Двигатель стирлинга для охлаждения. Двигатель Стирлинга – принцип работы

Долгое время такие недостатки двигателей внутреннего сгорания (ДВС), как жесткие требования к топливу и маслам, загрязнение атмосферы, шум на выхлопе, резкое ухудшение экономичности и других характеристик при отклонении от оптимального режима работы и, наконец, не возможность использования источников тепла, не связанных с горением, не имели существенного значения. Однако с ростом числа и мощности эксплуатируемых ДВС проблемы токсического и шумового загрязнения окружающей среды приобрели жизненно важное значение.


Быстрое исчерпание разведанных запасов нефти в мире привело к тому, что в последние десять лет происходит переход из эры дешевой нефти в эру высоких цен на энергию в целом. С другой стороны, в новых отраслях техники возникла острая необходимость в специальных тепловых двигателях (например, для работы в космосе, в подводных условиях), не нуждающихся в атмосферном кислороде, но способных работать от любого высокотемпературного источника тепла.

Эти проблемы повысили интерес специалистов к альтернативному двигателю с внешним подводом тепла предложенному еще в 1816 г. шотландским изобретателем Робертом Стирлингом. Принцип работы двигателя Стирлинга (ДС), краткая историческая справка о его развитии и описание некоторых конструкций таких двигателей были опубликованы (см. статью Г. Б. Либефорта «Двигатель внешнего сгорания»).

По прогнозам ведущих специалистов крупных фирм США, Японии, Швеции, Голландии ДС, возможно, станет доминирующим двигателем в следующем столетии.

Почему же ДС прочат такие блистательные перспективы? Чтобы ответить на этот вопрос, необходимо вспомнить историю тепловых двигателей.

К пределу экономичности

В 1824 г. французский инженер С. Карно четко сформулировал условия, необходимые для наиболее эффективного превращения тепла в работу. Он предложил идеальный цикл, состоящий из двух изотерм и двух адиабат . С тех пор данный цикл является термодинамическим эталоном совершенства тепловых двигателей. Но в цикле Карно при большой разности температур нагревателя и холодильника расширение и сжатие рабочего тела необходимо вести в очень большом интервале давлений, в связи с чем его практическая реализация настолько сложна, что оказывается нецелесообразной.

Еще до выхода в свет работы С. Карно Р. Стирлинг удачно обошел эту трудность, введя в цикл тепловой машины регенерацию тепла. Однако низкий уровень технологии в начале XIX в. не позволил создать достаточно совершенные конструкции двигателей этого типа, и они были надолго забыты.

Расчеты, проведенные в 1938 г. специалистами фирмы «Филипс», показали, что оба цикла - и Стирлинга, и Карно - термодинамически равно ценны. Цикл Стирлинга, состоящий из двух изотерм и двух изохор . может служить таким же термодинамическим эталоном, как цикл Карно. Более того, регенерация тепла в этом цикле позволяет работать в большом интервале темпера тур, а следовательно, с высоким КПД при малых соотношениях давления сжатия и расширения рабочего тела. Эта особенность цикла Стирлинга делает реальной его практическую реализацию в двигателях, имеющих КПД, близкий к максимально возможному при данной разности температур нагревателя и холодильника.

Рассмотрим несколько идеализированный рабочий процесс двигателя Стирлинга вытесни тельного типа на наглядной компоновочной схеме с расположением цилиндров под углом 90° и обычным кривошипно-шатунным механизмом (рис. 3).

Термический КПД идеального цикла Стирлинга, как и цикла Карно, определяется формулой


Однако практически термический КПД этих двигателей заметно ниже.

В реальных двигателях Стирлинга энергия расходуется на трение и теплопроводность, а так же отходит с продуктами горения и т. д. Тем не менее, благодаря принципиальным термодинамическим преимуществам цикла Стирлинга в уже созданных ДС достигнуты наибольшие значения эффективного КПД по сравнению с другими тепловыми двигателями одинаковой мощности (рис. 2).

В двигателе Стирлинга можно использовать любое дешевое топливо: газ, уголь, дрова и даже торф. При этом, в отличие от ДВС, топливо сжигается непрерывно при низком давлении и оптимальном избытке воздуха в камере сгорания, расположенной вне рабочего объема Содержание ядовитых веществ в продуктах сгорания при таких условиях уменьшается до минимума, а количество выделяемой энергии увеличивается. Кроме традиционных топлив, для ДС пригодны другие источники тепла, расплавы солей, радиоизотопы, а так же ядерная и солнечная энергия, тепло недр Земли и т. п.

Внутренний объем двигателя Стирлинга герметичен, поэтому в него не попадает абразивная пыль, масло не соприкасается с продуктами горения и не окисляется (следовательно, почти не расходуется). Благодаря плавности рабочего процесса снижаются вибрация и нагрузки на все трущиеся элементы двигателя.

Эти особенности делают ДС более надежным и долговечным по сравнению с ДВС, позволяют использовать его длительное время без обслуживания. Принцип внешнего подвода тепла обеспечивает быстрый и безотказный запуск при низких температурах.

В дополнение к этому уникальному набору качеств двигатель Стирлинга практически бесшумен, так как он работает без клапанов и не имеет резкого пульсирующего выхлопа.

Перспективность двигателей Стирлинга давно подтверждена практикой. Например, фирма «Филипс» в свое время продемонстрировала 16 тонный автобус с ДС мощностью 100 л. с., фирма «Юнайтед Стирлинг» 7-тонный грузовой фургон, а американцы - легковой автомобиль "Форд-Торонто".

В настоящее время за рубежом примерно 60 фирм работают над дальнейшим совершенствованием двигателей Стирлинга. Уже разработаны двигатели этого типа большой мощности для тепловозов и электростанций, работающих на каменном угле. ДС используются для привода тепловых насосов, передвижных электрогенераторов. Созданы образцы для работы на спутниках Земли. Большое количество работ посвящено интереснейшей проблеме - применению миниатюрных ДС с радиоизотопным источником тепла для привода искусственного сердца.

Использование в качестве рабочего тела водорода под давлением до 200 кГ/см 2 (вместо воздуха, на котором работали первые ДС) позволило снизить удельную массу последних образцов ДС до 2,6-3,4 кГ/кВт, а отдельных конструкций до 1,2 кГ/кВт.

Эффективный КПД ДС нового поколения фирмы "Механикл-Технолоджи" (США) достигает 43,5% (вместо 32÷35% у лучших образцов автомобильных дизелей). Успехи в области технологии получения жаропрочной керамики позволят в дальнейшем повысить максимальную температуру цикла и создать ДС с КПД до 60%.

В рамках программы экономии энергетических ресурсов в Японии осуществляется шестилетний план разработок ДС. Уже в 1987 г. должны быть разработаны многотопливные двигатели с высокой топливной экономичностью и экологическими характеристиками для различных целей. В некоторых типах разрабатываемых двигателей будет использован природный газ. Недавно в пустыне Мохова в США было успешно испытано гелиооборудование с двигателем Стирлинга, преобразующее солнечную энергию в электрическую. Его общий КПД составил 29 %. Солнечная энергия, концентрируемая при помощи параболического зеркала, приводит в действие установку, работающую по идее Стирлинга.

Основные эксплуатационные показатели - ДВС - КПД, моторесурс и надежность работы - при уменьшении мощности снижаются в значительно большей степени, чем у ДС. Это и неудивительно, так как при малом размере цилиндра ДВС трудно обеспечить полное сгорание рабочей смеси, а вот горелка двигателя Стирлинга и при малой мощности обеспечивает практически полное сгорание топлива.

Как видно из рис. 2. эффективный КПД ДС в широком диапазоне мощностей более чем в два раза превышает КПД бензинового ДВС. В то же время при мощности на валу меньше 1 кВт КПД двигателя Стирлинга превосходит КПД бензинового ДВС в 3-4 раза.

Как показали результаты сравнительных испытаний, проводившихся в США, область экономичных скоростных и нагрузочных характеристик ДС примерно в семь раз шире, чем у современных ДВС. Благодаря этому при работе на частичных нагрузках и неустановившихся режимах (например, при движении автомобиля в городских условиях) ДС обеспечивает экономию до 50 % топлива по сравнению с ДВС, имеющим тот же эффективный КПД в режиме максимальной экономичности Подобный эффект, несомненно, будет наблюдаться для лодочных и судовых двигателей.

