Принцип работы и виды. Сравнение аккумуляторов различных типов

Этот обзор задумывался ещё осенью 2009, но в силу не зависящих от меня обстоятельств (мировой кризис, болезни, другие проекты, хорошая погода, уборка в комнате, банальная лень и т.д) написание всё время откладывалось и поэтому некоторые данные слегка устарели, но не потеряли своей актуальности. Тем более, что это сравнительный обзор в котором важны не абсолютные значения, а их разница.

В интернете полно информации по тем или иным типам аккумуляторов, но по большей части это кричаще-вопящее маркетинговое словоблудие, очень отдалённо напоминающее действительность. Один из самых нормальных (на мой непрофессиональный взгляд) это battery.newlist.ru , но он уже давным давно не обновлялся. Ещё меня очень радуют две статьи Олега Артамонова на сайте Ф-Центр: Тестирование батареек формата АА и Тестирование Ni-MH аккумуляторов формата AA . Человек серьёзно подошёл к этому исследованию, разработал стенд и методику , и сделал подробное и грамотное описание. И хотя с момента тестирований прошло 3-4 года, статьи актуальны, так как эти батарейки и аккумуляторы до сих пор продаются в магазинах.
В первом тестировании автор поднял, на мой взгляд, очень важный вопрос, а именно: почему ёмкость батарей и аккумуляторов производители указывают в Ампер-часах, хотя правильнее её указывать в Ватт-часах? Ведь даже внутри одной группы батарей (аккумуляторов), внутреннее сопротивление элементов настолько разниться, что те "банки" которые лидировали по Ампер-часам из-за большого внутренного сопротивления (а следовательно и более низкого напряжения), проигрывали не таким "ёмким" своим собратьям по фактически отдаваемой энергии, измеряемой в Ватт-часах. Ведь любое электронное устройство потребляет не Ампер-часы, а Ватт-часы или Ампер-часы умноженные на среднее напряжение на аккумуляторе при его разряде, то есть при получении этих самых Ампер-часов. А уж если сравнивать аккумуляторы разных типов, то тут Ампер-часы вообще не имеют никакого смысла, ведь 1А*ч литий-йонного аккумулятора по фактически отдаваемой энергии равен примерно 3А*ч NiMH аккумулятора. По сути ситуация как и с цифровыми фотоаппаратами - производитель в рекламе (и на корпусе аппарата) пишет заоблачные числа количества пикселей и кратности зума, а для качества фотографии важнее всего это размер матрицы и светосила объектива. В результате у большинства конечных пользователей недоуменее, почему фотографии старой 3-мегапиксельной зеркали лучше, чем современного 12-мегапиксельного, 18-кратного супер девайса? Вобщем мысль, я думаю, понятна - чтобы не быть обманутыми лохами, надо думать головой, а не тупо сравнивать два числа, указанных крупными цифрами на коробке или корпусе изделия.
Будучи велотуристом я задумался об универсальном источнике энергии для походов. А для этого мне надо определиться с типом аккумуляторов: какой лучше, легче, надёжнее, более ёмкий и т.д. Главная характеристика для меня как для туриста - это ёмкость, как понимаете в Ватт-часах. По сути если рассматривать аккумулятор как ёмкость для энергии, то Ватт-часы (или Джоули, 1Вт*ч = 3,6кДж) это единицы измерения его объёма (как литры для банок и кастрюль). И так же как и банки с кастрюлями могут быть и из лёгкого и тонкого пластика, и из тяжёлого и толстого чугуна, так среди аккумуляторов есть большие по размерам и тяжёлые, с небольшой ёмкостью, и маленькие и лёгкие с большой ёмкостью. Так как городить стенд для тестирования, а потом покупать разные виды аккумуляторов для тестирования долго и весьма накладно, я решил обойтись "малой кровью". Многие производители выкладывают на свою продукцию так называемые Data sheet-ы, в которых печатаются (ну или должны печататься) основные характеристики изделия, графики, характеризующие определённые параметры работы и др. Вот эти графики я и задумал использовать для анализа ситуации. Конечно я полностью осознаю, что в некоторых случаях эти графики несколько условны и искуственны, и созданы больше для рекламы нежели отразить реальные характеристики, но так как другого выхода нет, пойдём этим путём. А сравнение нескольких однотипных аккумуляторов от разных производителей покажет примерное положение истины, которая, как правило, где-то посередине.
Подробно описывать методику получения данных из графиков не буду. В двух словах: график из pdf-файла сохраняется в jpeg-изображение, дальше эти графики оцифровываются с помощью программы GetData Graph Digitizer . Эта программа выдаёт координаты точек кривых графика и сохраняет их в формате MS Excel. После этого идёт математическая обработка полученых данных в OriginPro. Думаю и в Excel-е можно сделать, но Origin заточен под работу с графиками и работать с ним в этом плане легче. Все Data sheet-ы, использованные для сбора данных, можно скачать из каталога файлов.

Аккумулятор после разряда может повторно заряжаться от нескольких десятков до нескольких тысяч раз, в зависимости от конкретного типа. Наиболее распространенным является свинцовый кислотный аккумулятор , принцип устройства которого представлен на рис. 1.

Рис. 1. Принцип устройства свинцового аккумулятора и электрохимическая схема разрядного процесса

В заряженном состоянии анод (отрицательный электрод) такого аккумулятора состоит из свинца, а катод (положительный электрод) – из двуокиси свинца PbO2 . Оба электрода изготовлены пористыми, чтобы площадь их соприкосновения с электролитом была как можно больше. Конструктивное исполнение электродов зависит от назначения и емкости аккумулятора и может быть весьма разнообразным.

Химические реакции при заряде и разряде аккумулятора представляются формулой

Для заряда аккумулятора теоретически требуется удельная энергия 167 Wh/kg. Этим же числом выражается, следовательно, и теоретический его предел удельной аккумулирующей способности. Однако фактическая аккумулирующая способность намного меньше, вследствие чего из аккумулятора при разряде обычно получается электрическая энергия приблизительно 30 Wh/kg. Факторы, обусловливающие снижение аккумулирующей способности, наглядно представлены на рис. 2. Кпд аккумулятора (отношение энергии, получаемой при разряде, к энергии, расходуемой при заряде) обычно находится в пределах от 70 % до 80 %.

Рис. 2. Теоретическая и фактическая удельная аккумулирующая способность свинцового аккумулятора

Различными специальными мерами (повышением концентрации кислоты до 39 %, использованием пластмассовых конструкционных частей и медных соединительных частей и др.) в последнее время удалось повысить удельную аккумулирующую способность до 40 Wh/kg и даже немногим выше.

Следует отметить, что еще в 1980-е годы примененялись открытые стационарные аккумуляторные батареи, удельная аккумулирующая способность которых находилась в пределах от 5 Wh/kg до 10 Wh/kg.

Из вышеприведенных данных вытекает, что удельная аккумулирующая способность свинцового аккумулятора (а также, как будет показано в дальнейшем, и других типов аккумуляторов) существенно ниже, чем первичных гальванических элементов. Однако этот недостаток обычно компенсируется возможностью многократного заряда и, как результат, приблизительно десятикратным снижением стоимости получаемой из аккумулятора электроэнергии, возможностью составлять аккумуляторные батареи с очень большой энергоемкостью (при необходимости, например, до 100 MWh).

