Кривошипно шатунный механизм простыми словами. Кривошипно-шатунный механизм

Сколько стоит написать твою работу?

Выберите тип работы Дипломная работа (бакалавр/специалист) Часть дипломной работы Магистерский диплом Курсовая с практикой Курсовая теория Реферат Эссе Контрольная работа Задачи Аттестационная работа (ВАР/ВКР) Бизнес-план Вопросы к экзамену Диплом МВА Дипломная работа (колледж/техникум) Другое Кейсы Лабораторная работа, РГР Он-лайн помощь Отчет о практике Поиск информации Презентация в PowerPoint Реферат для аспирантуры Сопроводительные материалы к диплому Статья Тест Чертежи далее »

Спасибо, вам отправлено письмо. Проверьте почту .

Хотите промокод на скидку 15% ?

Получить смс
с промокодом

Успешно!

?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа ".

Кривошипно-шатунный механизм

КОНТРОЛЬНАЯ РАБОТА

На тему: "Кривошипно-шатунный механизм "


Выполнил:



КРИВОШИПНО-ШАТУННЫЙ МЕХАНИЗМ

БЛОК ЦИЛИНДРОВ

ГОЛОВКА БЛОКА

ПОРШНЕВАЯ ГРУППА

ШАТУНЫ

КОЛЕНЧАТЫЙ ВАЛ И МАХОВИК

КАРТЕР ДВИГАТЕЛЯ

КРЕПЛЕНИЕ ДВИГАТЕЛЯ НА РАМЕ


КРИВОШИПНО-ШАТУННЫЙ МЕХАНИЗМ


Кривошипно-шатунный механизм преобразует прямолинейное возвратно-поступательное движение поршней, воспринимающих силу давления газов, во вращательное движение коленчатого вала. Детали кривошипно-шатунного механизма можно разделить на две группы: подвижные и неподвижные,

К первым относятся поршень с кольцами и поршневым пальцем, шатун, коленчатый вал и маховик, ко вторым - блок цилиндров, головка блока, прокладка головки блока и поддон (картер), В обе группы входят также и крепежные детали.


БЛОК ЦИЛИНДРОВ


Блок цилиндров или блок-картер является остовом двигателя. На нем и внутри него располагаются основные механизмы и детали систем двигателя. Блок 1 цилиндров (рис.1) может быть отлит из серого чугуна (двигатели автомобилей ЗИЛ-130, МАЗ-5335, КамАЗ-5320) или из алюминиевого сплава (двигатели автомобилей ГАЗ-24 "Волга", ГАЗ-53А и др.). Горизонтальная перегородка делит блок цилиндров на верхнюю и нижнюю части, В верхній плоскости блока и в горизонтальной перегородке расточены отверстия для установки гильз цилиндров. В цилиндре, являющемся направляющей при движении поршня, совершается рабочий цикл двигателя. Гильзы могут быть мокрыми или сухими. Гильзу цилиндра называют мокрой, если она омывается жидкостью системы охлаждения, и сухой, если непосредственно не соприкасается с охлаждающей жидкостью.


Рис.1. Блок цилиндров и головка блока V-образного двигателя:

1 - блок цилиндров; 2 - прокладка головки блока; 3 - камера сгорания; 4 - головка блока; 5 - гильза цилиндра; 6 - уплотнительное кольцо; 7 - шпильки


Цилиндры могут быть отлиты из серого чугуна вместе со стенками водяной рубашки 2 (рис.2, а) в виде одного блока 1 или в виде отдельных гильз 4, 5 и 6 (рис.2, б, в и г), устанавливаемых в блок. Двигатели, имеющие цилиндры, изготовленные в виде сменных мокрых гильз, проще ремонтировать и эксплуатировать (двигатели автомобилей ГАЗ-24 "Волга", ГАЗ-53А, ЗИЛ-130, МАЗ-5335, КамАЗ-5320 и др.).

Внутренняя поверхность цилиндра, внутри которой перемещается поршень, называется зеркалом цилиндра. Ее тщательно обрабатывают для уменьшения трения при движении в цилиндре поршня с кольцами я часто закаливают для повышения износостойкости и долговечности. Гильзы в блок цилиндров устанавливают так, чтобы охлаждающая жидкость не проникала в них и в поддон, а газы не прорывались из цилиндра. Необходимо предусмотреть и возможность изменения длины гильз в зависимости от температуры двигателя. В целях фиксации вертикального расположения гильз они имеют специальный бурт для упора в блок цилиндров и установочные пояса.


Рис.2. Схемы цилиндров двигателей:

а - без гильз, но с короткой вставкой (автомобилей ЗИЛ-157К, ГАЗ-52-04); б и б"с "мокрой" гильзой (дизели ЯМЗ-236 и автомобиля КамАЗ-5320); г - с "мокрой" гильзой, в которую запрессована коротка я вставка (на автомобилях ГАЗ-24 "Волга", ГАЗ-53А, ЗИЛ-130 и др.); 1 - блок цилиндров 2 - водяная рубашка; 3 - вставка; 4, 5 и 6 - гильзы цилиндров; 7 - уплотнительные кольца (резиновые или медные, устанавливаемые под бурт)


Мокрые гильзы в нижней части уплотняют резиновыми кольцами, размещаемыми в канавках блока цилиндров (двигатели автомобиля КамАЗ-5320), в канавках гильз (двигатели автомобилей МАЗ-5335, ЗИЛ-130 и др.), или медными кольцевыми прокладками, устанавливаемыми между блоком и опорной поверхностью нижнего пояса гильзы (двигатели автомобилей ГАЗ-24 "Волга", ГАЗ-53А и др.) - Верхний торец гильзы выступает над плоскостью блока цилиндров на 0,02-0,16 мм, что способствует лучшему обжатию прокладки головки блока и надежному уплотнению гильзы, блока и головки блока.

Во время работы двигателя в верхней части цилиндров сгорает рабочая смесь. Горение сопровождается выделением продуктов окисления, которые вызывают коррозию цилиндров. Для повышения износостойкости цилиндров в некоторых двигателях применяют вставки 3 из антикоррозионного чугуна. Их запрессовывают в блок цилиндров (двигатели автомобилей ЗИЛ-130К, ГАЗ-52-04) или в гильзы цилиндров (двигатели автомобилей ГАЗ-24 "Волга", ГАЗ-53А, ЗИЛ-130 и др.). Это усложняет технологию изготовления двигателя. В перспективе конструкторы предполагают использовать специальные металлы, что позволит отказаться от применения вставок в цилиндрах.

Поперечные вертикальные перегородки внутри блока цилиндров совместно с передней и задней стенками обеспечивают его необходимую прочность и жесткость. В этих перегородках, а также в передней и задней стенках блока расточены гнезда под верхние половины коренных подшипников коленчатого вала. Нижние половины коренных подшипников помещены в крышках, прикрепленных к блоку на шпильках или болтами.