Велики потенциальные возможности экономии топлива и смазочных материалов при эксплуатации ДС а будущем. Действительно, если учесть более высокий КПД ДС, в два раза более низкую стоимость топлива (газ) и экономичность при работе на частичных нагрузках, то получается, что для этого типа двигателя расходы на топливо в широком диапазоне мощностей сокращаются примерно в 4-5 раз, а при мощности меньше 1 кВт - в 6 8 раз.

Один из разработанных и изготовленных мною двигателей Стирлинга с воздушным охлаждением мощностью 0,1 кВт показан на рис. 1. Он работает почти бесшумно, токсичность выхлопных газов ниже предела чувствительности прибора "Инфпалит-8". топливом служит сжиженный пропан.

ДС мощностью до 1 кВт должны найти широкое применение на миниавтомобилях, картингах, культиваторах, газонокосилках и сенокосилках, мотоблоках, для привода водяных насосов различного назначения и т. п. Небывалая топливная экономичность была практически подтверждена автором при использовании ДС малой мощности на газонокосилке и для других целей. На сегодняшний день ДС - это, по существу, единственный тепловой двигатель, который может без вреда для здоровья людей использоваться в закрытых помещениях складах, теплицах, туннелях и т. п.

Способность ДС в течение длительного времени работать без обслуживания позволяет эффективно использовать его в качестве источника питания на маяках, радиобуях, автоматических метеостанциях и т. п.

Двигатель для судов

В ДС примерно 50% теплоты, участвующей в цикле, отводится через холодильник (у дизеля 20%), причем для достижения высокого термического КПД двигателя тепло должно отводиться при пониженной температуре (как правило, 60 °С). В обычных условиях это требует применения более мощной системы охлаждения с радиатором, имеющим в 2,5-3 раза большую поверхность, чем у дизеля.

Это существенное затруднение полностью отпадает при использовании ДС на водном транспорте, где охлаждающая среда - забортная вода - в неограниченном количестве. Сравнительно низкая ее температура (4-15° для средних широт) увеличивает разницу температур нагревателя и холодильника, следовательно, при этом КПД двигателя выше. Например, низкооборотные судовые дизели нового поколения мощностью порядка 1000-9000 кВт имеют эффективный КПД до 50%.

Значительно повысить экономичность эксплуатации судов позволит использование ДС, в котором будет сжигаться каменный уголь. Решающим доводом за такое решение является то, что стоимость угля в 6-10 раз ниже стоимости дизельного топлива. Одновременно, благодаря особенностям нового двигателя, повысится надежность силовой установки и готовность судна к эксплуатации, уменьшится объем работ по его техническому обслуживанию. Канадские ученые должным образом оценили эти преимущества и ведут исследования по переделке обычных судовых дизелей мощностью до 1700 кВт в двигатели Стирлинга, работающие на угле. Порошкообразный уголь предполагается подавать в камеру сгорания ДС при помощи форсунок и сжигать в распыленном состоянии

В последнее время к двигателю Стирлинга проявляют интерес даже некоторые фирмы, специализирующиеся на производстве судовых дизелей. Например, японская фирма «Мицубиси» недавно провела успешное испытание судового ДС мощностью 66 кВт. В период с 1980 по 1983 гг. в Шанхайском НИИ судовых дизелей был разработан двухцилиндровый ДС мощностью 7,5 кВт.

Большой интерес представляет возможность использования для судовых ДС тепловых аккумуляторов вместо топлива. Запас тепловой энергии в расплавах некоторых солей, например, фтористого лития, составляет примерно 0,5 кВт ч/л (500 кВт ч/м 3) Таким образом, энергоемкость тепловых аккумуляторов соизмерима с калорийностью обычных топлив и вполне достаточна для многих судов, совершающих не слишком длительные рейсы. В Николаевском кораблестроительном институте разработан проект судовой энергетической установки мощностью 100 кВт с тепловым аккумулятором, материалом для которого служит обыкновенный графит.

Зарядку тепловых аккумуляторов для судов можно производить при помощи сжигания угля, используя излишки электроэнергии в ночное время, а также от расположенных в портах высокотемпературных ядерных реакторов.

Двигатель Стирлинга весьма эффективен для установки на небольшие суда. Так фирма «Юнайтед Стирлинг» установила одноцилиндровый ДС мощностью 10 л. с. на серийно выпускаемом катере типа "Альбин" длиной 10 м, обеспечив скорость катера 7 уз. Двигатель был установлен в корме и снабжен реверс-редуктором. Уровень шума, который был измерен на расстоянии 1 м от двигателя, работающего на полной нагрузке без какого-либо глушителя, составлял всего 68 дБ, что на 20 дБ меньше, чем у ДВС.

Аналогичные испытания проведены на катере «Стирлинг Силенса» датской постройки. Катер развил скорость 13 уз, работа двигателя оказалась надежной, вибрации не ощущались. Можно полагать, что при серийном выпуске ДС вытеснят ДВС на малых судах.

Одно из специфических качеств двигателя Стирлинга - способность работать с тепловым аккумулятором без атмосферного воздуха может быть успешно реализовано на подводных аппаратах. Полное отсутствие загрязнения водной среды, возможность многократного и быстрого разогрева материала теплоаккумулятора на судне обеспечения позволяют эффективно использовать такой аппарат при любых видах подводных исследований и работ.

Энергозапас силовой установки с ДС и тепловым аккумулятором (с расплавом фтористого лития) в 8-10 раз больше, чем у обычной системы со свинцовокислотными аккумуляторами и электродвигателем постоянного тока.

Двигатель Стирлинга, в отличие от электро двигателя, даже при самом высоком КПД выделяет в окружающую среду много тепла. Поэтому подводный буксировщик с ДС легко приспособить для одновременного обогрева водолаза.

Согласно полученным автором экспериментальным данным, стандартного пятилитрового баллона с пропаном хватает для непрерывной работы самодельного ДС мощностью 0,1 кВт в течение 40 часов. Такой лодочный мотор удобен и надежен в эксплуатации, исключает загрязнение водоемов.

Итак, есть все технико-экономические предпосылки для того, чтобы двигатели Стирлинга мощностью до 1 кВт нашли применение на подводных буксировщиках и в качестве массового лодочного мотора. Дело в том, что при серийном производстве стоимость таких двигателей упрощенной конструкции, по моим предварительным расчетам, уже в настоящее время не может превышать стоимости обычных подвесных лодочных моторов с ДВС.

Важным новым источником механической энергии для привода автомобиля является двигатель Стирлинга. Он почти неизвестен, существуют только его прототипы , поэтому можно дать лишь беглое описание его принципа действия и конструкции. В первоначальном виде он существовал как тепловая расширительная машина, в цилиндре которой рабочее тело, например, воздух, перед сжатием охлаждался, а перед расширением - нагревался. Схема и принцип действия такого двигателя показаны на рис. 1.

В верхней части цилиндра 1 имеется водяная охлаждающая рубашка 2 , а дно цилиндра постоянно нагревается пламенем. В цилиндре размещен рабочий поршень 3 уплотненный поршневыми кольцами и соединенный шатуном с коленчатым валом (на рисунке коленчатый вал не показан). Между дном цилиндра и рабочим поршнем находится поршень-вытеснитель 4 , который перемещается в цилиндре с большим зазором. Заключенный в цилиндре воздух через этот зазор перекачивается вытеснителем 4 либо к днищу рабочего поршня, либо к нагреваемому дну цилиндра. Вытеснитель приводится в движение штоком 5 , проходящим через уплотнение в поршне, и приводимым эксцентриковым механизмом, который вращается с углом запаздывания около 90° по сравнению с механизмом привода рабочего поршня.

В положении а поршень находится в НМТ (нижняя мертвая точка) и охлаждаемый стенками цилиндра воздух заключен между ним и вытеснителем. В следующей фазе б вытеснитель движется вверх, а поршень остается в НМТ. Воздух между ними выталкивается через зазор между вытеснителем и цилиндром к дну цилиндра и при этом охлаждается стенками цилиндра. Фаза в является рабочей, в течение которой воздух нагревается горячим дном цилиндра, расширяется и выталкивает оба поршня вверх к ВМТ (верхняя мертвая точка).

