Иначе говоря, с течением времени работоспо­собность резиновых изделий, а следовательно, и надежность рабо­ты автомобилей снижаются. К разряду наиболее неблагоприятных изменений резины, возникающих вследствие старения, относится необратимое снижение ее эластичности. В результате повышенная хрупкость резины, в первую очередь ее поверхностных слоев, обу­словливает появление в деформируемых деталях трещин, посте­пенно углубляющихся и в конце концов приводящих к разруше­нию изделия.

    Последствия старения резины аналогичны последствиям от пониже­ния температуры, с той лишь разницей, что последние по своему харак­теру являются временными и частично или полностью устранимыми с помощью нагревания, тогда как первые никакими способами нельзя осла­бить и тем более устранить.

    Борьба со старением ведется различными методами. Очень эф­фективной является добавка противостарителей (ингибиторов), 1... 2 % которых по отношению к содержащемуся в резине каучуку замедляют процесс окисления в сотни и тысячи раз. С той же це­лью некоторые резиновые изделия выпускаются с заводов в гер­метичной упаковке (в полиэтиленовых чехлах).

    Однако технологических средств оказывается недостаточно, поэтому дополнительно приходится применять ряд эксплуатаци­онных мер. С повышением температуры старение усиливается, причем от нагревания на каждые 10 °С скорость старения возрастает в два раза. Замечено также, что окисление резины интенсивнее на тех участках, которые испытывают большее напряжение. Следовательно, необходимо содержать резиновые изделия по возможнос­ти в недеформированном состоянии.

    Колеса и шины

    Автомобильные колеса различают по их назначению, типу при­меняемых шин, конструкции и технологии изготовления.

    Основные параметры колес некоторых автомобилей отечествен­ного производства приведены в табл. 11.2.

    Пневматические шины легковых автомобилей подразделяются по способу герметизации внутреннего объема, расположению нитей корда в каркасе, отношению высоты к ширине профиля, типу протектора и ряду других специфических особенностей, вызванных их назначением и условиями эксплуатации.

    По способу герметизации внутреннего объема различают ка­мерные и бескамерные шины.

    Камерные шины состоят из покрышки, камеры с вентилем и ободной ленты, надеваемой на обод. Размер камеры всегда несколь­ко меньше внутренней полости покрышки во избежание образо­вания складок в накаченном состоянии. Вентиль представляет со­бой обратный клапан, позволяющий нагнетать воздух в шину и препятствующий выходу наружу. Ободная лента предохраняет ка­меру от повреждений и трения о колесо и борт покрышки.

    Таблица 11.2

    Основные параметры колес некоторых отечественных легковых

    Автомобилей


    Рис. 11.9. Бескамерная шина авто­мобиля:

    1 - протектор; 2 - герметизирую­щий воздухонепроницаемый резино­вый слой; 3 - каркас; 4 - вентиль; 5 - глубокий обод

    Бескамерные шины (рис. 11.9) отличаются наличием воздухо­непроницаемого резинового слоя, наложенного на первый слой каркаса (вместо камеры), и имеют следующие преимущества (по сравнению с камерными):

    меньшую массу и лучший теплообмен с колесами;

    повышенную безопасность при движении машины, так как при проколе воздух выходит только в месте прокола (при мелком про­коле достаточно медленно);

    упрощенный ремонт в случае прокола (нет необходимости в демонтаже).

    В то же время монтаж и демонтаж бескамерных шин усложнен­ные и требуют большей квалификации, и зачастую возможны толь­ко на специальном шиномонтажном станке.

    Бескамерные шины применяются для колес с ободами специ­ального профиля и повышенной точности изготовления.

    Камерные и бескамерные шины по расположению нитей корда в каркасе покрышки могут быть как диагональной, так и радиаль­ной конструкции.

    Маркировка шин

    Диагональные и радиальные шины различаются не только кон­струкцией, но и маркировкой.

    Например, в обозначении диагональной шины 6,15-13/155-13:

    6,15 - условная ширина профиля шины (В) в дюймах;

    13 - посадочный диаметр (d) шины (и колеса) в дюймах;

    155 - условная ширина профиля шины в мм.

    Вместо последнего числа 13 может быть указан посадочный диа­метр в мм (330).

    Радиальные шины имеют единое смешанное миллиметрово­дюймовое обозначение. Например, в маркировке 165/70R13 78S Steel Radial Tubeless:

    165 - условная ширина профиля шины (В) в мм;

    70 - отношение высоты профиля шины (Я) к ее ширине (В) в процентах;

    R - радиальная;

    13 - посадочный диаметр в дюймах;

    78 - условный индекс грузоподъемности шины;

    8 - скоростной индекс шины (максимально допустимая ско­рость движения автомобиля) в км/ч.

    Для повседневной езды по российским дорогам целесообразно ограничиться отношением Н/В не ниже 0,65, причем это касается довольно больших шин, т.е. шин для автомобилей типа ГАЗ-3110 «Волга». На моделях ВАЗ лучше не применять шины с Н/В ниже 0,70, а на автомобиле ВАЗ-111 «Ока» и вовсе нецелесообразна ус­тановка каких-либо иных шин кроме заводских размером 135R12.

    Современные скоростные сверхнизкопрофильные шины с Н/В= = 0,30...0,60 пригодны для работы только на гладких шоссейных дорогах с хорошим качеством покрытия, которых в нашей стране практически нет.

    Каждый российский изготовитель шин имеет свой фирменный знак или же, как например Московский шинный завод, знак мо­дели «ТАГАНКА».

    Маркировка шины включает в себя букву (или буквы), кодиру­ющие предприятие-изготовитель (например, К - Кировский шин­ный завод; Я - Ярославский шинный завод и др.) и цифры (циф­ру) внутризаводского индекса этой шины.

    На боковине шины ставится ее серийный номер и кодируется другая, достаточно полезная (в случае выставления рекламации) информация (табл. 11.3).



    Поделиться