В V-образных двигателях один из рядов блока цилиндров несколько смещен относительно другого, что вызвано расположением на шатунной шейке коленчатого вала двух шатунов: одного для правого, а другого - для левого блоков. Так, в V-образных двигателях автомобилей ГАЗ-53А левый блок цилиндров смещен вперед (по ходу автомобиля) на 24 мм, а автомобилей ЗИЛ-130 - на 29 мм относительно правого блока. Нумерация цилиндров указана вначале для правого блока цилиндров (по ходу автомобиля), а затем для левого; ближайший к вентилятору цилиндр имеет номер один и т.д.


ГОЛОВКА БЛОКА


Головка является крышкой, закрывающей цилиндры; V-образные двигатели имеют отдельные головки блока для каждого ряда цилиндров (двигатели автомобилей ГАЗ-53А и ЗИЛ-130); V-образный дизель автомобиля КамАЗ-5320 имеет отдельную головку на каждый цилиндр. Для карбюраторных двигателей и дизеля автомобиля КамАЗ-5320 головки блока отливают из алюминиевого сплава, а для дизеля ЯМЗ-236 - из легированного чугуна. Верхнюю плоскость блока цилиндров и нижнюю плоскость головки блока тщательно обрабатывают для получения плотного соединения. Между этими плоскостями устанавливают сталеасбестовую уплотняющую прокладку, предотвращающую прорыв газов наружу и исключающую проникновение охлаждающей жидкости в цилиндры. Перед установкой прокладки на двигатель обе ее стороны натирают графитом, предохраняющим ее от пригорания к блоку или головке. Гайки и болты крепления головки блока к блоку цилиндров затягивают равномерно в определенной последовательности.



Рис.3. Формы камер сгорания:

а - карбюраторных двигателей; б - дизелей; / - цилиндрическая; // - полусферическая; // / - клиновая; IV - смещенная (Г-образная); V и VI-неразделенные; VII и VIIІ - разделенные; 1 - клапан; 2 - свеча зажигания; 3 - насос-форсунка; 4 - камера сгорания; 5 - форсунка; 6 - предкамера; 7 - основная камера; 8 - вихревая камера


Головка блока цилиндров двигателей с нижним расположением клапанов проще по устройству, так как в ней размещены только камеры сгорания, водяные рубашки, отверстия для ввертывания свечей зажигания и крепления головки к блоку цилиндров. Каналы для подвода горючей смеси и выпуска отработавших газов находятся в блоке цилиндров.

Головки блока цилиндров двигателей с верхним расположением клапанов имеют более сложную конструкцию. В них размещены вставные седла, свечи зажигания или форсунки, направляющие втулки, клапаны, коромысла, оси и другие детали. Кроме того, в головках блока имеются водяные рубашки, отверстия для прохода штанг, масла и каналы, по которым к цилиндрам поступает горючая смесь или воздух и отводятся отработавшие газы.

Форма камеры сгорания оказывает значительное влияние на смесеобразование, сгорание рабочей смеси и на степень сжатия двигателя. Камеры сгорания с верхним расположением клапанов более компактны и обеспечивают лучшее наполнение цилиндров горючей смесью при том же диаметре впускного клапана, чем камеры сгорания с нижним расположением клапанов. Полусферические и клиновые камеры (соответственно схемы // и // /, рис.3) получили распространение у карбюраторных двигателей. При нижнем расположении клапанов чаще применяют Г-образные (смещенные) камеры сгорания (схема IV).

Для улучшения смесеобразования в дизелях применяют различные по форме и объему камеры сгорания. Дизели выпускают с неразделенными (схемы V и VI) и с разделенными (схемы VII и VIII) камерами сгорания. Первые двигатели иначе называют дизелями с непосредственным впрыском топлива. Неразделенная камера сгорания 4 представляет собой пространство, заключенное между днищем поршня, когда он находится в в. м. т., и нижней плоскостью головки блока (один объем). Разделенные камеры сгорания (два объема) состоят из основной камеры 7 и вспомогательной (предкамеры 6 или вихревой 8), соединенных между собой каналом.


ПОРШНЕВАЯ ГРУППА


Поршень. Давление газов во время рабочего хода воспринимает поршень и передает его через палец и шатун коленчатому валу. В цилиндре поршень, движется неравномерно; в крайних положениях (в в. м. т. и в н. м. т) его скорость равна нулю, а около середины хода она достигает максимального значения. В результате этого возникают большие силы инерции, на величину которых влияет масса поршня и угловая скорость коленчатого вала. Кроме механических нагрузок, поршень подвергается действию высоких температур в период сгорания топлива и расширения образовавшихся газов. Он нагревается также вследствие трения его боковой поверхности о стенки цилиндра.

На автомобильных двигателях чаще устанавливают поршни, изготовленные из алюминиевого сплава, так как они достаточно прочные, легкие, имеют высокую теплопроводность и хорошие антифрикционные свойства. Для повышения прочности, надежности и сохранения постоянства размеров и формы поршни из алюминиевого сплава подвергают термической обработке - старению.

Поршень состоит из трех основных частей (рис.4, а): днища 6, головки 7 и юбки 8. На внешней поверхности головки поршня и юбке проточены канавки для установки компрессионных колец 4 и маслосъемных колец 3. Верхнюю часть поршня называют уплотнительным поясом, так как размещенные здесь поршневые кольца предотвращают прорыв газов через зазоры между поршнем и цилиндром. Число колец, устанавливаемых на поршне, зависит от типа двигателя и частоты вращения коленчатого вала. По окружности канавок, в которых размещены маслосъемные кольца, просверлены сквозные отверстия для отвода масла в картер двигателя. Юбка 8 является направляющей поршня при движении его в цилиндре и передает боковую силу от шатуна стенкам цилиндра. На внутренней стороне юбки имеется два массивных прилива, называемых бобышками. Они соединяются ребрами с днищем, увеличивая прочность поршня. В бобышках сделаны отверстия для установки пальца 2 и проточены кольцевые канавки для стопорных колец 1. В карбюраторных двигателях применяют поршни с плоским днищем, получившие широкое распространение из-за простоты изготовления и меньшего нагрева при работе (рис.4, б и в).

Для увеличения прочности и улучшения отвода тепла днище поршня дизеля изготовляют массивным и усиливают ребрами с внутренней стороны. Обычно поршни дизелей имеют фигурные днища 6. Это улучшает процесс смесеобразования и позволяет придать камере сгорания 5 необходимую форму (рис.4, а).

При нагреве поршень расширяется больше, чем цилиндр, охлаждаемый жидкостью, поэтому возникает опасность заклинивания поршня. Чтобы избежать этого и обеспечить нормальную работу двигателя, диаметр поршня должен быть меньше диаметра цилиндра, т.е. между поршнем и цилиндром необходим диаметральный зазор. Применяют поршни, у которых диаметр юбки больше диаметра головки т.е. поршень имеет форму усеченного конуса. Юбку делают разрезной, что повышает упругость (устраняет опасность заклинивания), придают ей овальную форму (большая ось овала должна быть перпендикулярна оси поршневого пальца) и т.д.