После совершения рабочего хода вытеснитель возвращается в нижнее положение к дну цилиндра и выталкивает воздух через зазор между стенками цилиндра в камеру под поршнем, воздух при этом охлаждается стенками. В положении г холодный воздух подготовлен к сжатию, и рабочий поршень движется от ВМТ к НМТ. Поскольку работа, затрачиваемая на сжатие холодного воздуха, меньше работы, совершаемой при расширении горячего воздуха, то возникает полезная работа. Аккумулятором энергии, необходимой для сжатия воздуха, служит маховик.

В описанном исполнении двигатель Стирлинга имел низший КПД, так как теплоту, содержащуюся в воздухе после совершения рабочего хода, необходимо было отводить в охлаждающую жидкость через стенки цилиндра. Воздух в течение одного хода поршня не успевал охлаждаться в достаточной степени, и требовалось увеличить время охлаждения, вследствие чего частота вращения двигателя также была небольшой. , который зависит, как говорилось ранее, от разницы максимальной и минимальной температур рабочего цикла, был также небольшим. Теплота отработавшего воздуха отводилась в охлаждающую воду и полностью терялась.

Двигатель Стирлинга был значительно усовершенствован фирмой «Филипс» («Philips» – Нидерланды). Прежде всего, был применен внешний регенератор теплоты, через который осуществлялась перекачка воздуха из верхней части цилиндра в нижнюю под действием вытеснителя. Последовательно к регенератору во внешнем контуре был подключен радиатор. Регенератор аккумулирует теплоту воздуха, поступающего после расширения в холодную камеру. При течении воздуха в обратном направлении аккумулятор вновь отдает ему теплоту. Тем самым возрастает разница максимальной и минимальной температур цикла и теплоту необходимо отводить системой охлаждения. Радиатор, размещенный за регенератором, отводит только часть этой теплоты, остальная сохраняется в аккумуляторе и используется вновь. Вследствие этого не только улучшается КПД двигателя, но и увеличивается его максимальная частота вращения, что влияет на мощность и удельную массу двигателя. Теплота отработавших газов подогревателя используется для повышения температуры свежего воздуха, подаваемого в его камеру сгорания. Описанная конструктивная схема двигателя показана на рис. 2.

2 является рабочим, он передает давление воздуха на кривошипно-шатунный механизм, а вытеснитель 1 предназначен для перемещения воздуха из верхней части цилиндра в нижнюю. В положении а воздух из пространства между двумя поршнями поступает через радиатор 3 и регенератор 4 в трубки подогревателя 6 и затем в верхнюю часть цилиндра. Трубки подогревателя размещены в камере сгорания, куда свежий воздух для сгорания подается по каналам 7 и затем, проходя через теплообменник, поступает в зону распылителя форсунки 5 ; отработавшие газы из подогревателя отводятся через выпускной трубопровод 8 .

В положении а воздух сжат и при движении в верхнюю часть цилиндра нагревается сначала в регенераторе, а затем в подогревателе. В положении б весь воздух вытеснен из пространства между двумя поршнями и выполняет работу, перемещая оба поршня в нижнее положение. В положении в после совершения работы рабочий поршень остается в нижнем положении, а вытеснитель 1 начинает выталкивать воздух из верхней части цилиндра в пространство между поршнями через регенератор, в котором воздух отдает значительную часть своей теплоты, и радиатор, где воздух охлаждается еще глубже. В последней фазе цикла г воздух охлажден и вытеснен из верхней части цилиндра в пространство между поршнями, где происходит его сжатие.

Сжатие холодного воздуха, поступление его через регенератор и радиатор в верхнюю часть цилиндра, последующее расширение и охлаждение воздуха представляют рабочий цикл. В цилиндре сохраняется постоянная масса воздуха, поэтому цилиндр работает без выхлопа. Для подогрева можно использовать любой источник тепла. В рассмотренной схеме применен котел на жидком топливе; содержание вредных веществ зависит от полноты сгорания топлива в камере сгорания котла. Поскольку при этом создается режим непрерывного сгорания при относительно низкой температуре и большом избытке воздуха, можно достичь полного сгорания и небольшого .

Преимущество двигателя Стирлинга заключается также в том, что он может работать не только на разнообразных топливах, но дает возможность применять различные виды источников теплоты. Это означает, что работа двигателя не зависит от наличия атмосферы. Он может одинаково хорошо работать в замкнутом пространстве как на подводных лодках, так и на спутниках. При использовании теплового аккумулятора с LiF теплота подводится к двигателю по теплопроводу, как это показано на рис. 3.

В нижней части рис. 2 показан ромбический механизм привода, который управляет движением обоих поршней. Для привода используются два коленчатых вала, соединенных парой шестерен и вращающихся в противоположных направлениях. Концы штока вытеснителя 1 и пустотелого штока поршня 2 через отдельные шатуны соединены с обоими коленчатыми валами. Если кривошипы обоих коленчатых валов находятся в верхнем положении и движутся из положения а в положение б , то шатуны рабочего поршня 2 находятся вблизи ВМТ и он немного перемещается около ВМТ. Шатуны вытеснителя, перемещающегося в этой фазе цикла, движутся вниз и поршень также движется с наибольшей скоростью из положения а в положение б .

Противоположное направление вращения двух коленчатых валов позволяет разместить на них противовесы, необходимые для уравновешивания сил инерции первого порядка и их моментов от возвратно-поступательно движущихся масс, которые существуют у одноцилиндрового и рядных двигателей.

Ромбический механизм имеет еще и то преимущество, что шатуны симметрично передают усилия от штоков поршней на коленчатые валы, а в подшипниках и уплотнениях поршней не возникают боковые силы. Последнее очень важно, так как для работы двигателя с хорошим КПД необходимо высокое рабочее давление.

У обычных кривошипно-шатунных механизмов при высоком давлении на поршень и больших углах отклонения шатуна возникают большие боковые силы, действующие на поршень и являющиеся причиной больших потерь на трение и большого износа. При применении крейцкопфа или же ромбического механизма это отрицательное явление устраняется и можно достичь хорошего уплотнения поршней.

Чтобы штоки не передавали большие усилия на коренные и шатунные подшипники коленчатых валов, под рабочим поршнем поддерживается противодавление, равное среднему рабочему давлению в цилиндре, оно составляет около 20 МПа.

Значительные трудности возникают при регулировании мощности двигателя Стирлинга. Изменение мощности, происходящее в результате изменения количества подаваемого в подогреватель топлива, незначительно. Более заметного результата можно добиться при изменении давления или количества рабочего тела. Этот способ регулирования мощности используется в автомобильном двигателе Стирлинга. Для уменьшения мощности часть газа из цилиндров перепускается в резервуар низкого давления; для увеличения мощности газ подается в цилиндры из резервуара высокого давления, куда он предварительно перекачивается специальным компрессором из резервуара низкого давления. У двигателей с поршнем двойного действия для снижения мощности газ перепускается из верхней части поршня в нижнюю через специальный канал. Переход от полной мощности к холостому ходу длится 0,2 с; обратный процесс занимает около 0,6 с.

Чтобы потери на трение газа при прохождении его через узкие каналы регенератора и радиатора были небольшими, применяют гелий, а также пытаются использовать водород. Для уменьшения размеров и массы четыре цилиндра с поршнями двойного действия в двигателе второго поколения размещаются как показано на рис. 9. Вместо коленчатого вала применен привод с помощью наклонных шайб. Наличие высокого давления газов по обе стороны поршня обеспечивает передачу на приводную шайбу только небольшой разницы давлений. Поскольку в двигателе Стирлинга вся отводимая теплота передается в охлаждающую жидкость, то радиатор этого двигателя должен быть в 2 раза больше, чем у обычных двигателей внутреннего сгорания.

В качестве примера рассмотрим два автомобильных двигателя Стирлинга. Четырехцилиндровый двигатель первого поколения с ромбическим механизмом, изображенный на рис. 10, имеет диаметр цилиндра 77,5 мм, ход поршня 49,8 мм (рабочий объем 940 см 3), развивает мощность 147 кВт при 3000 мин -1 и среднем давлении в цилиндре порядка 22 МПа. Температура головки цилиндра поддерживается около 700 °C, а охлаждающей жидкости - на уровне 60 °C. Масса сухого двигателя составляет 760 кг. Холодный пуск и прогрев двигателя до достижения температуры головки цилиндра 700 °C длятся около 20 с. При температуре воды 55 °C индикаторный КПД двигателя на испытательном стенде достиг 35 %. Удельная мощность 156 кВт/дм 3 , а удельная масса на единицу мощности 5,2 кг/кВт.