Зависит от плотности электролита и может определяться экспериментальной формулой

Согласно этой формуле, начальная ЭДС аккумулятора, в зависимости от конкретного типа, находится в пределах от 2,05 V до 2,10 V. Напряжение на зажимах аккумулятора может в конце разряда снизиться до 1,7 V, а в конце заряда повыситься до 2,6 V (рис. 3).

Рис. 3. Изменение напряжения свинцового аккумулятора в некоторых возможных процессах заряда и разряда

Каждый цикл заряда-разряда сопровождается некоторыми необратимыми процессами на электродах, в том числе медленным накапливанием невосстанавливающегося сернокислого свинца в массе электродов. По этой причине через определенное число (обычно приблизительно 1000) циклов аккумулятор теряет способность нормально заряжаться. Это может случиться и при длительном неиспользовании аккумулятора, так как электрохимический разрядный процесс (медленный саморазряд) протекает в аккумуляторе и тогда, когда он не соединен с внешней электрической цепью. Свинцовый аккумулятор теряет из-за саморазряда обычно от 0,5 % до 1 % своего заряда в сутки. Для компенсации этого процесса в электроустановках используется постоянный подзаряд при достаточно стабильном напряжении (в зависимости от типа аккумулятора, при напряжении от 2,15 V до 2,20 V).

Другим необратимым процессом является электролиз воды («закипание» аккумулятора), возникающий в конце зарядного процесса. Потерю воды легко компенсировать путем доливки, но выделяющийся водород может вместе с воздухом привести к образованию взрывоопасной смеси в аккумуляторном помещении или отсеке. Во избежание опасности врыва должна предусматриваться соответствующая надежная вентиляция.

В последние 20 лет появились герметически закрытые свинцовые аккумуляторы, в которых применяется не жидкий, а желеобразный электролит. Такие аккумуляторы могут устанавливаться в любом положении, а кроме того, учитывая, что во время заряда они не выделяют водорода, могут размещаться в любых помещениях.

Кроме свинцовых выпускается более 50 видов аккумуляторов, основанных на различных электрохимических системах. В энергоустановках довольно часто находят применение щелочные (с электролитом в виде раствора гидроокиси калия KOH) никель-железные и никель-кадмиевые аккумуляторы, ЭДС которых находится в пределах от 1,35 V до 1,45 V, а удельная аккумулирующая способность – в пределах от 15 Wh/kg до 45 Wh/kg. Они менее чувствительны к колебаниям температуры окружающей среды и менее требовательны к условиям эксплуатации. Они обладают также бoльшим сроком службы (обычно от 1000 до 4000 циклов заряда-разряда), но их напряжение изменяется во время разряда в более широких пределах, чем у свинцовых аккумуляторов, и кпд у них несколько ниже (от 50 % до 70 %).

В энергосистемах встречаются весьма мощные свинцовые и никель-кадмиевые аккумуляторные батареи, используемые в качестве резервных источников электропитания или для выравнивания электрических нагрузок. Самая крупная такая батарея была принята в эксплуатацию в 2003 году в Фэрбенксе (Fairbanks, Аляска, США); она состоит из 13 760 никель-кадмиевых элементов и присоединена через инвертор и трансформатор к сети напряжением 138 kV. Номинальное напряжение батареи составляет 5230 V и энергоемкость 9 MWh; срок службы элементов – от 20 до 30 лет. 99 % времени она работает в качестве компенсатора реактивной мощности, но может при необходимости в течение трех минут отдавать в сеть мощность в 46 MW (или в течение 15 min мощность 27 MW). Общая масса батареи составляет 1500 t, а ее изготовление обошлось в 35 млн. долларов. Имеются аккумуляторные батареи даже большей аккумулирующей способности; одна такая батарея (энергоемкостью 60 MWh) установлена в качестве резервного источника питания в Калифорнии (California, США) и может отдавать в сеть в течение 6 часов мощность 6 MW. =Аккумуляторные батареи с самого начала (со второй половины 19-го века) пытались использовать в средствах передвижения, так как питаемый от аккумулятора электропривод обладает, по сравнению с двигателями внутреннего сгорания, многими преимуществами. К ним относятся, например, намного более простая и компактная конструкция тягового двигателя (или двигателей), возможность использовать многодвигательные приводы (снабжая, например, каждое колесо отдельным двигателем), высокий кпд привода (от 80 % до 90 %), плавное регулирование скорости во всем требуемом диапазоне регулирования без применения редуктора (коробки скоростей), отсутствие специальной пусковой системы (аккумулятора и стартера), возможность аккумулировать энергию, освобождающуюся при торможении, более простые возможности использования автоматических систем управления и регулирования (в том числе беспроводных систем), более высокая надежность привода, меньшая потребность в обслуживании и больший срок службы, более безопасная эксплуатация (благодаря отсутствию огне- и взрывоопасного моторного топлива), отсутвие выхлопных газов и других выбросов, вредно действующих на окружающую среду, отсутствие дополнительных источников энергии (например, генераторов), малошумность.

Применение свинцовых аккумуляторов в средствах передвижения (в автомобилях, на лодках, на поездах и др.) затруднено из-за их относительно большой массы, превышаюшей обычно массу двигателей внутреннего сгорания, а в случае приемлемой массы – слишком малым пробегом после заряда (обычно приблизительно 100 km). Поэтому для электромобилей и для других электрических средств передвижения предложены различные аккумуляторы с большей удельной аккумулирующей способностью.

Принцип действия. Аккумулятором называется химический источник тока, который способен накапливать (аккумулировать) в себе электрическую энергию и по мере необходимости отдавать ее во внешнюю цепь. Накапливание в аккумуляторе электрической энергии происходит при пропускании по нему тока от

постороннего источника (рис. 158,а). Этот процесс, называемый зарядом аккумулятора , сопровождается превращением электрической энергии в химическую, в результате чего аккумулятор сам становится источником тока. При разряде аккумулятора (рис. 158, б) происходит обратное превращение химической энергии в электрическую. Аккумулятор обладает большим преимуществом по сравнению с гальваническим элементом. Если элемент разрядился, то он приходит в полную негодность; аккумулятор же. после разряда может быть вновь заряжен и будет служить источником электрической энергии. В зависимости от рода электролита аккумуляторы разделяют на кислотные и щелочные.

На локомотивах и электропоездах наибольшее распространение получили щелочные аккумуляторы, которые имеют значительно больший срок службы, чем кислотные. Кислотные аккумуляторы ТН-450 применяют только на тепловозах, они имеют емкость 450 А*ч, номинальное напряжение - 2,2 В. Аккумуляторная батарея 32 ТН-450 состоит из 32 последовательно соединенных аккумуляторов; буква Т означает, что батарея установлена на тепловозе, буква Н - тип положительных пластин (намазные).

Устройство. В кислотном аккумуляторе электродами являются свинцовые пластины, покрытые так называемыми активными массами, которые взаимодействуют с электролитом при электрохимических реакциях в процессе заряда и разряда. Активной массой положительного электрода (анода) служит перекись свинца PbO 2 , а активной массой отрицательного электрода (катода) - чистый (губчатый) свинец Pb. Электролитом является 25-34 %-ный водный раствор серной кислоты.