Поршни (рис.4, б и в) имеют разрезную юбку овального сечения (двигатели автомобилей ГАЗ-24 "Волга", ГАЗ-53А и др.). Во время работы двигателя поршень нагревается и юбка несколько деформируется в направлении оси поршневого пальца. Форма юбки приближается к цилиндрической, и зазор между поршнем и цилиндром становится минимальным. Вырезы на юбке уменьшают массу поршня. Поршни двигателя автомобиля ЗИЛ-130 имеют поперечные прорези под головкой; на юбке поршня выполнен Т-образный разрез. Иногда применяют поршни с усиленной юбкой - без вертикального разреза.

Если на юбках поршней имеются разрезы, то их устанавливают в двигателе так, чтобы боковое давление при рабочем ходе испытывала та часть поршня, где нет разреза. При переходе поршня через в. м. т. он перемещается от одной стенки цилиндра к другой, что сопровождается стуками.



Рис.4. Шатунно-поршневая группа:

а - дизелей ЯМЗ; б и в - двигателей автомобилей ГАЗ-53А, где даны поршни в сборе с шатуном, устанавливаемые соответственно в первый, второй, третий и четвертый цилиндры левого блока и в пятый, шестой, седьмой к восьмой цилиндры правого блока; 1 - стопорное кольцо; 2 - поршневой палец; 3 - маслосъемные кольца; 4 - компрессионные кольца; 5 - камера сгорания в днище поршня; 6 - днище поршня; 7 - головка поршня; 8 - юбка; 9 - поршень; 10 - распылитель масла (форсунка); 11 - шатун; 12 - вкладыши; 13 - замковая шайба; 14 - длинный болт; 15 - короткий болт; 16 - крышка шатуна; 17 - втулка в головке шатуна; 18 - надпись на поршне; 19 - номер на шатуне; 20 - метка на крышке шатуна; 21 - шатунный болт.


Чтобы устранить эти стуки, ось отверстия под палец смещают в сторону (на 1,5 - 2,0 мм) максимального бокового давления. Для улучшения приработки поршней к цилиндрам и устранения возможных задиров поршни покрывают тонким слоем олова. Юбки поршней дизелей ЯМЗ и автомобилей КамАЗ-5320 не имеют разреза, но они также выполнены в виде конуса овального сечения. Диаметр поршней дизелей ЯМЗ-236 и ЯМЗ-238 равен 130 мм, дизеля автомобиля КамАЗ-5320 равен 120 мм и двигателя автомобиля ЗИЛ-130 равен 100 мм. Для правильной установки в цилиндры и точного соединения с шатунами на поршнях и шатунах есть соответствующие метки (рис.4, бив).

Поршневые кольца. Надеваемые на поршень поршневые кольца создают плотное, подвижное соединение между поршнем и цилиндром. Кольца бывают компрессионные и маслосъемные; первые обеспечивают необходимую компрессию (сжатие) благодаря уменьшению количества газов, прорывающихся из камеры сгорания в картер, и отводят тепло от головки поршня к стенкам цилиндра; вторые - препятствуют проникновению масла из картера в камеру сгорания.

Кольца изготовляют из специального легированного чугуна или стали. Разрез кольца, называемый замком, может быть прямой, косой или ступенчатый. Получили распространение кольца с прямым замком, как наиболее простым и дешевым в изготовлении.



Рис.5. Поршневые кольца:

а - поперечные сечения компрессионных колец и их положения в рабочем состоянии; б ~ составное маслосъемное кольцо; в - головка поршня двигателя автомобиля ЗИЛ-130 с поршневыми кольцами; г - схема насосного действия компрессионных колец; д - схема работы маслосъемных колец; / - кольцо прямоугольного сечения; // - кольцо с конической наружной поверхностью; // / - кольцо с фаской на внутренней стороне; IV - кольцо с выточкой на внутренней стороне; / - дискообразные кольца; 2 - осевой расширитель; 3 - радиальный расширитель; 4 - замок кольца; 5 - компрессионные кольца; 6 - поршень; 7 - отверстие в канавке маслосъемного кольца; 8 - цилиндр; 9 - маслосъемное кольцо; 10 - прорези в кольце; 11 - отверстие в поршне; сплошными стрелками показано направление движения поршня, а штриховыми - масла


В свободном состоянии диаметр поршневого кольца больше внутреннего диаметра цилиндра. Поэтому кольцо, поставленное в канавку поршня и введенное в сжатом состоянии в цилиндр, разжимаясь, плотно прилегает к внутренней поверхности цилиндра. Зазор в замке кольца позволяет ему расширяться при нагревании.

Различные поперечные сечения компрессионных колец приведены на рис.28, а. Кольцо с конической наружной поверхностью (схема //) соприкасается с цилиндром не всей боковой поверхностью, а лишь небольшой кромкой и оказывает на стенки цилиндра значительное давление. Такое кольцо скорее прирабатывается к цилиндру, лучше уплотняет соединение поршень - цилиндр. Особенностью колец с фаской (схема // /) или выточкой (схема IV) является то обстоятельство, что надетые на поршень и введенные в цилиндр они скручиваются к центру. Такие кольца прилегают к зеркалу цилиндра острой кромкой и работают так же, как и конические, но обеспечивают большую герметичность подвижного соединения в результате лучшего контакта с торцовыми поверхностями поршневой канавки. Поршневые кольца с фасками и выточками ставят на поршень так, чтобы фаски или выточки были направлены вверх, в сторону головки блока.

Первое компрессионное кольцо работает в условиях высокой температура, больших давлений и изнашивается быстрее других. Для повышения износостойкости первого компрессионного кольца его наружную цилиндрическую поверхность подвергают пористому хромированию. Собирающееся в порах хрома масло несколько улучшает условия работы кольца. Со временем заводы предполагают отказаться от хромирования колец и перейти к напыливанию их наружной поверхности молибденом. При хромировании верхнего кольца увеличивается долговечность остальных поршневых колец" которые покрывают слоем олова для лучшей приработки их к цилиндрам. Два верхних (двигатель автомобиля ЗИЛ-130) компрессионных кольца хромированы. Первое компрессионное кольцо дизеля автомобиля КамАЗ-5320 хромировано и установлено в чугунное кольцо, залитое в поршень из алюминиевого сплава, а второе покрыто слоем молибдена.

Проникновение масла в камеру сгорания очень нежелательно, так как приводит к интенсивному нагарообразованию и ухудшению работы двигателя. Масло в камеру сгорания может проникать в результате разности давлений в картере и цилиндре при такте впуска и вследствие насосного действия поршневых колец. При движении поршня вниз кольца прижимаются к верхним кромкам канавок и масло заполняет зазор между нижними торцами колец и канавками. Когда поршень движется вверх, кольца прижимаются к нижним кромкам канавок и масло выдавливается вверх.

Маслосъемные кольца (обычно не более двух) устанавливают на поршне ниже компрессионных колец, по конструкции они отличаются от компрессионных колец тем, что на их наружной поверхности имеются кольцевые канавки и сквозные прорези или отверстия для прохода масла. На поршнях применяют и составные маслосъемные кольца (ГАЗ-24 "Волга", ГАЗ-53А, ЗИЛ-130 и др.). Такое кольцо состоит из двух плоских стальных дискообразных колец / и двух расширителей: осевого 2, разжимающего кольца, и радиального 3, прижимающего дискообразные кольца к зеркалу цилиндра. Составное кольцо оказывает большое давление на стенки цилиндра и лучше очищает его от излишков масла. Устанавливая на поршень поршневые кольца, необходимо следить за тем, чтобы замки соседних колец были смещены на некоторый угол (90-180°) один относительно другого, а не расположены на одной прямой.