Схематический разрез двигателя Стирлинга второго поколения модели «Филипс 4-215 DA», предназначенного для легкового автомобиля, изображен на рис. 9. Двигатель имеет примерно такие же размеры и массу, как и обычный бензиновый двигатель, и его мощность равна 127 кВт. Четыре цилиндра с поршнями двойного действия расположены вокруг оси приводного вала с наклонной шайбой. Котел подогревателя, общий для всех четырех цилиндров, имеет одну форсунку. На автомобиле «Форд Торино» (США) расход топлива с этим двигателем был на 25 % ниже, чем с бензиновым V-образным 8-цилиндровым двигателем. Содержание NOx в отработавших газах системы подогрева благодаря применению их рециркуляции было намного меньше установленной нормы.

Диаметр цилиндра двигателя «Филипс 4-215 DA» - 73 мм, ход поршня 52 мм. Мощность двигателя 127 кВт при частоте вращения 4000 мин -1 . Температура в подогревателе (температура головок цилиндров) равна 700 °C, а охлаждающей жидкости - 64 °C.

Шведская фирма «Юнайтед Стерлинг» создала свой двигатель Стирлинга таким образом, чтобы можно было в наибольшей степени использовать детали, серийно выпускаемые автомобильной промышленностью. Используются обычный коленчатый вал и шатун, который совместно с крейцкопфом преобразует во вращательное движение вала поступательное движение поршня двойного действия. Разрез этого четырехцилиндрового V-образного двигателя изображен на рис. 11. Ряды цилиндров расположены под небольшим углом, головки цилиндров образуют общую группу, подогреваемую одной горелкой.

Предполагаемая удельная масса этого двигателя равна 2,4 кг/кВт, что можно сравнить с показателями очень хорошего малоразмерного высокооборотного дизеля. Удельная масса двигателей Стирлинга уменьшилась с 6,1–7,3 кг/кВт до 4,3 кг/кВт и постоянно снижается.

Производство двигателя Стирлинга требует технологии, совершенно отличной от технологии производства двигателей внутреннего сгорания, что будет тормозить его внедрение в производство. Однако разработки таких двигателей продолжаются, поскольку традиционные бензиновый и дизельный двигатели не будут отвечать перспективным требованиям необходимой чистоты отработавших газов, а созданные двигатели Стирлинга дают основание надеяться, что эту проблему удастся решить. Так как изменение давления газов в цилиндре двигателя Стирлинга носит плавный характер, то он работает стабильно и тихо, напоминая паровую машину. Однако большое количество отводимой теплоты требует новых решений в области систем охлаждения.

Большой прогресс в двигателях Стирлинга достигнут при создании двигателя «Филипс 4-215 DA». Двигатель предназначен для применения в легковых автомобилях и занимает в них столько же места, сколько и обычный бензиновый V-образный двигатель равной мощности. Масса двигателя «Филипс 4-215 DA» равна 448 кг и при максимальной мощности 127 кВт его удельная масса составляет 3,5 кг/кВт. Индикаторный КПД этого двигав теля при использовании е качестве рабочего тела водорода под давлением 20 МПа равен 35 %.

Холодный пуск двигателя длится 15 с, расход топлива автомобилем в условиях городского движения на 25 % меньше, чем в случае обычного бензинового двигателя. Регулирование мощности двигателя производится изменением количества и давления рабочего тела.

Плотность водорода в 14 раз ниже плотности воздуха, а его теплоемкость также в 14 раз выше теплоемкости воздуха. Это положительно сказывается на гидравлических потерях, особенно в регенераторе, и в целом ведет к росту КПД двигателя (см. рис. 4).

Двигатель Стирлинга – двигатель с внешним подводом тепла. Внешний подвод тепла – это очень удобно, когда есть необходимость использовать в качестве источника тепла не органические виды топлива. Например, можно использовать солнечную энергию, геотермальную энергию, бросовое тепло с различных предприятий.

Приятная особенность цикла Стирлинга – это то, что его КПД равен КПД цикла Карно . Естественно у реальных двигателей Стирлинга эффективность ниже и зачастую намного. Двигатель Стирлинга начал своё существование с устройства, имеющего множество подвижных деталей, таких как поршни, шатуны, коленчатый вал, подшипники . К тому же еще и ротор генератора крутился (Рисунок 1).


Рисунок 1 – Двигатель Стирлинга альфа типа

Посмотрите на двигатель Стирлинга Альфа типа. При вращении вала поршни начинают перегонять газ то из холодного в горячий цилиндр, то наоборот, из горячего в холодный. Но они не просто перегоняют, а ещё и сжимают и расширяют. Совершается термодинамический цикл. Можно мысленно представить на картинке, что когда вал повернётся так, что ось, на которую крепятся шатуны, окажется вверху, то это будет момент наибольшего сжатия газа, а когда внизу, то расширения. Правда это не совсем так из-за тепловых расширений и сжатий газа, но примерно всё же всё это так.

Сердцем двигателя является так называемое ядро, которое состоит из двух теплообменников – горячего и холодного и между ними находится регенератор. Теплообменники обычно делаются пластинчатыми, а регенератор – это чаще всего стопка, набранная из металлической сетки. Зачем нужны теплообменники понятно – нагревать и охлаждать газ, а зачем нужен регенератор? А регенератор – это настоящий тепловой аккумулятор. Когда горячий газ движется в холодную сторону, он нагревает регенератор и регенератор запасает тепловую энергию. Когда газ движется из холодной на горячую сторону, то холодный газ подогревается в регенераторе и таким образом это тепло, которое без регенератора бы безвозвратно ушло на нагрев окружающей среды, спасается. Так что, регенератор – крайне необходимая вещь. Хороший регенератор повышает КПД двигателя примерно в 3,6 раза.

Любителям, которые мечтают построить подобный двигатель самостоятельно, хочу рассказать подробнее про теплообменники. Большинство самодельных двигателей Стирлинга, из тех что я видел, вообще не имеют теплообменников (я про двигатели альфа типа). Теплообменниками являются сами поршни и цилиндры. Один цилиндр нагревается, другой охлаждается. При этом площадь теплообменной поверхности, контактирующей с газом совсем мала. Так что, есть возможность значительно увеличить мощность двигателя, поставив на входе в цилиндры теплообменники. И даже на рисунке 1 пламя направлено прямиком на цилиндр, что в заводских двигателях не совсем так.

Вернёмся к истории развития двигателей Стирлинга. Итак, пускай двигатель во многом хорош, но наличие маслосъёмных колец и подшипников снижало ресурс двигателя и инженеры напряжённо думали, как его улучшить, и придумали.

В 1969 году Вильям Бейл исследовал резонансные эффекты в работе двигателя и позже смог сделать двигатель, для которого не нужны ни шатуны ни коленчатый вал. Синхронизация поршней возникала из-за резонансных эффектов. Этот тип двигателей стал называться свободнопоршневым двигателем (Рисунок 2).


Рисунок 2 – Свободнопоршневой двигатель Стирлинга

На рисунке 2 показан свободнопоршневой двигатель бета типа. Здесь газ переходит из горячей области в холодную, и наоборот, благодаря вытеснителю (который движется свободно), а рабочий поршень совершает полезную работу. Вытеснитель и поршень совершают колебания на спиральных пружинах, которые можно видеть в правой части рисунка. Сложность в том, что их колебания должны быть с одинаковой частотой и с разностью фаз в 90 градусов и всё это благодаря резонансным эффектам. Сделать это довольно трудно.

Таким образом, количество деталей уменьшили, но при этом ужесточились требования к точности расчётов и изготовления. Но надёжность двигателя, несомненно, возросла, особенно в конструкциях, где в качестве вытеснителя и поршня применяются гибкие мембраны. В таком случае в двигателе вообще отсутствуют трущиеся детали. Электроэнергию, при желании, с такого двигателя можно снимать с помощью линейного генератора.

Но и этого инженерам оказалось не достаточно, и они начали искать способы избавиться не просто от трущихся деталей, а вообще от подвижных деталей. И они нашли такой способ.