Пластины аккумулятора могут иметь конструкцию поверхностного или намазного типа. Пластины поверхностного типа отливают из свинца; поверхность их, на которой происходят электрохимические реакции, увеличена благодаря наличию ребер, борозд и т. п. Их применяют в стационарных аккумуляторных батареях и некоторых батареях пассажирских вагонов.

В аккумуляторных батареях тепловозов применяют пластины намазного типа (рис. 159, а). Такие пластины имеют остов из сплава свинца с сурьмой, в котором устроен ряд ячеек, заполняемых пастой.

Ячейки пластин после заполнения пастой закрывают свинцовыми листами с большим количеством отверстий. Эти листы предотвращают возможность выпадания из пластин активной массы и не препятствуют в то же время доступу к ней электролита.

Исходным материалом для изготовления пасты для положительных пластин служит порошок свинца Pb, а для отрицательных- порошок, перекиси свинца PbO 2 , которые замешиваются на водном растворе серной кислоты. Строение активных масс в таких пластинах пористое; благодаря этому в электрохимических реакциях участвуют не только поверхностные, но и глубоколежащие слои электродов аккумулятора.

Для повышения пористости и уменьшения усадки активной массы в пасту добавляют графит, сажу, кремний, стеклянный порошок, сернокислый барий и другие инертные материалы, называемые расширителями . Они не принимают участия в электрохимических реакциях, но затрудняют слипание (спекание) частиц свинца и его окислов и предотвращают этим уменьшение пористости.

Намазные пластины имеют большую поверхность соприкосновения с электролитом и хорошо им пропитываются, что способствует уменьшению массы и размеров аккумулятора и позволяет получать при разряде большие токи.

При изготовлении аккумуляторов пластины подвергают специальным зарядно-разрядным циклам. Этот процесс носит название формовки аккумулятора . В результате формовки паста положительных пластин электрохимическим путем превращается в перекись (двуокись) свинца PbO 2 и приобретает коричневый цвет. Паста отрицательных пластин при формовке переходит в чистый свинец Pb, имеющий пористую структуру и называемый поэтому губчатым; отрицательные пластины приобретают серый цвет.

В некоторых аккумуляторах применены положительные пластины панцирного типа. В них каждая положительная пластина заключена в специальный панцирь (чехол) из эбонита или стеклоткани. Панцирь надежно удерживает активную массу пластины от осыпания при тряске и толчках; для сообщения же активной массы пластин с электролитом в панцире делают горизонтальные прорези шириной около 0725 мм.

Для предотвращения замыкания пластин посторонними предметами (щупом для измерения уровня электролита, устройством для заливки электролита и др.) пластины в некоторых аккумуляторах покрывают полихлорвиниловой сеткой.

Для увеличения емкости в каждый аккумулятор устанавливают несколько положительных и отрицательных пластин; одноименные пластины соединяют параллельно в общие блоки, к которым приваривают выводные штыри. Блоки положительных и отрицательных пластин обычно устанавливают в эбонитовом аккумуляторном сосуде (рис. 159,б) так, чтобы между каждыми двумя

пластинами одной полярности располагались пластины другой полярности. По краям аккумулятора ставят отрицательные пластины, так как положительные пластины при установке по краям склонны к короблению. Пластины отделяют одну от другой сепараторами, выполненными из микропористого эбонита, полихлорвинила, стекловойлока или другого изоляционного материала. Сепараторы предотвращают возможность короткого замыкания между пластинами при их короблении.

Пластины устанавливают в аккумуляторном сосуде так, чтобы между их нижней частью и дном сосуда имелось некоторое свободное пространство. В этом пространстве скапливается свинцовый осадок (шлам), образующийся вследствие отпадания отработавшей активной массы пластин в процессе эксплуатации.

Разряд и заряд. При разряде аккумулятора (рис. 160, а) положительные ионы H 2 + и отрицательные ионы кислотного остатка
S0 4 -, на которые распадаются молекулы серной кислоты H 2 S0 4 электролита 3, направляются соответственно к положительному
1 и отрицательному 2 электродам и вступают в электрохимические реакции с их активными массами. Между электродами возникает
разность потенциалов около 2 В, обеспечивающая прохождение электрического тока при замыкании внешней цепи. В результате
электрохимических реакций, возникающих при взаимодействии ионов водорода с перекисью свинца PbO 2 положительного
электрода и ионов сернокислого остатка S0 4 — со свинцом Pb отрицательного электрода, образуется сернокислый свинец PbS0 4 (сульфат свинца), в который превращаются поверхностные слои активной массы обоих электродов. Одновременно при этих реакциях образуется некоторое количество воды, поэтому концентрация серной кислоты понижается, т. е. плотность электролита уменьшается.

Аккумулятор может разряжаться теоретически до полного превращения активных масс электродов в сернокислый свинец и истощения электролита. Однако практически разряд прекращают гораздо раньше. Образующийся при разряде сернокислый свинец представляет собой соль белого цвета, плохо растворяющуюся в электролите и обладающую низкой электропроводностью. Поэтому разряд ведут не до конца, а только до того момента, когда в сернокислый свинец перейдет около 35 % активной массы. В этом случае образовавшийся сернокислый свинец равномерно распределяется в виде мельчайших кристалликов в оставшейся активной массе, которая сохраняет еще достаточную электропроводность, чтобы обеспечить напряжение между электродами 1,7-1,8 В.

Разряженный аккумулятор подвергают заряду, т. е. присоединяют к источнику тока с напряжением, большим напряжения аккумулятора. При заряде (рис. 160,б) положительные ионы водорода перемещаются к отрицательному электроду 2, а отрицательные ионы сернокислого остатка S0 4 — - положительному электроду 1 и вступают в химическое взаимодействие с сульфатом свинца PbS0 4 , покрывающим оба электрода. В процессе возникающих электрохимических реакций сульфат свинца PbS0 4 растворяется и на электродах вновь образуются активные массы: перекись свинца PbO 2 на положительном электроде и губчатый свинец Pb - на отрицательном. Концентрация серной кислоты при этом возрастает, т. е. плотность электролита увеличивается.

Электрохимические реакции при разряде и заряде аккумулятора могут быть выражены уравнением

PbO 2 + Pb + 2H 2 SO 4 ? 2PbSO 4 + 2H 2 O

Читая это уравнение слева направо, получаем процесс разряда, справа налево - процесс заряда.

Номинальный разрядный ток численно равен 0,1С НОМ, максимальный при запуске дизеля (стартерный режим) - примерно 3С НОМ, зарядный ток - 0,2 С НОМ, где С НОМ - номинальная емкость.

Полностью заряженный аккумулятор имеет э. д. с. около 2,2 В. Таково же приблизительно и напряжение на его зажимах, так как внутреннее сопротивление аккумулятора весьма мало. При разряде напряжение аккумулятора довольно быстро падает до 2 В, а затем медленно понижается до 1,8-1,7 В (рис. 161), при этом напряжении разряд прекращают во избежание повреждения аккумулятора. Если разряженный аккумулятор оставить на некоторое время в бездействии, то напряжение его снова восстанавливается до среднего значения 2 В. Это явление носит название «отдыха» аккумулятора. При нагрузке подобного «отдохнувшего» аккумулятора напряжение быстро понижается, поэтому измерение напряжения аккумулятора без нагрузки не дает правильного суждения о степени разряда .