Поршневые пальцы. Поршень с верхней головкой шатуна соединяет поршневой палец. Он должен быть прочным, легким и износостойким, так как во время работы подвергается трению и большим механическим нагрузкам, переменным по величине и направлению. Пальцы изготовляют из высококачественной стали в виде пустотелых трубок. Для повышения надежности наружную поверхность пальца цементируют или закаливают, а затем шлифуют и полируют. В бобышках поршня палец укреплен стопорными кольцами, удерживающими его от осевого смещения. Такой палец называют плавающим, так как он при работе двигателя может повертываться в верхней головке шатуна и бобышках поршня. Плавающие поршневые пальцы 2 (см. рис.5) равномернее изнашиваются и поэтому долговечнее.

У работающего двигателя поршень из алюминиевого сплава расширяется больше, чем стальной палец, поэтому возможен его стук в бобышках поршня. Для устранения этого явления поршень перед сборкой с шатуном нагревают до 70-80° С, а затем в поршень и шатун вставляют палец. Когда поршень остынет, палец в бобышках окажется закрепленным неподвижно, а верхняя головка шатуна будет иметь угловое смещение относительно неподвижного пальца. При работе двигателя поршень нагревается и палец получает возможность повертываться вокруг своей оси. Применяют пальцы, запрессованные в верхние головки шатунов (двигатели автомобилей "Жигули"), Такие пальцы могут повертываться только в бобышках поршня.


ШАТУНЫ


Поршень с коленчатым валом соединяет шатун. Он превращает возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Основными частями шатуна (Рис.6) являются верхняя головка 7 с запрессованной в нее бронзовой втулкой 5, стержень и нижняя головка 9 с крышкой 10. Шатун испытывает большие нагрузки, меняющиеся по величине и направлению. Он подвергается сжатию, изгибу и растяжению. Чтобы выдержать такие нагрузки, шатун должен быть прочным, жестким и легким для уменьшения сил инерции. Шатун штампуют из стали и подвергают термообработке (закалке и отпуску); его стержень имеет двутавровое сечение для увеличения прочности.

Шатун совершает сложное движение: верхняя головка вместе с поршнем движется возвратно-поступательно, повертываясь на некоторый угол относительно пальца или вместе с пальцем относительно бобышек поршня; нижняя головка вращается вместе с шатунной шейкой коленчатого вала; стержень шатуна совершает колебательное движение. В большинстве случаев нижнюю головку делают разъемной в плоскости перпендикулярной оси шатуна. Иногда плоскость разъема располагают под углом к оси шатуна (дизель ЯМЗ-236, см. рис.27, а). Необходимость в разъеме нижней головки шатуна под углом возникает тогда, когда шатунные шейки коленчатого вала имеют большой диаметр.


Рис.6. Шатун и шатунные вкладыши:

а - шатун двигателя автомобиля ГАЗ-53А; б - шатунные вкладыши; 1 - гайка; 2 - болт; 3 и 14 - отверстия для масла; 4 - стержень шатуна; 5 - бронзовая втулка; 6 - отверстие для подачи масла к поршневому пальцу; 7 - верхняя головка шатуна; 8 - номер шатуна; 9 - нижняя головка шатуна; 10 - крышка нижней головки шатуна; 11 - стопорная шайба; 12 - метка; 13 - усик; 15 - верхний вкладыш; 16 - нижний вкладыш

В этом случае нижняя головка шатуна получается значительных размеров, что затрудняет или делает невозможным монтаж и демонтаж поршня вместе с шатуном через цилиндр.

Крышку 10 (Рис.6) нижней головки шатуна крепят к нему двумя болтами, изготовленными из высококачественной стали. Гайки болтов шатуна затягивают динамометрическим ключом и тщательно шплинтуют или стопорят специальными стопорными шайбами. Нижнюю головку шатуна и крышку растачивают вместе для получения отверстия правильной цилиндрической формы. Поэтому крышку нельзя перевертывать или переставлять на другие шатуны. На шатунах и крышках с одной стороны ставят необходимые для этого метки 12. В нижние головки шатунов устанавливают подшипники скольжения, состоящие из двух вкладышей - верхнего 15 и нижнего 16. Взаимозаменяемые тонкостенные вкладыши изготовлены из стальной ленты (толщиной 1,3-1,8 мм для карбюраторных двигателей и 2-3,6 мм для дизелей), залитой антифрикционным сплавом (толщина слоя соответственно 0,25-0,40 мм и 0,3-0,7 мм) на алюминиевой основе с 25-30% олова. Применение сталеалюминевых вкладышей с тонким антифрикционным слоем обеспечивает надежную работу подшипника при малом зазоре между шейкой вала и вкладышами. На дизеле автомобиля КамАЗ-5320 применяют трехслойные взаимозаменяемые шатунные вкладыши, залитые тонким слоем свинцовистой бронзы.

От осевого смещения и провертывания шатунные подшипники удерживаются в своих гнездах усиками 13, входящими в пазы, которые расположены на одной стороне шатуна. Обычно нижнюю головку шатуна делают симметричной относительно оси стержня. Нижняя головка шатуна (двигателя автомобиля ГАЗ-53А) несколько несимметрична относительно оси стержня, что сделано для обеспечения упора двух шатунов в галтели шатунной шейки

коленчатого вала. Нагрузка на опорные поверхности шатунных подшипников распределяется равномерно, так как они расположены симметрично относительно оси стержня. На нижней головке шатуна есть небольшое отверстие 3 (двигатели автомобилей ГАЗ-24 "Волга", ГАЗ-53А, ЗИЛ-130) для подачи масла на стенки цилиндра или на распределительный вал.


КОЛЕНЧАТЫЙ ВАЛ И МАХОВИК


Силы от шатуне соединенных с поршнями, воспринимает коленчатый вал, который испытывает большие нагрузки и подвергается скручиванию, изгибу и истиранию. Крутящий момент, развиваемый на коленчатом валу, передается на трансмиссию автомобиля, а также используется для привода в действие различных механизмов и деталей двигателя.

Коленчатый вал (рис.7, а) имеет следующие части: коренные 7 и шатунные 3 шейки, щеки 8, противовесы 4, передний конец 1 и задний конец (хвостовик) с маслоотражателем 5, маслосгонной резьбой и фланцем 6 для крепления маховика. Шатунные шейки служат для соединения коленчатого вала с шатунами. Коренные шейки вала входят в подшипники, установленные в блоке цилиндров. Щеки соединяют коренные и шатунные шейки вала, образуя колена или кривошипы. Противовесы, расположенные на коленчатом валу, разгружают коренные подшипники от сил инерции и создаваемых ими моментов.