В семидесятых годах 20-го века Петер Цеперли понял, что синусоидальные колебания давления и скорости газа в двигателе Стирлинга, а также тот факт, что эти колебания находятся в фазе, невероятно сильно напоминают колебания давления и скорости газа в бегущей звуковой волне (рис.3).


Рисунок 3 - График давления и скорости бегущей акустической волны, как функция времени. Показано, что колебания давления и скорости находятся в фазе.

Эта идея пришла Цеперли не случайно, так как до него было множество исследований в области термоакустики, например, ещё сам лорд Рэлей в 1884 качественно описал это явление.

Таким образом, он предложил вообще отказаться от поршней и вытеснителей, и использовать только лишь акустическую волну для контроля над давлением и движением газа. При этом получается двигатель без движущихся частей и теоретически способный достичь КПД цикла Стирлинга, а значит и Карно. В реальности лучшие показатели – 40-50 % от эффективности цикла Карно (Рисунок 4).


Рисунок 4 – Схема термоакустического двигателя с бегущей волной

Можно видеть, что термоакустический двигатель с бегущей волной – это точно такое же ядро, состоящее из теплообменников и регенератора, только вместо поршней и шатунов здесь просто закольцованная труба, которая называется резонатором. Да как же работает этот двигатель, если в нём нет никаких движущихся частей? Как это возможно?

Для начала ответим на вопрос, откуда там берётся звук? И ответ – он возникает сам собой при возникновении достаточной для этого разницы температур между двумя теплообменниками. Градиент температуры в регенераторе позволяет усилить звуковые колебания, но только определённой длины волны, равной длине резонатора. С самого начала процесс выглядит так: при нагреве горячего теплообменника возникают микро шорохи, возможно даже потрескивания от тепловых деформаций, это неизбежно. Эти шорохи – это шум, имеющий широкий спектр частот. Из всего этого богатого спектра звуковых частот, двигатель начинает усиливать то звуковое колебание, длина волны которого, равна длине трубы – резонатора. И неважно насколько мало начальное колебание, оно будет усилено до максимально возможной величины. Максимальная громкость звука внутри двигателя наступает тогда, когда мощность усиления звука с помощью теплообменников равна мощности потерь, то есть мощности затухания звуковых колебаний. И эта максимальная величина порой достигает огромных величин в 160 дБ. Так что внутри подобного двигателя действительно громко. К счастью, звук наружу выйти не может, так как резонатор герметичен и по этому, стоя рядом с работающим двигателем, его еле слышно.

Усиление определённой частоты звука происходит благодаря всё тому же термодинамическому циклу – циклу Стирлинга, который осуществляется в регенераторе.


Рисунок 5 – Стадии цикла грубо и упрощённо.

Как я уже писал, в термоакустическом двигателе вообще нет движущихся частей, он генерирует только акустическую волну внутри себя, но, к сожалению, без движущихся частей снять с двигателя электроэнергию невозможно.

Обычно добывают энергию из термоакустических двигателей с помощью линейных генераторов. Упругая мембрана колеблется под напором звуковой волны высокой интенсивности. Внутри медной катушки с сердечником, вибрируют закрепленные на мембране магниты. Вырабатывается электроэнергия.

В 2014 году Kees de Blok, Pawel Owczarek и Maurice Francois из предприятия Aster Thermoacoustics показали, что для преобразования энергии звуковой волны в электроэнергию, годится двунаправленная импульсная турбина, подключенная к генератору .


Рисунок 6 – Схема импульсной турбины

Импульсная турбина крутится в одну и ту же сторону вне зависимости от направления потока. На рисунке 6 схематично изображены лопатки статора по бокам и лопатки ротора посередине.
А так турбина выглядит у них в реальности:


Рисунок 7 – Внешний вид двунаправленной импульсной турбины

Ожидается, что применение турбины вместо линейного генератора сильно удешевит конструкцию и позволит увеличить мощность устройства вплоть до мощностей типичных ТЭЦ, что невозможно с линейными генераторами.

Что ж, будем продолжать пристально следить за развитием термоакустических двигателей.

Список использованных источников

М.Г. Круглов. Двигатели Стирлинга. Москва «Машиностроение», 1977.
Г. Ридер, Ч. Хупер. Двигатели Стирлинга. Москва «Мир», 1986.
Kees de Blok, Pawel Owczarek. Acoustic to electric power conversion, 2014.



Всего около ста лет назад двигателям внутреннего сгорания пришлось в жестокой конкурентной борьбе завоевывать то место, которое они занимают в современном автомобилестроении. Тогда их превосходство отнюдь не представлялось столь очевидным, как в наши дни. Действительно, паровая машина - главный соперник бензинового мотора - обладала по сравнению с ним огромными достоинствами: бесшумностью, простотой регулирования мощности, прекрасными тяговыми характеристиками и поразительной «всеядностью», позволяющей работать на любом виде топлива от дров до бензина. Но в конечном итоге экономичность, легкость и надежность двигателей внутреннего сгорания взяли верх и заставили примириться с их недостатками, как с неизбежностью.
В 1950-х годах с появлением газовых турбин и роторных двигателей начался штурм монопольного положения, занимаемого двигателями внутреннего сгорания в автомобилестроении, штурм, до сих пор не увенчавшийся успехом. Примерно в те же годы делались попытки вывести на сцену новый двигатель, в котором поразительно сочетается экономичность и надежность бензинового мотора с бесшумностью и "всеядностью" паровой установки. Это - знаменитый двигатель внешнего сгорания, который шотландский священник Роберт Стирлинг запатентовал 27 сентября 1816 года (английский патент № 4081).

Физика процесса

Принцип действия всех без исключения тепловых двигателей основан на том, что при расширении нагретого газа совершается большая механическая работа, чем требуется на сжатие холодного. Чтобы продемонстрировать это, достаточно бутылки и двух кастрюль с горячей и холодной водой. Сначала бутылку опускают в ледяную воду, а когда воздух в ней охладится, горлышко затыкают пробкой и быстро переносят в горячую воду. Через несколько секунд раздается хлопок и нагреваемый в бутылке газ выталкивает пробку, совершая механическую работу. Бутылку можно снова возвратить в ледяную воду - цикл повторится.
в цилиндрах, поршнях и замысловатых рычагах первой машины Стирлинга почти в точности воспроизводился этот процесс, пока изобретатель не сообразил, что часть тепла, отнимаемого у газа при охлаждении, можно использовать для частичного подогрева. Нужна лишь какая-то емкость, в которой можно было бы запасать тепло, отнятое у газа при охлаждении, и снова отдавать ему при нагревании.
Но, увы, даже это очень важное усовершенствование не спасло двигатель Стирлинга. К 1885 году достигнутые здесь результаты были весьма посредственны: 5-7 процентов к.п.д., 2 л. с. мощности, 4 тонны веса и 21 кубометр занимаемого пространства.
Двигатели внешнего сгорания не были спасены даже успехом другой конструкции, разработанной шведским инженером Эриксоном. В отличие от Стирлинга, он предложил нагревать и охлаждать газ не при постоянном объеме, а при постоянном давлении. 8 1887 году несколько тысяч небольших эриксоновских двигателей отлично работало в типографиях, в домах, на шахтах, на судах. Они наполняли водонапорные баки, приводили а действие лифты. Эриксон пытался даже приспособить их для привода экипажей, но они оказались чересчур тяжелыми. В России до революции большое количество таких двигателей выпускалось под названием «Тепло и сила».
Однако попытки увеличить мощность до 250 л. с. окончились полным провалом. Машина с цилиндром диаметром 4,2 метра развивала меньше 100 л. е., огневые камеры прогорели, и судно, на котором были установлены двигатели, погибло.
Инженеры без сожаления распрощались с этими слабосильными мастодонтами как только появились мощные, компактные и легкие бензомоторы и дизели. И вдруг, в 1960-е, спустя почти 80 лет о «стирлингах» и «эриксонах» (будем условно называть их так по аналогии с дизелем) заговорили как о грозных соперниках двигателей внутреннего сгорания. Разговоры эти не утихают и поныне. Чем же объясняется такой крутой поворот во взглядах?