При заряде напряжение аккумулятора быстро поднимается до 2,2 В, а затем медленно повышается до 2,3 В и, наконец, снова довольно быстро возрастает до 2,6-2,7 В. При 2,4 В начинают выделяться пузырьки газа, образующегося в результате разложения воды на водород и кислород. При 2,5 В оба электрода выделяют сильную струю газа, а при 2,6-2,7 В аккумулятор начинает как бы кипеть, что служит признаком окончания заряда. При отключении аккумулятора от источника зарядного тока напряжение его быстро снижается до 2,2 В.

Уход за аккумуляторами. Кислотные аккумуляторы быстро теряют емкость или даже приходят в полную негодность при

неправильной эксплуатации. В них происходит саморазряд, в результате которого они теряют свою емкость (примерно 0,5- 0,7 % в сутки). Для компенсации саморазряда неработающие аккумуляторные батареи необходимо периодически подзаряжать. При загрязнении электролита, а также крышек аккумуляторов, их выводов и междуэлементных соединений происходит повышенный саморазряд, быстро истощающий батарею.

Батарея аккумулятора должна быть всегда чистой, а выводы для предохранения от окисления покрыты тонким слоем технического вазелина. Периодически нужно проверять уровень электролита и степень заряженности аккумуляторов. Аккумуляторы должны периодически заряжаться. Хранение незаряженных аккумуляторов недопустимо. При неправильной эксплуатации аккумуляторов (разряде ниже 1,8-1,7 В, систематическом недозаряде, неправильном проведении заряда, длительном хранении незаряженного аккумулятора, понижении уровня электролита, чрезмерной плотности электролита) происходит повреждение их пластин, называемое сульфатацией . Это явление заключается в переходе мелкокристаллического сульфата свинца, покрывающего пластины при разряде, в нерастворимые крупнокристаллические химические соединения, которые при заряде не переходят в перекись свинца РbO 2 и свинец РЬ. При этом аккумулятор становится непригодным для эксплуатации.

Добавить сайт в закладки

Механизм работы аккумулятора

Аккумуляторы - это химические источники тока с обрати­мым процессом: они могут отдавать энергию, преобразуя хими­ческую энергию в электрическую, или накапливать энергию, преобразуя электрическую энергию в химическую. Та­ким образом, аккумулятор попеременно то разряжается, отдавая электрическую энергию, то заряжается от какого-либо соответствующего источника постоянного тока.

Аккумуляторы, в зависимости от применяемого в них электро­лита, подразделяются на кислотные и щелочные. Кроме того, аккумуляторы различаются, в зависимости от материала электродов. Широкое применение имеют лишь свинцовые, кадмиево-никелевые, железо-никелевые и серебряно-цинковые акку­муляторы.

Емкость аккумулятора определяется количеством электри­чества q p , которое он может отдать при разряде в питаемую цепь.

Это количество электричества измеряется не в кулонах, а в более крупных единицах - ампер-часах (а-ч). 1 а-ч = 3600 кл. Но для заряда аккумулятора требуется большее количество электричества q 3 , чем отдаваемое при разряде. Отношение q p: q 3 =n e называется отдачей аккумулятора по емкости.

Напряжение, необходимое для заряда аккумулятора, значи­тельно выше того напряжения на зажимах аккумулятора, при котором он отдает длительно разрядный ток.

Важной характеристикой аккумулятора являются его средние зарядное и разрядное напряжения.

Ясно, что из-за ряда потерь энергии аккумулятор отдает при разряде значительно меньшее количество энергии W p , чем полу­чает при заряде. Отношение W p: W 3 = n есть коэффициент полезного действия или отдача по энергии аккумулятора.

Наконец, весьма важной для характеристики аккумулятора величиной является его удельная э н е р г и я, т. е. количество энергии, отдаваемой при разряде, приходящееся на 1 кг веса аккумулятора. Особенно существенно, чтобы удельная энергия была возможно больше у нестационарных аккумуляторов, уста­навливаемых, например, на самолетах. В подобных случаях обычно она важнее, чем коэффициент полезного действия и от­дача по емкости.

Следует иметь в виду, что при медленном разряде процесс в аккумуляторе протекает равномерно во всей массе пластин, бла­годаря чему при длительном разряде малым током емкость акку­мулятора больше, чем при кратковременном разряде большим током. При быстром разряде процесс в массе пластин отстает от процесса на их поверхности, что вызывает внутренние токи и уменьшение отдачи.

Напряжение аккумулятора существенно изменяется во время разряда. Желательно, чтобы оно было возможно более постоян­ным. В расчетах обычно указывается среднее разрядное напря­жение U p . Но для заряда аккумулятора нужен источник тока, дающий значительно большее зарядное напряжение U з (на 25- 40%). В противном случае невозможно зарядить аккумулятор полностью.

Если напряжение одного аккумуляторного элемента недоста­точно для данной установки, то необходимое число аккумулятор­ных элементов соединяется последовательно. Конечно, последо­вательно соединять можно только аккумуляторы, рассчитанные на одну и ту же разрядную силу тока.

Если разрядный ток одного элемента недостаточен, то приме­няется параллельное соединение нескольких одинаковых элемен­тов.

Из числа кислотных аккумуляторов практическое значение имеют лишь свинцовые аккумуляторы. В них на положительном электроде активным веществом служит двуокись свинца РЬ0 2 , на отрицательном электроде - губчатый свинец РЬ. Положительные пластины имеют бурый цвет, отрицатель­ные- серый, в качестве электролита применяется раствор сер­ной кислоты H 2 S0 4 с с удельным весом 1,18-1,29.

Химический процесс разряда и заряда свинцового аккумуля­тора относительно сложен. В основном он сводится к восстановлению свинца на положительном электроде и окислению губча­того свинца на отрицательном электроде в закисную соль серной кислоты. При этом образуется вода и, следовательно, плотность электролита уменьшается. При разря­де сначала напряжение аккумулятора быстро падает до 1,95 В, а затем медленно понижается до 1,8 В. После чего необходимо прекратить разряд.

При дальнейшем разряде имеет место необратимый процесс образования кристаллического сернокислого свинца PbS 4 . По­следний покрывает пластины белым налетом. Он обладает боль­шим удельным сопротивлением и почти не растворим в электро­лите. Слой сернокислого свинца увеличивает внутреннее сопро­тивление активной массы пластин. Такой процесс называется сульфатацией пластин.

При заряде аккумулятора процесс идет в обратном направ­лении: на отрицательном электроде восстанавливается металли­ческий свинец, а на положительном электроде свинец окисляется до двуокиси РЬ0 2 . Ион S0 4 переходит в электролит, поэтому плотность серной кислоты при заряде увеличивается, следова­тельно, возрастает и удельный вес электролита. Для измерения удельного веса электролита применяется специальный арео­метр. По его показаниям можно ориентировочно судить, в какой мере аккумулятор заряжен. Среднее разрядное напряжение свинцового аккумулятора 1,98 В, а среднее зарядное напряжение 2,4 В.

Внутреннее сопротивление r B н свинцовых аккумуляторов, бла­годаря малому расстоянию между пластинами и большой пло­щади их соприкосновения с электролитом, весьма мало: порядка тысячных долей ома у стационарных аккумуляторов и сотых до­лей у небольших переносных аккумуляторов.

Вследствие малого внутреннего сопротивления и относительно большого напряжения КПД этих аккумуляторов достигает 70- 80 %, а отдача - 0,85-0,95 %.