Форма коленчатого вала зависит от числа и расположения цилиндров, порядка работы и тактности двигателя. Коленчатый вал изготовляют горячей штамповкой из легированной стали (двигатели автомобилей ЗИЛ-130, МАЗ-5335, КамАЗ-5320 и др.) или отливают из высокопрочного чугуна (двигатели автомобилей



Рис.7. Коленчатые валы:

а - двигателя автомобиля ЗИЛ-130; б - дизеля ЯМЗ-236; в - дизеля автомобиля КамАЗ-5320; А - величина перекрытия шеек; 1 - передний конец вала; 2 - грязеуловительная полость в шатунной шейке; 3 - шатунная шейка; 4 - противовесы; 5 и 15 - маслоотражатели; 6 - фланец для крепления маховика; 7 - коренная шейка; 8 - щека; 9 - гайка; 10 - передние съемные противовесы; 11 - распределительная шестерня; 12 - шестерня привода масляного насоса; 13 - винт; 14 - съемный противовес; 16 - установочные штифты; 17 – шпонка.


ГАЗ-24 "Волга", ГАЗ-53А, "Жигули" и др.) вместе с противовесами или без них. Шатунные шейки коленчатого вала располагают так, чтобы одноименные такты (например, такты расширения) в разных цилиндрах двигателя происходили через равные промежутки (по углу поворота), а силы инерции, возникающие в цилиндрах, взаимно уравновешивались. Если расположение колен коленчатого вала не обеспечивает взаимного уравновешивания сил инерции и создаваемых ими моментов, то на таких коленчатых валах устанавливают противовесы или оборудуют двигатели специальными уравновешивающими механизмами.

Для повышения износостойкости и долговечности шатунных и коренных шеек их закаливают токами высокой частоты (т. в. ч), после чего шлифуют и полируют. Переход от шеек к щекам, называемый галтелью, делают плавным, чтобы избежать концентрации напряжений и возможных поломок коленчатого вала. Для повышения жесткости и надежности коленчатых валов применяют перекрытие шеек, характеризуемое величиной А (рис.7, б). Размеры шеек коленчатых валов следующие: у двигателя автомобиля ГАЗ-53А диаметр шатунной шейки равен 60 мм, а коренной 70

Похожие рефераты:

Устройство четырехступенчатой коробки передач автомобиля Волга. Техническое обслуживание в процессе эксплуатации. ПОрядок снятия коробки передач, возможные неполадки и их устранение. Этапы разборки первичного вала и механизма переключения передач.

КОНТРОЛЬНАЯ РАБОТА

На тему: "Кривошипно-шатунный механизм "

Выполнил:


КРИВОШИПНО-ШАТУННЫЙ МЕХАНИЗМ.. 3

БЛОК ЦИЛИНДРОВ.. 3

ГОЛОВКА БЛОКА.. 6

ПОРШНЕВАЯ ГРУППА.. 8

ШАТУНЫ.. 15

КОЛЕНЧАТЫЙ ВАЛ И МАХОВИК.. 18

КАРТЕР ДВИГАТЕЛЯ.. 24

КРЕПЛЕНИЕ ДВИГАТЕЛЯ НА РАМЕ. 25

КРИВОШИПНО-ШАТУННЫЙ МЕХАНИЗМ

Кривошипно-шатунный механизм преобразует прямолинейное возвратно-поступательное движение поршней, воспринимающих силу давления газов, во вращательное движение коленчатого вала. Детали кривошипно-шатунного механизма можно разделить на две группы: подвижные и неподвижные,

К первым относятся поршень с кольцами и поршневым пальцем, шатун, коленчатый вал и маховик, ко вторым - блок цилиндров, головка блока, прокладка головки блока и поддон (картер), В обе группы входят также и крепежные детали.

БЛОК ЦИЛИНДРОВ

Блок цилиндров или блок-картер является остовом двигателя. На нем и внутри него располагаются основные механизмы и детали систем двигателя. Блок 1 цилиндров (рис.1) может быть отлит из серого чугуна (двигатели автомобилей ЗИЛ-130, МАЗ-5335, КамАЗ-5320) или из алюминиевого сплава (двигатели автомобилей ГАЗ-24 "Волга", ГАЗ-53А и др.). Горизонтальная перегородка делит блок цилиндров на верхнюю и нижнюю части, В верхній плоскости блока и в горизонтальной перегородке расточены отверстия для установки гильз цилиндров. В цилиндре, являющемся направляющей при движении поршня, совершается рабочий цикл двигателя. Гильзы могут быть мокрыми или сухими. Гильзу цилиндра называют мокрой, если она омывается жидкостью системы охлаждения, и сухой, если непосредственно не соприкасается с охлаждающей жидкостью.


Рис.1. Блок цилиндров и головка блока V-образного двигателя:

1 - блок цилиндров; 2 - прокладка головки блока; 3 - камера сгорания; 4 - головка блока; 5 - гильза цилиндра; 6 - уплотнительное кольцо; 7 - шпильки

Цилиндры могут быть отлиты из серого чугуна вместе со стенками водяной рубашки 2 (рис.2, а) в виде одного блока 1 или в виде отдельных гильз 4, 5 и 6 (рис.2, б, в и г), устанавливаемых в блок. Двигатели, имеющие цилиндры, изготовленные в виде сменных мокрых гильз, проще ремонтировать и эксплуатировать (двигатели автомобилей ГАЗ-24 "Волга", ГАЗ-53А, ЗИЛ-130, МАЗ-5335, КамАЗ-5320 и др.).

Внутренняя поверхность цилиндра, внутри которой перемещается поршень, называется зеркалом цилиндра. Ее тщательно обрабатывают для уменьшения трения при движении в цилиндре поршня с кольцами я часто закаливают для повышения износостойкости и долговечности. Гильзы в блок цилиндров устанавливают так, чтобы охлаждающая жидкость не проникала в них и в поддон, а газы не прорывались из цилиндра. Необходимо предусмотреть и возможность изменения длины гильз в зависимости от температуры двигателя. В целях фиксации вертикального расположения гильз они имеют специальный бурт для упора в блок цилиндров и установочные пояса.


Рис.2. Схемы цилиндров двигателей:

а - без гильз, но с короткой вставкой (автомобилей ЗИЛ-157К, ГАЗ-52-04); б и б"с "мокрой" гильзой (дизели ЯМЗ-236 и автомобиля КамАЗ-5320); г - с "мокрой" гильзой, в которую запрессована коротка я вставка (на автомобилях ГАЗ-24 "Волга", ГАЗ-53А, ЗИЛ-130 и др.); 1 - блок цилиндров 2 - водяная рубашка; 3 - вставка; 4, 5 и 6 - гильзы цилиндров; 7 - уплотнительные кольца (резиновые или медные, устанавливаемые под бурт)

Мокрые гильзы в нижней части уплотняют резиновыми кольцами, размещаемыми в канавках блока цилиндров (двигатели автомобиля КамАЗ-5320), в канавках гильз (двигатели автомобилей МАЗ-5335, ЗИЛ-130 и др.), или медными кольцевыми прокладками, устанавливаемыми между блоком и опорной поверхностью нижнего пояса гильзы (двигатели автомобилей ГАЗ-24 "Волга", ГАЗ-53А и др.) - Верхний торец гильзы выступает над плоскостью блока цилиндров на 0,02-0,16 мм, что способствует лучшему обжатию прокладки головки блока и надежному уплотнению гильзы, блока и головки блока.