Цена методичности

Когда узнаешь о старой технической идее, возродившейся в современной технике, сразу же возникает вопрос: что же препятствовало ее осуществлению раньше? В чем состояла та проблема, та «зацепка», без решения которой она не могла проложить себе дорогу в жизнь? И почти всегда выясняется, что своим возрождением старая идея обязана либо новому технологическому методу, либо новой конструкции, до которой не додумались предшественники, либо новому материалу. Двигатель внешнего сгорания можно считать редчайшим исключением.
Теоретические расчеты показывают, что к.п.д. «стирлингов» и «эриксонов» могут достигать 70 процентов - больше, чем у любого другого двигателя. А это значит, что неудачи предшественников объяснялись второстепенными, в принципе устранимыми факторами. Правильный выбор параметров и областей применения, скрупулезное исследование работы каждого узла, тщательная обработка и доводка каждой детали позволили реализовать преимущества цикла. Уже первые экспериментальные образцы дали КПД 39 процентов! (к.п.д. бензиновых двигателей и дизелей, которые отрабатывались годами, соответственно 28-30 и 32-35 процентов.) Какие же возможности «просмотрели» в свое время и Стирлинг и Эриксон?
той самой емкости, в которой попеременно то запасается, то отдается тепло. Расчет регенератора в те времена был просто невозможен: науки о теплопередаче не существовало. Его размеры принимались на глазок, а как показывают расчеты, КПД двигателей внешнего сгорания очень сильно зависит от качества регенератора. Правда, его плохую работу можно в определенной степени компенсировать повышением давления.
Вторая причина неуспеха была в том, что первые установки работали на воздухе при атмосферном давлении: их размеры получались огромными, а мощности - малыми.
Доведя к.п.д. регенератора до 98 процентов и заполнив замкнутый контур сжатым до 100 атмосфер водородом или гелием, инженеры наших дней увеличили экономичность и мощность «стирлингов», которые даже в таком виде показали к.п.д. более высокий, чем у двигателей внутреннего сгорания.
Уже одного этого было бы достаточно, чтобы говорить об установке двигателей внешнего сгорания на автомобилях. Но только высокой экономичностью отнюдь еще не исчерпываются достоинства этих возрожденных из забвения машин.

Как работает Стирлинг



Принципиальная схема двигателя внешнего сгорания :
1 - топливная форсунка;
2 - выпускной патрубок;
3 - элементы воздухоподогревателя;
4 - подогреватель воздуха;
5 - горячие газы;
6 - горячее пространство цилиндра;
7 - регенератор;
8 - цилиндр;
9 - ребра охладителя;
10 - холодное пространство;
11 - рабочий поршень;
12 - ромбический привод;
13 - шатун рабочего поршня;
14 - синхронизирующие шестерни;
15 - камера сгорания;
16 - трубки нагревателя;
17 - горячий воздух;
18 - поршень-вытеснитель;
19 - воздухоприемник;
20 - подвод охлаждающей воды;
21 - уплотнение;
22 - буферный объем;
23 - уплотнение;
24 - толкатель поршня-вытеснителя;
25 - толкатель рабочего поршня;
26 - ярмо рабочего поршня;
27 - палец ярма рабочего поршня;
28 - шатун поршня-вытеснителя;
29 - ярмо поршня-вытеснителя;
30 - коленчатые валы.
Красный фон - контур нагрева ;
точечный фон - контур охлаждения

В современной конструкции «стирлинга», работающего на жидком топливе, - три контура, имеющих между собой лишь тепловой контакт. Это контур рабочего тела (обычно водорода или гелия), контур нагрева и контур охлаждения. Главное назначение контура нагрева - поддерживать высокую температуру в верхней части рабочего контура. Контур охлаждения поддерживает низкую температуру в нижней части рабочего контура. Сам контур рабочего тела замкнут.
Контур рабочего тела . В цилиндре 8 движутся два поршня - рабочий 11 и поршень-вытеснитель 18. Движение рабочего поршня вверх приводит к сжатию рабочего тела, движение его вниз вызывается расширением газа и сопровождается совершением полезной работы. Движение поршня-вытеснителя вверх выжимает газ в нижнюю, охлаждаемую полость цилиндра. Движение же его вниз соответствует нагреванию газа. Ромбический привод 12 сообщает поршням перемещение, соответствующее четырем тактам цикла ({на схеме показаны эти такты).
Такт I - охлаждение рабочего тела. Поршень-вытеснитель 18 движется вверх, выжимая рабочее тело через регенератор 7, в котором запасается тепло нагретого газа, в нижнюю, охлаждаемую часть цилиндра. Рабочий поршень 11 находится в НМТ.
Такт II - сжатие рабочего тела. Энергия, запасенная в сжатом газе буферного объема 22, сообщает рабочему поршню 11 движение вверх, сопровождающееся сжатием холодного рабочего тела.
Такт III - нагревание рабочего тела. Поршень-вытеснитель 18, почти примкнув к рабочему поршню 11, вытесняет газ в горячее пространство через регенератор 7, в котором к газу возвращается тепло, запасенное при охлаждении.
Такт IV - расширение рабочего тела - рабочий такт. Нагреваясь в горячем пространстве, газ расширяется и совершает полезную работу. Часть ее запасается в сжатом газе буферного объема 22 для последующего сжатия холодного рабочего тела. Остальное снимается с валов двигателя.
Контур нагрева . Воздух вентилятором нагнетается в воздухоприемник 19, проходит через элементы 3 подогревателя, нагревается и попадает в топливные форсунки. Получившиеся горячие газы нагревают трубки 16 нагревателя рабочего тела, обтекают элементы 3 подогревателя и, отдав свое тепло воздуху, идущему на сжигание топлива, выбрасываются через выпускной патрубок 2 в атмосферу.
Контур охлаждения . Вода через патрубки 20 подается в нижнюю часть цилиндра и, обтекая ребра 9 охладителя, непрерывно охлаждает их.

"Стирлинги" вместо ДВС

Первые же испытания, проведенные пол-века назад, показали, что «стирлинг» почти идеально бесшумен. У него нет карбюратора, форсунок с высоким давлением, системы зажигания, клапанов, свечей. Давление в цилиндре, хотя и повышается почти до 200 атм, но не взрывом, как в двигателе внутреннего сгорания, а плавно. На двигателе не нужны глушители. Ромбовидный кинематический привод поршней полностью уравновешен. Никаких вибраций, никакого дребезжания.
Говорят, что, даже приложив руку к двигателю, не всегда удается определить, работает он или нет. Эти качества автомобильного двигателя особенно важны, ибо в крупных городах остро стоит проблема снижения шума.
А вот другое качество - «всеядность». По сути дела, нет такого источника тепла, который не годился бы для привода «стирлинга». Автомобиль с таким двигателем может работать на дровах, на соломе, на угле, на керосине, на ядерном горючем, даже на солнечных лучах. Он может работать на теплоте, запасенной в расплаве какой-нибудь соли или окисла. Например, расплав 7 литров окиси алюминия заменяет 1 литр бензина. Подобная универсальность не только сможет всегда выручить водителя, попавшего в беду. Она разрешит остро стоящую проблему задымления городов. Подъезжая к городу, водитель включает горелку и расплавляет соль в баке. В черте города топливо не сжигается: двигатель работает на расплаве.
А регулирование? Чтобы сбавить мощность, достаточно выпустить из замкнутого контура двигателя в стальной баллон нужное количество газа. Автоматика сразу же уменьшает подачу топлива так, чтобы температура оставалась постоянной независимо от количества газа. Для повышения мощности газ нагнетается из баллона снова в контур.
Вот только по стоимости и по весу «стирлинги» пока уступают двигателям внутреннего сгорания. На 1 л. с. у них приходится 5 кг, что намного больше, чем у бензинового и дизельного моторов. Но не следует забывать, что это еще первые, не доведенные до высокой степени совершенства модели.
Теоретические расчеты показывают, что при прочих равных условиях "стирлинги" требуют меньших давлений. Это - важное достоинство. И если у них найдутся еще и конструктивные преимущества, то не исключено, что именно они окажутся самым грозным соперником двигателей внутреннего сгорания в автомобилестроении. А вовсе не турбины.