Однако из-за малого внутреннего сопротивления в свинцовых аккумуляторах при коротких замыканиях возникают токи очень большой силы, что приводит к короблению и распаду пластин.

Из числа щелочных аккумуляторов широкое при­менение в настоящее время имеют кадмиево-никелевые, железо- никелевые и серебряно-цинковые. Во всех этих аккумуляторах электролитом служит щелочь - примерно двухпроцентный ра­створ едкого калия КОН или едкого натра NaOH. При заряде и разряде этот электролит почти не претерпевает изменений. Сле­довательно, от его количества емкость аккумулятора не зависит. Это дает возможность свести к минимуму количество электроли­та во всех щелочных аккумуляторах и таким путем существенно их облегчить.

Остовы положительной и отрицательной пластин этих акку­муляторов делаются из стальных никелированных рамок с пакетами для активной массы. Благодаря такой конструкции активная масса прочно удерживается в пластинах и не выпадает при толчках.

В кадмиево-никелевом КН аккумуляторе ак­тивным веществом положительного электрода служат окислы никеля, смешанные для увеличения электропроводности с графи­том; активным веществом отрицательного электрода является губчатый металлический кадмий Cd. При разряде на положи­тельном электроде расходуется часть активного кислорода, со­держащегося в окислах никеля, а на отрицательном электроде окисляется металлический кадмий. При заряде обратно обога­щается кислородом положительный электрод: гидрат закиси никеля Ni(OH) 2 переходит в гидрат окиси никеля Ni(OH) 3. На отрицательном электроде гидрат закиси кадмия восстанавли­вается в чистый кадмий. Приближенно процесс в этом аккумуля­торе может быть выражен химической формулой:

2Ni (ОН) 3 + 2КОН + Cd ? ? 2Ni (ОН) 2 + 2КОН + Cd (ОН) 2 .

Как показывает формула, из электролита при разряде выде­ляется частица (ОН) 2 на отрицательной пластине и такая же частица переходит в электролит на положительной пластине. При заряде процесс идет в обратном направлении, но в обоих случаях электролит не изменяется.

Устройство железо-никелевого аккумулятора отличается лишь тем, что в нем в отрицательных пластинах кадмий заменен мелким порошком железа (Fe). Химический процесс этого аккумулятора можно просле­дить по вышеприведенному для кадмиево-никелевого аккумуля­тора уравнению путем замены Cd на Fe.

Применение железа вместо кадмия удешевляет аккумуля­тор, делает его более прочным механически и увеличивает срок его службы. Но с другой сторо­ны, у железо-никелевого акку­мулятора при том же примерно разрядном напряжении зарядное напряжение на 0,2 В выше, вследствие чего КПД этого аккумулятора ни­же, чем кадмиево-никелевого. Затем очень важным недостат­ком железо-никелевого аккуму­лятора является относительно быстрый саморазряд. У кадмиево-никелевого аккумулятора саморазряд мал, и поэтому ему отдается предпочтение в тех случаях, когда аккумулятор должен длительно находиться в заряженном со­стоянии, например для питания радиоустановок. Среднее разрядное напряже­ние обоих этих аккумуляторов равно 1,2 В.

Герметически закрытые сосуды вышеописанных щелочных аккумуляторов выполняются из листовой никелированной стали. Болты, через которые пласти­ны аккумуляторов соединяются с внешней целью, пропускаются через отвер­стия в крышке сосуда, причем болт, с которым соединены отрицательные пла­стины, тщательно изолирован от стального корпуса; но болт, соединенный с положительными пластинами, от корпуса не изолируется.

Внутреннее сопротивление щелочных аккумуляторов значи­тельно больше, чем кислотных, благодаря этому они лучше пере­носят короткие замыкания. Но по той же причине КПД щелоч­ных аккумуляторов (порядка 45%) значительно ниже, чем кис­лотных, также существенно меньше их удельная энергия и отда­ча по емкости (0,65). Так как состояние электролита у щелочных аккумуляторов при работе не изменяется, то определить их степень заряженности по внешним признакам нельзя. Вследствие чего за зарядом приходится следить на основании их емкости и напряжения. При заряде нужно сообщить аккумулятору количество электричества It=q значительно большее, чем его емкость, примерно в 1,5 раза. Например, аккумулятор емкостью 100 а-ч желательно заряжать током силой в 10 а в течение 15 час.

Серебряно-цинковые аккумуляторы являются новей­шими из числа современных аккумуляторов. Электролитом в них служит вод­ный раствор едкого калия КОН с удельным весом 1,4, с активным веществом положительного электрода (окисью серебра Ag 2 0) и отрицательного электро­да (цинком Zn). Электроды изготавливаются в виде пористых пластин и отделяют­ся друг от друга пленочной перегородкой.

При разряде аккумулятора окись серебра восстанавливается до металли­ческого серебра, а металлический цинк окисляется до окиси цинка ZnO. Об­ратный процесс происходит при заряде аккумулятора. Основная химическая реакция выражается формулой

Ag s O + КОН + Zn ? ? 2Ag + КОН + ZnO.

http://сайт/www.youtube.com/watch?v=0jbnDTRtywE
Устойчивое разрядное напряжение составляет около 1,5 В. При небольших токах разряда это напряжение почти не изменяется в течение примерно 75- 80% времени работы аккумулятора. Затем оно довольно быстро падает, и при напряжении 1 в разряд следует прекращать.

Внутреннее сопротивление серебряно-цинковых аккумуляторов сущест­венно меньше, чем остальных щелочных аккумуляторов. При равной емкости первые значительно легче. Они удовлетворительно работают как при пониженной (-50° С), так и при повышенной (+ 75° С) температурах. Наконец, они допускают большие разрядные токи. Например, некоторые типы таких акку­муляторов можно разогреть током короткого замыкания в течение одной минуты.

Выше изложены только основные сведения по аккумуляторам. При практической работе с аккумуляторами, в особенности со свинцовыми, необходимо тщательно выполнять соответствующие заводские инструкции. Нарушение их вызывает быстрое разрушение аккумуляторов.

Главная > Конспект

Лекция 3. Аккумуляторы

    Основные понятия. Электрические характеристики и классификация аккумуляторов. Свинцовые аккумуляторы. Щелочные аккумуляторы. Стартерные батареи. Аккумуляторы с расплавленным и твердым электролитом. Применение аккумуляторов на железнодорожном транспорте.

1. Основные понятия. Электрические характеристики и классификация аккумуляторов.