Во время работы двигателя в верхней части цилиндров сгорает рабочая смесь. Горение сопровождается выделением продуктов окисления, которые вызывают коррозию цилиндров. Для повышения износостойкости цилиндров в некоторых двигателях применяют вставки 3 из антикоррозионного чугуна. Их запрессовывают в блок цилиндров (двигатели автомобилей ЗИЛ-130К, ГАЗ-52-04) или в гильзы цилиндров (двигатели автомобилей ГАЗ-24 "Волга", ГАЗ-53А, ЗИЛ-130 и др.). Это усложняет технологию изготовления двигателя. В перспективе конструкторы предполагают использовать специальные металлы, что позволит отказаться от применения вставок в цилиндрах.

Поперечные вертикальные перегородки внутри блока цилиндров совместно с передней и задней стенками обеспечивают его необходимую прочность и жесткость. В этих перегородках, а также в передней и задней стенках блока расточены гнезда под верхние половины коренных подшипников коленчатого вала. Нижние половины коренных подшипников помещены в крышках, прикрепленных к блоку на шпильках или болтами.

В V-образных двигателях один из рядов блока цилиндров несколько смещен относительно другого, что вызвано расположением на шатунной шейке коленчатого вала двух шатунов: одного для правого, а другого - для левого блоков. Так, в V-образных двигателях автомобилей ГАЗ-53А левый блок цилиндров смещен вперед (по ходу автомобиля) на 24 мм, а автомобилей ЗИЛ-130 - на 29 мм относительно правого блока. Нумерация цилиндров указана вначале для правого блока цилиндров (по ходу автомобиля), а затем для левого; ближайший к вентилятору цилиндр имеет номер один и т.д.

ГОЛОВКА БЛОКА

Головка является крышкой, закрывающей цилиндры; V-образные двигатели имеют отдельные головки блока для каждого ряда цилиндров (двигатели автомобилей ГАЗ-53А и ЗИЛ-130); V-образный дизель автомобиля КамАЗ-5320 имеет отдельную головку на каждый цилиндр. Для карбюраторных двигателей и дизеля автомобиля КамАЗ-5320 головки блока отливают из алюминиевого сплава, а для дизеля ЯМЗ-236 - из легированного чугуна. Верхнюю плоскость блока цилиндров и нижнюю плоскость головки блока тщательно обрабатывают для получения плотного соединения. Между этими плоскостями устанавливают сталеасбестовую уплотняющую прокладку, предотвращающую прорыв газов наружу и исключающую проникновение охлаждающей жидкости в цилиндры. Перед установкой прокладки на двигатель обе ее стороны натирают графитом, предохраняющим ее от пригорания к блоку или головке. Гайки и болты крепления головки блока к блоку цилиндров затягивают равномерно в определенной последовательности.


Рис.3. Формы камер сгорания:

а - карбюраторных двигателей; б - дизелей; / - цилиндрическая; // - полусферическая; // / - клиновая; IV - смещенная (Г-образная); Vи VI-неразделенные; VIIи VIIІ - разделенные; 1 - клапан; 2 - свеча зажигания; 3 - насос-форсунка; 4 - камера сгорания; 5 - форсунка; 6 - предкамера; 7 - основная камера; 8 - вихревая камера

Головка блока цилиндров двигателей с нижним расположением клапанов проще по устройству, так как в ней размещены только камеры сгорания, водяные рубашки, отверстия для ввертывания свечей зажигания и крепления головки к блоку цилиндров. Каналы для подвода горючей смеси и выпуска отработавших газов находятся в блоке цилиндров.

Головки блока цилиндров двигателей с верхним расположением клапанов имеют более сложную конструкцию. В них размещены вставные седла, свечи зажигания или форсунки, направляющие втулки, клапаны, коромысла, оси и другие детали. Кроме того, в головках блока имеются водяные рубашки, отверстия для прохода штанг, масла и каналы, по которым к цилиндрам поступает горючая смесь или воздух и отводятся отработавшие газы.

Форма камеры сгорания оказывает значительное влияние на смесеобразование, сгорание рабочей смеси и на степень сжатия двигателя. Камеры сгорания с верхним расположением клапанов более компактны и обеспечивают лучшее наполнение цилиндров горючей смесью при том же диаметре впускного клапана, чем камеры сгорания с нижним расположением клапанов. Полусферические и клиновые камеры (соответственно схемы // и // /, рис.3) получили распространение у карбюраторных двигателей. При нижнем расположении клапанов чаще применяют Г-образные (смещенные) камеры сгорания (схема IV).

Для улучшения смесеобразования в дизелях применяют различные по форме и объему камеры сгорания. Дизели выпускают с неразделенными (схемы V и VI) и с разделенными (схемы VII и VIII) камерами сгорания. Первые двигатели иначе называют дизелями с непосредственным впрыском топлива. Неразделенная камера сгорания 4 представляет собой пространство, заключенное между днищем поршня, когда он находится в в. м. т., и нижней плоскостью головки блока (один объем). Разделенные камеры сгорания (два объема) состоят из основной камеры 7 и вспомогательной (предкамеры 6 или вихревой 8), соединенных между собой каналом.

ПОРШНЕВАЯ ГРУППА

Поршень. Давление газов во время рабочего хода воспринимает поршень и передает его через палец и шатун коленчатому валу. В цилиндре поршень, движется неравномерно; в крайних положениях (в в. м. т. и в н. м. т) его скорость равна нулю, а около середины хода она достигает максимального значения. В результате этого возникают большие силы инерции, на величину которых влияет масса поршня и угловая скорость коленчатого вала. Кроме механических нагрузок, поршень подвергается действию высоких температур в период сгорания топлива и расширения образовавшихся газов. Он нагревается также вследствие трения его боковой поверхности о стенки цилиндра.

На автомобильных двигателях чаще устанавливают поршни, изготовленные из алюминиевого сплава, так как они достаточно прочные, легкие, имеют высокую теплопроводность и хорошие антифрикционные свойства. Для повышения прочности, надежности и сохранения постоянства размеров и формы поршни из алюминиевого сплава подвергают термической обработке - старению.

Поршень состоит из трех основных частей (рис.4, а): днища 6, головки 7 и юбки 8. На внешней поверхности головки поршня и юбке проточены канавки для установки компрессионных колец 4 и маслосъемных колец 3. Верхнюю часть поршня называют уплотнительным поясом, так как размещенные здесь поршневые кольца предотвращают прорыв газов через зазоры между поршнем и цилиндром. Число колец, устанавливаемых на поршне, зависит от типа двигателя и частоты вращения коленчатого вала. По окружности канавок, в которых размещены маслосъемные кольца, просверлены сквозные отверстия для отвода масла в картер двигателя. Юбка 8 является направляющей поршня при движении его в цилиндре и передает боковую силу от шатуна стенкам цилиндра. На внутренней стороне юбки имеется два массивных прилива, называемых бобышками. Они соединяются ребрами с днищем, увеличивая прочность поршня. В бобышках сделаны отверстия для установки пальца 2 и проточены кольцевые канавки для стопорных колец 1. В карбюраторных двигателях применяют поршни с плоским днищем, получившие широкое распространение из-за простоты изготовления и меньшего нагрева при работе (рис.4, б и в).