"Стирлинг" от компании GM

Серьезная работа по усовершенствованию двигателя внешнего сгорания, начавшаяся через 150 лет после его изобретения, уже принесла свои плоды. Предложены различные конструктивные варианты двигателя, работающего по циклу Стирлинга. Есть проекты моторов с наклонной шайбой для регулирования хода поршней, запатентован роторный двигатель, в одной из роторных секций которого происходит сжатие, в другой - расширение, а подвод и отвод тепла осуществляется в соединяющих полости каналах. Максимальное давление в цилиндрах отдельных образцов доходит до 220 кГ/см 2 , а среднее эффективное давление - до 22 и 27 кГ/см 2 и более. Экономичность доведена до 150 г/л.с./час.
Наибольшего прогресса достигла компания General Motors, которая в 1970-е годы построила V-образный «стирлинг» с обычным кривошипно-шатунным механизмом. Один цилиндр у него рабочий, другой - компрессионный. В рабочем находится только рабочий поршень, а поршень-вытеснитель - в компрессионном цилиндре. Между цилиндрами расположены подогреватель, регенератор и охладитель. Угол сдвига фаз, иначе говоря угол отставания одного цилиндра от другого, у этого «стирлинга» равен 90°. Скорость одного поршня должна быть максимальной в тот момент, когда скорость другого равна нулю (в верхней и нижней мертвых точках). Смещение фаз в движении поршней достигается расположением цилиндров под углом 90°. Конструктивно это самый простой «стирлинг». Но он уступает двигателю с ромбическим кривошипным механизмом в уравновешенности. Для полного уравновешивания сил инерции в V-образном двигателе число его цилиндров должно быть увеличено с двух до восьми.


Принципиальная схема V-образного «стирлинга» :
1 - рабочий цилиндр;
2 - рабочий поршень;
3 - подогреватель;
4 - регенератор;
5 - теплоизолирующая муфта;
6 - охладитель;
7 - компрессионный цилиндр.

Рабочий цикл в таком двигателе протекает следующим образом.
В рабочем цилиндре 1 газ (водород или гелий) нагрет, в другом, компрессионном 7 - охлажден. При движении поршня в цилиндре 7 вверх газ сжимается - такт сжатия. В это время начинает двигаться вниз поршень 2 в цилиндре 1. Газ из холодного цилиндра 7 перетекает в горячий 1, проходя последовательно через охладитель 6, регенератор 4 и подогреватель 3 - такт нагревания. Горячий газ расширяется в цилиндре 1, совершая работу, - такт расширения. При движении поршня 2 в цилиндре 1 вверх газ перекачивается через регенератор 4 и охладитель 6 в цилиндр 7 - такт охлаждения.
Такая схема «стирлинга» наиболее удобна для реверсирования. В объединенном корпусе подогревателя, регенератора и охладителя (об их устройстве речь пойдет позже) для этого сделаны заслонки. Если перевести их из одного крайнего положения в другое, то холодный цилиндр станет горячим, а горячий - холодным, и двигатель будет вращаться в обратную сторону.
Подогреватель представляет собой набор трубок из жаростойкой нержавеющей стали, по которым проходит рабочий газ. Трубки нагреваются пламенем горелки, приспособленной для сжигания различных жидких топлив. Тепло от нагретого газа запасается в регенераторе. Этот узел имеет большое значение для получения высокого КПД. Он выполнит свое назначение, если будет передавать примерно в три раза больше тепла, чем в подогревателе, и процесс займет меньше 0,001 секунды. Словом, это быстродействующий аккумулятор тепла, причем скорость теплопередачи между регенератором и газом составляет 30 000 градусов в секунду. Регенератор, КПД которого равен 0,98 единицы, состоит из цилиндрического корпуса, в котором последовательно расположены несколько шайб, изготовленных из проволочной путанки (диаметр проволоки 0,2 мм). Чтобы тепло от него не передавалось холодильнику, между этими агрегатами установлена теплоизолирующая муфта. И наконец, охладитель. Он выполнен в виде водяной рубашки на трубопроводе.
Мощность «стирлинга» регулируется изменением давления рабочего газа. Для этой цели двигатель оборудуется газовым баллоном и специальным компрессором.

Достоинства и недостатки

Чтобы оценить перспективы применения «стирлинга» на автомобилях, проанализируем его достоинства и недостатки. Начнем с одного из важнейших для теплового двигателя параметров, так называемого теоретического КПД Для «стирлинга» он определяется следующей формулой:

η = 1 - Тх/Тг

Где η - КПД, Тх - температура «холодного» объема и Тг - температура «горячего» объема. Количественно этот параметр у «стирлинга» - 0,50. Это значительно больше, чем у самых лучших газовых турбин, бензиновых и дизельных двигателей, у которых теоретический КПД соответственно равен 0,28; 0,30; 0,40.
Как двигатель внешнего сгорания. стирлинг» может работать на различных топливах: бензине, керосине, дизельном, газообразном и даже на твердом. Такие характеристики топлива, как цетановое и октановое числа, зольность, температура выкипания при горении вне цилиндра двигателя, для «стирлинга» не имеют значения. Чтобы он работал на разных топливах, не требуется больших переделок - достаточно лишь заменить горелку.
Двигатель внешнего сгорания, в котором горение протекает стабильно с постоянным коэффициентом избытка воздуха, равным 1.3. выделяет значительно меньше, чем двигатель внутреннего сгорания, окиси углерода, углеводородов и окислов азота.
Малая шумность «стирлинга» объясняется низкой степенью сжатия (от 1,3 до 1,5). Давление в цилиндре повышается плавно, а не взрывом, как в бензиновом или дизельном двигателе. Отсутствие колебаний столба газов в выпускном тракте определяет бесшумность выхлопа, что подтверждено испытаниями двигателя, разработанного фирмой «Филлипс» совместно с фирмой Ford для автобуса.
«Стирлинг» отличается малым расходом масла и высокой износостойкостью благодаря отсутствию в цилиндре активных веществ и относительно низкой температуре рабочего газа, а надежность его выше, чем у известных нам двигателей внутреннего сгорания, так как в нем нет и сложного газораспределительного механизма.
Важное преимущество «стирлинга» как автомобильного двигателя - повышенная приспособляемость к изменениям нагрузки. Она, например, на 50 процентов выше, чем у карбюраторного мотора, за счет чего можно уменьшить число ступеней в коробке передач. Однако совсем отказаться от сцепления и коробки передач, как в паровом автомобиле, нельзя.
Но почему же двигатель с такими очевидными достоинствами до сих пор не нашел практического применения? Причина проста - у него немало еще неустраненных недостатков. Главнейшие среди них - большая сложность в управлении и регулировке. Существуют и другие «рифы», которые не так просто обойти и конструкторам и производственникам.- в частности, поршням нужны очень эффективные уплотнения, которые должны выдерживать высокое давление (до 200 кГ/см2) и препятствовать попаданию масла в рабочую полость. Во всяком случае, 25-летняя работа фирмы «Филлипс» по доводке своего двигателя пока не смогла сделать его пригодным для массового применения на автомобилях. Немаловажное значение имеет характерная особенность «стирлинга» - необходимость отводить с охлаждающей водой большое количество тепла. В двигателях внутреннего сгорания значительная часть тепла выбрасывается в атмосферу вместе с отработавшими газами. В «стерлинге» же в выхлоп уходит только 9 процентов тепла, получаемого при сгорании топлива. Если в бензиновом двигателе внутреннего сгорания с охлаждающей водой отводится от 20 до 25 процентов тепла, то в «стирлинге» - до 50 процентов. Это значит, что автомобиль с таким двигателем должен иметь радиатор примерно в 2-2.5 раза больше, чем у аналогичного бензинового мотора. Недостатком «стирлинга» является и его высокий удельный вес по сравнению с распространенным ДВС. Еще довольно существенный минус - трудность повышения быстроходности: уже при 3600 об/мин значительно возрастают гидравлические потери и ухудшается теплообмен. И наконец. «стирлинг» уступает обычному двигателю внутреннего сгорания в приемистости.
Работы по созданию и доводке автомобильных «стирлингов», в том числе для легковых машин, продолжаются. Можно считать, что в настоящее время принципиальные вопросы решены. Однако еще много дел по доводке. Применением легких сплавов можно понизить удельный вес двигателя, но он все равно будет выше. чем у мотора внутреннего сгорания, из-за более высокого давления рабочего газа. Вероятно, двигатель внешнего сгорания найдет применение в первую очередь на грузовых автомобилях, особенно военных - благодаря своей нетребовательности к топливу.