Аккумуляторами называются устройства, в которых электрическая энергия превращается в химическую, а химическая – снова в электрическую. То есть они служат для накопления химической энергии, превращаемой по мере необходимости в электрическую. Аккумуляторы или аккумуляторные батареи (АКБ) относятся к вторичным (перезаряжаемым) химическим источникам тока , характеризующимся многократностью использования и обратимостью. После работы (разрядки) аккумулятора его можно перевести в исходное состояние путём зарядки – пропускания через него постоянного электрического тока от внешнего источника. При заряде аккумулятор работает как электролизер, а при разряде – как гальванический элемент. Аккумулятор состоит из двух электродов (отрицательного заряженного анода и положительного заряженного катода) и электролита (ионного проводника) между ними. Анодом является электрод, на котором протекает окисление; катодом – электрод, на котором протекает восстановление. Ёмкость аккумулятора – такое количество электричества, которое можно получить при работе элемента в режиме разряда до достижения минимального значения напряжения: С = I·t (А·ч). Ёмкость зависит от природы и количества активных масс в электродах, их конструкции и состояния, тока разряда, концентрации электролита и так далее. ЭДС аккумулятора – разность электродных потенциалов катода и анода при разомкнутой внешней цепи: Е ак = φ к – φ а. ЭДС АКБ равна сумме ЭДС аккумуляторов. При разряде напряжение аккумулятора меньше ЭДС (из-за поляризации и омических потерь (внутреннего сопротивления)). В процессе его работы изменяется состав активных масс, и соответственно – ЭДС и напряжение. Кривые изменения напряжения аккумулятора во времени называют зарядными и разрядными кривыми. Зарядное напряжение увеличивается, а разрядное - уменьшается во времени (см. рисунок 3.1.). U, ЭДС, В U, ЭДС, В 2,5 2,2 1,8 1,7
100 Степень 100 Степень заряда разряда

Рисунок 3.1. Зарядные и разрядные кривые аккумуляторов

Энергия аккумулятора – это произведение его ёмкости на напряжение: W = C·U (Вт·ч). Она определяет то количество энергии, которое при разряде передается во внешнюю цепь. Мощность аккумулятора – количество энергии, отдаваемое в единицу времени: Р = W / t (Вт). Часто используют удельные значения энергии и мощности аккумуляторов – на единицу массы или объема или в единицу времени. КПД аккумулятора – отношение энергии, полученной при разряде, к энергии, подведённой при заряде аккумулятора: η = W p / W з. Срок службы аккумулятора – чаще измеряется в годах или в количестве разрядно-зарядных циклов. На практике для оценки работы АКБ используют зависимость напряжения аккумулятора от силы тока (рисунок 3.2.). Резкое снижение напряжения на участках АВ и СД обусловлено электрохимической поляризацией электродов; на участке ВС изменение напряжения почти линейное (обусловлено ещё и омическими падениями). Чем меньше падение U с ростом I, тем лучше работает аккумулятор. Классификацию аккумуляторов проводят в основном по химической природе электролита (рисунок 3.3). Кроме этого, они различаются по типу электродов и по конструкции. U,В А В рисунок 3.2. Вольт-амперная кривая С Д I, А

Аккумуляторы

Кислотные Щелочные с твёрдым электролитом с расплавленным (свинцовые) Ni-Cd, Ni-Fe (S-Na) электролитом

Рисунок 3.3. Классификация аккумуляторов по типу электролита

2. Свинцовые аккумуляторы

Свинцовые аккумуляторы в настоящее время являются наиболее распространёнными, в том числе на железнодорожном транспорте. Они состоят из двух решетчатых свинцовых пластин (для увеличения площади поверхности и ёмкости). Отрицательный электрод заполняется металлическим свинцом, положительный – диоксидом свинца PbO 2 . Электрохимическая схема:

Анод (-) Pb / H 2 SO 4 / PbO 2 (+) Катод

Электроды погружены в электролит – 25-30% раствор серной кислоты с плотностью 1,18 – 1,22 г/см 3 . Кроме электролита, решётки электродов разделяются пористыми сепараторами. Суммарная (токообразующая) реакция в аккумуляторе:

2 PbSO 4 + 2 H 2 O ↔ Pb + PbO 2 + 2H 2 SO 4 .

Прямая реакция в этой записи соответствует заряду аккумулятора, а обратная – его разряду (то есть его работе). При зарядке аккумулятора протекают следующие реакции: На аноде Pb +2 SO 4 + 2H 2 O – 2e - = Pb +4 O 2 + H 2 SO 4 , На катоде Pb +2 SO 4 + 2e - = Pb 0 + SO 4 2- . При разрядке аккумулятора (во время его работы): На аноде Pb +4 O 2 + 2H 2 SO 4 + 2e - = Pb +2 SO 4 + 2H 2 O + SO 4 2- ; На катоде Pb 0 + SO 4 2- - 2e - = Pb +2 SO 4 . Когда при разрядке напряжение падает до ≈ 1,8 В, дальнейшую разрядку производить нельзя – электроды покрываются толстым слоем сульфата свинца, аккумулятор выходит из строя. При работе кислотного свинцового аккумулятора нужно соблюдать ряд особенностей:

    Строго контролировать плотность электролита, с учётом условий работы аккумулятора; в частности, его концентрация зимой должна быть выше, чем летом. Следить за процессом заряда аккумулятора. Напряжение при заряде выше ЭДС (см рисунок 3.1.) и растёт в течение заряда, что ведёт в конце заряда к разложению воды по реакции 2Н 2 О = 2Н 2 + О 2 . Поэтому выделение пузырьков газа («кипение») служит признаком окончания заряда.
Достоинства кислотных аккумуляторов: высокие значения КПД (≈ 80%) и ЭДС (≈ 2 В), малое изменение напряжения при разряде, простота, невысокая цена, высокая удельная мощность (до 300 Вт/кг). Недостатки кислотных аккумуляторов: небольшая удельная энергия, высокий саморазряд при длительном хранении, относительно малый срок службы (около 5 лет), токсичность свинца.

3. Щелочные аккумуляторы

Среди аккумуляторов с щелочным электролитом наиболее распространены никель-кадмиевые (Ni-Cd) и никель-железные (Ni-Fe) аккумуляторы. Здесь положительный электрод содержит гидроксид никеля (III) Ni(OH) 3 (или NiOOH), а отрицательный – соответственно кадмий или железо. В качестве электролита используется 20-23% раствор гидроксида калия КОН, с плотностью 1,21 г/см 3 . Так, при работе Ni-Fe аккумулятора суммарное уравнение

Fe + 2Ni(OH) 3 ↔ Fe(OH) 2 + 2Ni(OH) 2 .

При разрядке на аноде Fe – 2e - = Fe 2+ , на катоде Ni(OH) 3 + e - = Ni(OH) 2 + OH - . Достоинства щелочных аккумуляторов: большой срок службы (до 10 лет), высокая механическая прочность; недостатки – невысокие КПД и разрядное напряжение. В последнее время получили распространение серебряно-цинковые и серебряно-кадмиевые аккумуляторы. Их достоинства – малый объём и вес, небольшое падение мощности при интенсивной работе; недостатки – высокая стоимость и нестабильная работа при низких температурах.

4. Стартерные батареи

Аккумуляторные стартерные батареи собираются в одном моноблоке – многоячеечном пластмассовом или эбонитовом корпусе. В каждой ячейке разделенные сепараторами электроды собраны в блок. Каждый электрод состоит из активной массы и металлической решетки, которая служит каркасом и токоотводом. Сепараторы изготавливают из пористой кислотостойкой пластмассы. В пробке, закрывающей отверстие для заливки электролита, имеются вентиляционное отверстие (для выхода газов) и отражатель (для предотвращения выплескивания). В последнее время в электродные массы таких АКБ добавляют сурьму и сплавы на основе свинца и кальция. Это приводит к более низкому газовыделению, снижению скорости саморазряда и незначительному расходу электролита. Основные неисправности стартерных батарей.