Для увеличения прочности и улучшения отвода тепла днище поршня дизеля изготовляют массивным и усиливают ребрами с внутренней стороны. Обычно поршни дизелей имеют фигурные днища 6. Это улучшает процесс смесеобразования и позволяет придать камере сгорания 5 необходимую форму (рис.4, а).

При нагреве поршень расширяется больше, чем цилиндр, охлаждаемый жидкостью, поэтому возникает опасность заклинивания поршня. Чтобы избежать этого и обеспечить нормальную работу двигателя, диаметр поршня должен быть меньше диаметра цилиндра, т.е. между поршнем и цилиндром необходим диаметральный зазор. Применяют поршни, у которых диаметр юбки больше диаметра головки т.е. поршень имеет форму усеченного конуса. Юбку делают разрезной, что повышает упругость (устраняет опасность заклинивания), придают ей овальную форму (большая ось овала должна быть перпендикулярна оси поршневого пальца) и т.д.

Поршни (рис.4, б и в) имеют разрезную юбку овального сечения (двигатели автомобилей ГАЗ-24 "Волга", ГАЗ-53А и др.). Во время работы двигателя поршень нагревается и юбка несколько деформируется в направлении оси поршневого пальца. Форма юбки приближается к цилиндрической, и зазор между поршнем и цилиндром становится минимальным. Вырезы на юбке уменьшают массу поршня. Поршни двигателя автомобиля ЗИЛ-130 имеют поперечные прорези под головкой; на юбке поршня выполнен Т-образный разрез. Иногда применяют поршни с усиленной юбкой - без вертикального разреза.

Если на юбках поршней имеются разрезы, то их устанавливают в двигателе так, чтобы боковое давление при рабочем ходе испытывала та часть поршня, где нет разреза. При переходе поршня через в. м. т. он перемещается от одной стенки цилиндра к другой, что сопровождается стуками.


Рис.4. Шатунно-поршневая группа:

а - дизелей ЯМЗ; б и в - двигателей автомобилей ГАЗ-53А, где даны поршни в сборе с шатуном, устанавливаемые соответственно в первый, второй, третий и четвертый цилиндры левого блока и в пятый, шестой, седьмой к восьмой цилиндры правого блока; 1 - стопорное кольцо; 2 - поршневой палец; 3 - маслосъемные кольца; 4 - компрессионные кольца; 5 - камера сгорания в днище поршня; 6 - днище поршня; 7 - головка поршня; 8 - юбка; 9 - поршень; 10 - распылитель масла (форсунка); 11 - шатун; 12 - вкладыши; 13 - замковая шайба; 14 - длинный болт; 15 - короткий болт; 16 - крышка шатуна; 17 - втулка в головке шатуна; 18 - надпись на поршне; 19 - номер на шатуне; 20 - метка на крышке шатуна; 21 - шатунный болт.

Чтобы устранить эти стуки, ось отверстия под палец смещают в сторону (на 1,5 - 2,0 мм) максимального бокового давления. Для улучшения приработки поршней к цилиндрам и устранения возможных задиров поршни покрывают тонким слоем олова. Юбки поршней дизелей ЯМЗ и автомобилей КамАЗ-5320 не имеют разреза, но они также выполнены в виде конуса овального сечения. Диаметр поршней дизелей ЯМЗ-236 и ЯМЗ-238 равен 130 мм, дизеля автомобиля КамАЗ-5320 равен 120 мм и двигателя автомобиля ЗИЛ-130 равен 100 мм. Для правильной установки в цилиндры и точного соединения с шатунами на поршнях и шатунах есть соответствующие метки (рис.4, бив).

Поршневые кольца. Надеваемые на поршень поршневые кольца создают плотное, подвижное соединение между поршнем и цилиндром. Кольца бывают компрессионные и маслосъемные; первые обеспечивают необходимую компрессию (сжатие) благодаря уменьшению количества газов, прорывающихся из камеры сгорания в картер, и отводят тепло от головки поршня к стенкам цилиндра; вторые - препятствуют проникновению масла из картера в камеру сгорания.

Кольца изготовляют из специального легированного чугуна или стали. Разрез кольца, называемый замком, может быть прямой, косой или ступенчатый. Получили распространение кольца с прямым замком, как наиболее простым и дешевым в изготовлении.


Рис.5. Поршневые кольца:

а - поперечные сечения компрессионных колец и их положения в рабочем состоянии; б ~ составное маслосъемное кольцо; в - головка поршня двигателя автомобиля ЗИЛ-130 с поршневыми кольцами; г - схема насосного действия компрессионных колец; д - схема работы маслосъемных колец; / - кольцо прямоугольного сечения; // - кольцо с конической наружной поверхностью; // / - кольцо с фаской на внутренней стороне; IV - кольцо с выточкой на внутренней стороне; / - дискообразные кольца; 2 - осевой расширитель; 3 - радиальный расширитель; 4 - замок кольца; 5 - компрессионные кольца; 6 - поршень; 7 - отверстие в канавке маслосъемного кольца; 8 - цилиндр; 9 - маслосъемное кольцо; 10 - прорези в кольце; 11 - отверстие в поршне; сплошными стрелками показано направление движения поршня, а штриховыми - масла

В свободном состоянии диаметр поршневого кольца больше внутреннего диаметра цилиндра. Поэтому кольцо, поставленное в канавку поршня и введенное в сжатом состоянии в цилиндр, разжимаясь, плотно прилегает к внутренней поверхности цилиндра. Зазор в замке кольца позволяет ему расширяться при нагревании.

Различные поперечные сечения компрессионных колец приведены на рис.28, а. Кольцо с конической наружной поверхностью (схема //) соприкасается с цилиндром не всей боковой поверхностью, а лишь небольшой кромкой и оказывает на стенки цилиндра значительное давление. Такое кольцо скорее прирабатывается к цилиндру, лучше уплотняет соединение поршень - цилиндр. Особенностью колец с фаской (схема // /) или выточкой (схема IV) является то обстоятельство, что надетые на поршень и введенные в цилиндр они скручиваются к центру. Такие кольца прилегают к зеркалу цилиндра острой кромкой и работают так же, как и конические, но обеспечивают большую герметичность подвижного соединения в результате лучшего контакта с торцовыми поверхностями поршневой канавки. Поршневые кольца с фасками и выточками ставят на поршень так, чтобы фаски или выточки были направлены вверх, в сторону головки блока.