Двигатель Стирлинга, принцип работы которого качественно отличается от привычного для всех ДВС, когда-то составлял последнему достойную конкуренцию. Однако на какое-то время о нем забыли. Как этот мотор используется сегодня, в чем заключается принцип его действия (в статье можно найти также чертежи двигателя Стирлинга, наглядно демонстрирующие его работу), и каковы перспективы применения в будущем, читайте ниже.

История

В 1816 году в Шотландии Робертом Стирлингом была запатентована названная сегодня в честь своего изобретателя. Первые двигатели горячего воздуха были изобретены еще до него. Но Стирлинг добавил в устройство очиститель, который в технической литературе называется регенератором, или теплообменником. Благодаря ему производительность мотора возрастала при удерживании агрегата в тепле.

Двигатель признали наиболее прочной паровой машиной из имеющихся на тот момент, так как он никогда не взрывался. До него на других моторах такая проблема возникала часто. Несмотря на быстрый успех, в начале двадцатого столетия от его развития отказались, так как он стал менее экономичным, по сравнению с появившимися тогда другими двигателями внутреннего сгорания и электродвигателями. Однако Стирлинг еще продолжал применяться в некоторых производствах.

Двигатель внешнего сгорания

Принцип работы всех тепловых моторов заключается в том, что для получения газа в расширенном состоянии необходимы большие механические усилия, чем при сжатии холодного. Для наглядной демонстрации этого можно провести опыт с двумя кастрюлями, наполненными холодной и горячей водой, а также бутылкой. Последнюю опускают в холодную воду, затыкают пробкой, затем переносят в горячую. При этом газ в бутылке начнет выполнять механическую работу и вытолкнет пробку. Первый двигатель внешнего сгорания основывался на этом процессе полностью. Правда, позже изобретатель понял, что часть тепла можно применять для подогрева. Таким образом, производительность значительно возросла. Но даже это не помогло двигателю стать распространенным.

Позже Эриксон, инженер из Швеции, усовершенствовал конструкцию, предложив охлаждать и нагревать газ при постоянном давлении вместо объема. В результате немало экземпляров стало использоваться для работы в шахтах, на судах и в типографиях. Но для экипажей они оказались слишком тяжелыми.

Двигатели внешнего сгорания от Philips

Подобные моторы бывают следующих типов:

  • паровой;
  • паротурбинный;
  • Стирлинга.

Последний вид не стали развивать из-за небольшой надежности и остальных не самых высоких показателей по сравнению с появившимися другими типами агрегатов. Однако в 1938 году компания Philips возобновила работу. Двигатели стали служить для приводов генераторов в неэлектрофицированных районах. В 1945 году инженеры компании нашли им обратное применение: если вал раскручивать электромотором, то охлаждение головки цилиндров доходит до минус ста девяносто градусов по Цельсию. Тогда решено было применять в холодильных установках усовершенствованный двигатель Стирлинга.

Принцип работы

Действие мотора заключается в работе по термодинамическим циклам, в которых при разной температуре происходит сжатие и расширение. При этом регулирование потоком рабочего тела реализуется за счет изменяющегося объема (или давления - в зависимости от модели). Таков принцип работы большинства подобных машин, которые могут иметь разные функции и конструктивные схемы. Двигатели могут быть поршневыми или роторными. Машины с их установками работают в качестве тепловых насосов, холодильников, генераторов давления и так далее.

Помимо этого, есть моторы с открытым циклом, где регулирование потоком реализуется посредством клапанов. Именно их называют двигателями Эриксона, кроме общего названия имени Стирлинга. В ДВС полезная работа осуществляется после предварительного сжатия воздуха, впрыска топлива, нагрева полученной смеси вперемешку со сгоранием и расширения.

Двигатель Стирлинга принцип работы имеет такой же: при низкой температуре происходит сжатие, а при высокой - расширение. Но по-разному осуществляется нагрев: тепло подводится через стенку цилиндра извне. Поэтому он и получил название двигателя внешнего сгорания. Стирлинг применял периодическое изменение температуры с вытеснительным поршнем. Последний перемещает газ с одной полости цилиндра в другую. С одной стороны, температура постоянно низкая, а с другой - высокая. При передвижении поршня вверх газ перемещается из горячей в холодную полость, а вниз - возвращается в горячую. Сначала газ отдает много тепла холодильнику, а затем от нагревателя получает столько же, сколько отдал. Между нагревателем и холодильником размещается регенератор - полость, наполненная материалом, которому газ отдает тепло. При обратном течении регенератор возвращает его.

Система вытеснителя соединена с рабочим поршнем, сжимающим газ в холоде и позволяющим расширяться в тепле. За счет сжатия в более низкой температуре происходит полезная работа. Вся система проходит четыре цикла при прерывистых движениях. Кривошипно-шатунный механизм при этом обеспечивает непрерывность. Поэтому резких границ между стадиями цикла не наблюдается, а Стирлинга не уменьшается.

Учитывая все вышесказанное, напрашивается вывод, что этот двигатель является поршневой машиной с внешним подводом тепла, где рабочее тело не покидает замкнутое пространство и не заменяется. Чертежи двигателя Стирлинга хорошо иллюстрируют устройство и принцип его действия.

Детали работы

Солнце, электричество, ядерная энергия или любой другой источник тепла может подводить энергию в двигатель Стирлинга. Принцип работы его тела заключается в применении гелия, водорода или воздуха. Идеальный цикл обладает термическим максимально возможным КПД, равным от тридцати до сорока процентов. Но с эффективным регенератором он сможет работать и с более высоким КПД. Регенерацию, нагрев и охлаждение обеспечивают встроенные теплообменники, работающие без масел. Следует отметить, что смазки двигателю нужно очень мало. Среднее давление в цилиндре составляет обычно от 10 до 20 МПа. Поэтому здесь требуется отличная уплотнительная система и возможность попадания масла в рабочие полости.

Сравнительная характеристика

В большинстве работающих сегодня двигателей подобного рода используется жидкое топливо. При этом непрерывное давление легко контролировать, что способствует снижению уровня выбросов. Отсутствие клапанов обеспечивает бесшумную работу. Мощность с массой сопоставимы моторам с турбонаддувом, а удельная мощность, получаемая на выходе, равна показателю дизельного агрегата. Скорость и крутящий момент не зависят друг от друга.

Затраты на производство двигателя гораздо выше, чем на ДВС. Но при эксплуатации получается обратный показатель.

Преимущества

Любая модель двигателя Стирлинга имеет много плюсов:

  • КПД при современном проектировании может доходить до семидесяти процентов.
  • В двигателе нет системы высоковольтного зажигания, распределительного вала и клапанов. Его не нужно будет регулировать в течение всего срока эксплуатации.
  • В Стирлингах нет того взрыва, как в ДВС, который сильно нагружает коленвал, подшипники и шатуны.
  • В них не бывает того эффекта, когда говорят, что «двигатель заглох».
  • Благодаря простоте прибора его можно эксплуатировать в течение длительного времени.
  • Он может работать как на дровах, так и с ядерным и любым другим видом топлива.
  • Сгорание происходит вне мотора.

Недостатки

Применение

В настоящее время двигатель Стирлинга с генератором используют во многих областях. Это универсальный источник электрической энергии в холодильниках, насосах, на подводных лодках и солнечных электрических станциях. Именно благодаря применению различного вида топлива имеется возможность его широкого использования.

Возрождение

Эти двигатели снова стали развиваться благодаря компании Philips. В середине двадцатого века с ней заключила договор General Motors. Она вела разработки для применения Стирлингов в космических и подводных устройствах, на судах и автомобилях. Вслед за ними другая компания из Швеции, United Stirling, стала заниматься их развитием, включая и возможное использование на

Сегодня линейный двигатель Стирлинга применяется на установках подводных, космических и солнечных аппаратов. Большой интерес к нему вызван из-за актуальности вопросов ухудшения экологической обстановки, а также борьбы с шумом. В Канаде и США, Германии и Франции, а также Японии идут активные поиски по развитию и совершенствованию его использования.

Будущее

Явные преимущества, которые имеет поршневой и Стирлинга, заключающиеся в большом ресурсе работы, применении разного топлива, бесшумности и малой токсичности, делают его очень перспективным на фоне мотора внутреннего сгорания. Однако с учетом того, что ДВС на протяжении всего времени совершенствовали, он не может быть легко смещен. Так или иначе, именно такой двигатель сегодня занимает лидирующие позиции, и сдавать их в ближайшее время не намерен.



Поделиться