    Внешние – трещины в моноблоках, крышках, повреждение пробок, окисление или излом токоотводов. Внутренние – разрушение электродов, коррозия, оплывание активной массы, короткое замыкание, переполюсовка электродов, их сульфатация, повышенный саморазряд и т.д.
Для борьбы с внутренними неисправностями нужно избегать частых и длительных перезарядов АКБ, соблюдать плотность электролита, не допускать в нём посторонних примесей, применять для приготовления электролита только дистиллированную воду. Хранить заряженные АКБ с электролитом нужно в прохладных помещениях при постоянной температуре.

5. Аккумуляторы с расплавленным и твёрдым электролитом

В последние годы разрабатываются аккумуляторы с литиевым отрицательным электродом, неводным раствором электролита и положительным электродом на базе углерода, оксидов ванадия, никеля, кобальта и марганца. Представителем аккумуляторов с расплавленным электролитом является хлор-литиевый аккумулятор. На графитовом стержне адсорбирован газообразный хлор:

(–) Li / LiCl, KCl / Cl 2 , C (+)

Суммарный электрохимический процесс: 2Li + Cl 2 ↔ 2 LiCl. Преимущества такого аккумулятора – высокая удельная энергия (до 400 Вт*ч/кг) и мощность (до 2000 Вт/кг). Недостатки – высокая коррозионная активность электролита, токсичность хлора, взрывоопасность. Сейчас перспективными считаются аккумуляторы, где вместо чистого лития используются его сплавы с кремнием, алюминием, а катод состоит из хлористого теллура: (–) Li, Al / LiCl, KCl / TeCl 4 (+). Также активно разрабатываются аккумуляторы с твёрдыми и неводными электролитами (пропиленкарбонатом, фторуглеродами CF x , тионилхлоридом SOCl 2 и др.). Такие аккумуляторы уже сейчас дешевы, их ресурс составляет более 1000 циклов, у них высокая удельная энергия, однако пока они работают при малых токах.

6. Применение аккумуляторов на железнодорожном транспорте

Наиболее распространены и популярны на подвижном составе кислотные свинцовые аккумуляторы – этим они обязаны прежде всего стартерным батареям, предназначенным для различных средств передвижения. Они применяются для запуска двигателей внутреннего сгорания и являются тяговыми устройствами на маневровых электровозах, электрокарах и т.д. Закрытые свинцовые аккумуляторы (АБН-72, АБН-80 - антиблокировочные намазанные) используются в стационарных и напольных условиях для питания устройств железнодорожной автоматики, телемеханики и связи, а также на железнодорожных путях и сортировочных горках, имеющих электрическую и диспетчерскую централизацию. На их базе комплектуется большинство стационарных и вагонных батарей. Так, на тепловозах в основном применяют стартерные батареи 3-СТ-60 и 6-СТ-42 («3» или «6» - число последовательно соединенных аккумуляторов в АКБ, «60» или «42» - номинальная емкость при 10-часовом непрерывном режиме разряда). Щелочные аккумуляторы применяются также достаточно широко: на тепловозах, пассажирских вагонах, электрокарах, погрузчиках, рудничных электровозах, в переносной аппаратуре, для питания аппаратуры связи и электронной аппаратуры. Для переносных и портативных приборов и бытовой техники всё чаще используют литиевые аккумуляторы с расплавленным и твёрдым электролитом. Они имеют ёмкость до 10 А·ч и рассчитаны на длительный режим разрядки; являются многоцелевыми: обеспечивают работу радиоэлектронных и светотехнических изделий, переносных приборов и т.д. (транзисторных радиоприемников, карманных фонарей, тестеров, электрочасов, табло и пр.).

Лекция 4. Топливные элементы

    Основные понятия. Устройство топливных элементов (ТЭ). Водородно-кислородные элементы с различными электролитами. Установки с электрохимическим генератором. Применение топливных элементов.

1. Основные понятия

Топливные элементы (ТЭ) – это химические источники тока, в которых электроэнергия возникает за счёт химической реакции между топливом (восстановителем) и окислителем. Такие элементы могут работать длительное время, так как окислитель и восстановитель хранятся отдельно, вне элемента, а в процессе работы подаются к электродам – непрерывно и раздельно. В качестве топлива используются жидкие и газообразные восстановители: водород, метан и другие углеводороды, метиловый спирт, гидразин; основные окислители – это кислород и перекись водорода. Удельная энергия топливных элементов выше, чем у обычных гальванических элементов. Для большинства ТЭ ЭДС равна 1,0 – 1,5 В. Для уменьшения внутреннего сопротивления в ТЭ применяют электроды с высокой электрической проводимостью. Для уменьшения поляризации используют электроды с высокоразвитой поверхностью, на которые наносят различные катализаторы: платину, палладий, серебро, борид никеля и другие.

    Устройство топливных элементов (ТЭ). Водородно-кислородные элементы с различными электролитами.

Рассмотрим устройство ТЭ на примере наиболее распространенного кислородно-водородного элемента с щелочным электролитом. Превращение химической энергии в электрическую происходит при протекании реакции 2Н 2 +О 2 =2Н 2 О. При этом генерируется постоянный ток. К аноду подводится топливо (Н 2), к катоду – окислитель (О 2 или воздух). Между электродами находится электролит – раствор щелочи (в основном КОН).
Н 2 О N 2 1 2 3 Н 2 О 2 (воздух)

Рисунок 4.1. Устройство топливного элемента. 1 – анод, 2 – электролит, 3 – катод.

Схема данного элемента:

А (-) Н 2 , М / КОН/ М, О 2 (+) К

Здесь М – катализатор (проводник первого рода). Анодный процесс: Н 2 + 2 ОН - - 2е - = 2 Н 2 О; Катодный процесс: О 2 + 2 Н 2 О + 4е - = 4 ОН - . Суммарный процесс: 2 Н 2 + О 2 = 2 Н 2 О. Во внешней цепи происходит движение электронов от анода к катоду, а в растворе – движение ионов от катода к аноду. На практике также широко применяется кислородно-гидразиновый элемент, схема которого:

(-) Ni, N 2 H 4 / KOH / О 2 , С (+)

Здесь анодом является никелевый электрод, а катодом – графитовый стержень. При работе такого ТЭ на аноде N 2 H 4 + 4 OH - = N 2 + 4H 2 O + 4 e - , на катоде О 2 + 2Н 2 О + 4е - = 4 ОН - . Суммарная реакция N 2 H 4 + O 2 = N 2 + 2H 2 O. Вышеперечисленные ТЭ способны работать уже при комнатной температуре (их ещё называют низкотемпературными). Другие ТЭ (с электролитами из фосфорной кислоты, полимерными ионообменными мембранами) работают при температурах от 100 до 300 0 С. У данных ТЭ на аноде: 2Н 2 – 4е - = 4 Н + ; на катоде О 2 + 2Н 2 О + 4е - = 4 ОН - . Основные проблемы при функционировании ТЭ: чистота топлива (влияющая на его окисляемость), выбор катализатора (с целью удешевления ТЭ), повышение срока службы ТЭ. Сейчас в основном водород для ТЭ получают конверсией метана: СН 4 + 2Н 2 О = СО 2 + 4Н 2 .

3. Установки с электрохимическим генератором

В отличие от гальванических элементов ТЭ не могут работать без вспомогательных устройств. Для повышения напряжения, силы тока и мощности ТЭ соединяют в батареи. Система, состоящая из батареи ТЭ, устройств для подвода топлива и окислителя (а также их хранения и обработки), отвода продуктов реакции, регулировки температуры и преобразования тока и напряжения называется электрохимическим генератором (ЭХГ), или электрохимической установкой. Схема ЭХГ показана на рисунке 4.2.

Отвод продуктов реакции генератор отвод тепла Нагрузка Подача топлива батарея ТЭ подача окислителя

Система контроля температуры

Рисунок 4.2. Схема установки с ЭХГ.

4. Применение топливных элементов

ТЭ придаётся большое значение в связи с тем, что их КПД близок к 100%, и они могут применяться во многих отраслях хозяйства, не загрязняя окружающую среду. С каждым годом их применение всё шире. Основные сферы применения ТЭ: космические корабли и станции, электромобили и транспорт, стационарные энергоустановки. В настоящее время созданы кислородно-гидразиновые ЭХГ, имеющие мощность 50 кВт. Срок их службы – 2000 ч. Они производят электроэнергию в любое время суток, надёжны в эксплуатации, имеют малые размеры и способны выдерживать различные перегрузки. На космических кораблях и подводных лодках ЭХГ обеспечивают людей не только электроэнергией, но и водой. Наиболее распространены ЭХГ с щелочным электролитом, они обладают удельной энергией 400-800 Вт·ч/кг и КПД 70%, мощностью около 10 кВт. В последние годы всё больше уделяется внимание разработке ТЭ для различных мобильных приборов и устройств (ноутбуков, видеокамер и т.п.), а также ЭХГ для электромобилей, работающих на водороде или метаноле. Многочисленные публикации в научно-популярной прессе, сюжеты по ТВ подтверждают то, что дальнейшее совершенствование ТЭ является одним из самых перспективных направлений в развитии энергетики. ЭХГ ещё пока относительно дороги, однако сейчас ведутся интенсивные работы по их удешевлению с целью широкого использования экологически чистой энергии.

Лекция 5. Коррозия.

Теоретические вопросы в области коррозии

    Определение коррозии и значение коррозионной проблемы. Прямые и косвенные потери от коррозии. Причины возникновения коррозии. Химическая коррозия. Электрохимическая коррозия. Влияние водородного показателя среды на скорость коррозии. Оценка коррозионной стойкости металлов.

    Определение коррозии и значение коррозионной проблемы

Коррозия – это разрушение металлов в результате химической или электрохимической реакции. Разрушение металла, происходящее по физическим причинам, не является коррозией, а известно как эрозия, износ или истирание. В некоторых случаях химическое воздействие сопровождается физическим разрушением и называется коррозионным износом или фреттинг-коррозией. Это определение не распространяется на неметаллические материалы (пластмасса, дерево, гранит, цемент и бетон). Ржавлением называется коррозия железа и его сплавов, с образованием продуктов, состоящих в основном из гидратированных оксидов железа. При коррозии цветных металлов о ржавлении обычно не говорят. Ввиду того, что коррозия включает в себя химические превращения, для понимания теории коррозии необходимо знать основы электрохимии, так как коррозионные процессы в большинстве своем являются электрохимическими. Значение коррозионных исследований определяется тремя аспектами. Первый аспект – экономический. Его цель – уменьшение материальных потерь (в результате коррозии трубопроводов, резервуаров, котлов, деталей машин, судов, мостов, железнодорожных рельсов, подвижного состава). Второй аспект – повышение надежности оборудования, которое в результате коррозии может разрушаться с катастрофическими последствиями (трубопроводы высокого давления, контейнеры для токсичных материалов, лопасти и роторы турбин, деталей самолетов, АЭС, систем захоронения радиоактивных отходов и т.п.). Третий аспект – сохранность металлического фонда.

2. Прямые и косвенные потери от коррозии.

Различают прямые и косвенные потери от коррозии. Под прямыми потерями понимают стоимость замены прокорродированных конструкций или их частей. Другими примерами прямых потерь могут служить затраты на перекраску конструкций для предотвращения ржавления или эксплуатационные затраты, нанесение защитных металлических покрытий. Прямые потери легко подсчитать. Гораздо труднее поддаются расчетам косвенные потери, даже по приближенным оценкам они исчисляются миллиардами долларов по всему миру. Так, в США общая сумма прямых потерь – 4,2 % валового национального продукта. В России ежегодно до 20 % всего выплавляемого металла подвергается коррозии. Примеры косвенных потерь от коррозии:

    Простои (например, замена прокорродированной трубы или участка железнодорожного пути) – учитывается недовыработка продукции за время простоя. Потеря готовой продукции (утечка нефти, газа, воды). Потеря мощности – из-за отложения продуктов коррозии, так как, например, нарушается теплообмен или уменьшается полезный рабочий просвет трубопроводов. А в результате коррозии поршневых колец и стенок цилиндров ДВС увеличивается расход бензина и масла. Загрязнение продукции. Небольшие количества металлов в результате коррозии могут испортить партию продукции – поменять цвет красителей, ухудшить качество (особенно продуктов питания). Допуски на коррозию. Речь идёт о том, что приходится в ряде случаев в расчёте на коррозию изготавливать толщину стенок изделий больше, чем надо, а это затраты средств.
В ряде случаев косвенные потери не могут быть вообще выражены в денежных единицах – к ним можно отнести аварии, взрывы, пожары, крушения и пр., особенно связанные с человеческими жертвами. Как бы то ни было, коррозия приносит народному хозяйству огромные убытки. Коррозия сопровождается не только потерей металла, но и понижением его механической прочности.

3. Причины возникновения коррозии.

Основной причиной коррозии является термодинамическая неустойчивость металлов и сплавов в окружающей среде. Подавляющее большинство металлов в земной коре находится в виде оксидов, сульфидов и других соединений. При получении металлов в металлургии их переводят из такого стабильного состояния в элементарную форму, которая нестабильна. При контакте металла с внешней окислительной средой появляется движущая сила, стремящаяся превратить его в стабильные соединения, подобные тем, которые находятся в рудах. Примером является коррозия стали: железо переводится из элементарного состояния в окисленное (двух- и трехвалентное), которое соответствует таким минералам, как магнетит Fe 3 O 4 или лимонит Fe 2 O 3 ·H 2 O. Термодинамическая неустойчивость металлов количественно оценивается знаком и величиной изобарно-изотермического потенциала ΔG (энергии Гиббса). Самопроизвольно протекают те процессы, которые сопровождаются уменьшением энергии Гиббса, то есть для которых ΔG меньше нуля. Металлы, стоящие в ряду напряжений до водорода, имеют по сравнению с водородом более отрицательный потенциал, их окисленное состояние более устойчиво термодинамически, чем восстановленное. Для металлов, расположенных после водорода, восстановленное состояние термодинамически более устойчиво, то есть для них ΔG процесса окисления больше нуля. К этой группе металлов относятся коррозионно-стойкие золото, серебро, платина и др.

Учебно-методический комплекс

Основной целью преподавания дисциплины является формирование у студентов единого представления о процессе проектирования вагоноремонтного предприятия (вагонного депо или вагоноремонтного завода) как специализированного промышленного

  • Учебно-методический комплекс по дисциплине «Основы технической диагностики» (название)

    Учебно-методический комплекс
  • Учебно-методический комплекс по дисциплине «Холодильное оборудование вагонов» (название)

    Учебно-методический комплекс

    составлен в соответствии с требованиями Государственного образовательного стандарта высшего профессионального образования/основной образовательной программы по специальности/ направлению



  • Поделиться