Первое компрессионное кольцо работает в условиях высокой температура, больших давлений и изнашивается быстрее других. Для повышения износостойкости первого компрессионного кольца его наружную цилиндрическую поверхность подвергают пористому хромированию. Собирающееся в порах хрома масло несколько улучшает условия работы кольца. Со временем заводы предполагают отказаться от хромирования колец и перейти к напыливанию их наружной поверхности молибденом. При хромировании верхнего кольца увеличивается долговечность остальных поршневых колец" которые покрывают слоем олова для лучшей приработки их к цилиндрам. Два верхних (двигатель автомобиля ЗИЛ-130) компрессионных кольца хромированы. Первое компрессионное кольцо дизеля автомобиля КамАЗ-5320 хромировано и установлено в чугунное кольцо, залитое в поршень из алюминиевого сплава, а второе покрыто слоем молибдена.

Проникновение масла в камеру сгорания очень нежелательно, так как приводит к интенсивному нагарообразованию и ухудшению работы двигателя. Масло в камеру сгорания может проникать в результате разности давлений в картере и цилиндре при такте впуска и вследствие насосного действия поршневых колец. При движении поршня вниз кольца прижимаются к верхним кромкам канавок и масло заполняет зазор между нижними торцами колец и канавками. Когда поршень движется вверх, кольца прижимаются к нижним кромкам канавок и масло выдавливается вверх.

Маслосъемные кольца (обычно не более двух) устанавливают на поршне ниже компрессионных колец, по конструкции они отличаются от компрессионных колец тем, что на их наружной поверхности имеются кольцевые канавки и сквозные прорези или отверстия для прохода масла. На поршнях применяют и составные маслосъемные кольца (ГАЗ-24 "Волга", ГАЗ-53А, ЗИЛ-130 и др.). Такое кольцо состоит из двух плоских стальных дискообразных колец / и двух расширителей: осевого 2, разжимающего кольца, и радиального 3, прижимающего дискообразные кольца к зеркалу цилиндра. Составное кольцо оказывает большое давление на стенки цилиндра и лучше очищает его от излишков масла. Устанавливая на поршень поршневые кольца, необходимо следить за тем, чтобы замки соседних колец были смещены на некоторый угол (90-180°) один относительно другого, а не расположены на одной прямой.

Поршневые пальцы. Поршень с верхней головкой шатуна соединяет поршневой палец. Он должен быть прочным, легким и износостойким, так как во время работы подвергается трению и большим механическим нагрузкам, переменным по величине и направлению. Пальцы изготовляют из высококачественной стали в виде пустотелых трубок. Для повышения надежности наружную поверхность пальца цементируют или закаливают, а затем шлифуют и полируют. В бобышках поршня палец укреплен стопорными кольцами, удерживающими его от осевого смещения. Такой палец называют плавающим, так как он при работе двигателя может повертываться в верхней головке шатуна и бобышках поршня. Плавающие поршневые пальцы 2 (см. рис.5) равномернее изнашиваются и поэтому долговечнее.

У работающего двигателя поршень из алюминиевого сплава расширяется больше, чем стальной палец, поэтому возможен его стук в бобышках поршня. Для устранения этого явления поршень перед сборкой с шатуном нагревают до 70-80° С, а затем в поршень и шатун вставляют палец. Когда поршень остынет, палец в бобышках окажется закрепленным неподвижно, а верхняя головка шатуна будет иметь угловое смещение относительно неподвижного пальца. При работе двигателя поршень нагревается и палец получает возможность повертываться вокруг своей оси. Применяют пальцы, запрессованные в верхние головки шатунов (двигатели автомобилей "Жигули"), Такие пальцы могут повертываться только в бобышках поршня.

ШАТУНЫ

Поршень с коленчатым валом соединяет шатун. Он превращает возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Основными частями шатуна (Рис.6) являются верхняя головка 7 с запрессованной в нее бронзовой втулкой 5, стержень и нижняя головка 9 с крышкой 10. Шатун испытывает большие нагрузки, меняющиеся по величине и направлению. Он подвергается сжатию, изгибу и растяжению. Чтобы выдержать такие нагрузки, шатун должен быть прочным, жестким и легким для уменьшения сил инерции. Шатун штампуют из стали и подвергают термообработке (закалке и отпуску); его стержень имеет двутавровое сечение для увеличения прочности.

Шатун совершает сложное движение: верхняя головка вместе с поршнем движется возвратно-поступательно, повертываясь на некоторый угол относительно пальца или вместе с пальцем относительно бобышек поршня; нижняя головка вращается вместе с шатунной шейкой коленчатого вала; стержень шатуна совершает колебательное движение. В большинстве случаев нижнюю головку делают разъемной в плоскости перпендикулярной оси шатуна. Иногда плоскость разъема располагают под углом к оси шатуна (дизель ЯМЗ-236, см. рис.27, а). Необходимость в разъеме нижней головки шатуна под углом возникает тогда, когда шатунные шейки коленчатого вала имеют большой диаметр.

Рис.6. Шатун и шатунные вкладыши:

а - шатун двигателя автомобиля ГАЗ-53А; б - шатунные вкладыши; 1 - гайка; 2 - болт; 3 и 14 - отверстия для масла; 4 - стержень шатуна; 5 - бронзовая втулка; 6 - отверстие для подачи масла к поршневому пальцу; 7 - верхняя головка шатуна; 8 - номер шатуна; 9 - нижняя головка шатуна; 10 - крышка нижней головки шатуна; 11 - стопорная шайба; 12 - метка; 13 - усик; 15 - верхний вкладыш; 16 - нижний вкладыш


В этом случае нижняя головка шатуна получается значительных размеров, что затрудняет или делает невозможным монтаж и демонтаж поршня вместе с шатуном через цилиндр.

Крышку 10 (Рис.6) нижней головки шатуна крепят к нему двумя болтами, изготовленными из высококачественной стали. Гайки болтов шатуна затягивают динамометрическим ключом и тщательно шплинтуют или стопорят специальными стопорными шайбами. Нижнюю головку шатуна и крышку растачивают вместе для получения отверстия правильной цилиндрической формы. Поэтому крышку нельзя перевертывать или переставлять на другие шатуны. На шатунах и крышках с одной стороны ставят необходимые для этого метки 12. В нижние головки шатунов устанавливают подшипники скольжения, состоящие из двух вкладышей - верхнего 15 и нижнего 16. Взаимозаменяемые тонкостенные вкладыши изготовлены из стальной ленты (толщиной 1,3-1,8 мм для карбюраторных двигателей и 2-3,6 мм для дизелей), залитой антифрикционным сплавом (толщина слоя соответственно 0,25-0,40 мм и 0,3-0,7 мм) на алюминиевой основе с 25-30% олова. Применение сталеалюминевых вкладышей с тонким антифрикционным слоем обеспечивает надежную работу подшипника при малом зазоре между шейкой вала и вкладышами. На дизеле автомобиля КамАЗ-5320 применяют трехслойные взаимозаменяемые шатунные вкладыши, залитые тонким слоем свинцовистой бронзы.

От осевого смещения и провертывания шатунные подшипники удерживаются в своих гнездах усиками 13, входящими в пазы, которые расположены на одной стороне шатуна. Обычно нижнюю головку шатуна делают симметричной относительно оси стержня. Нижняя головка шатуна (двигателя автомобиля ГАЗ-53А) несколько несимметрична относительно оси стержня, что сделано для обеспечения упора двух шатунов в галтели шатунной шейки

коленчатого вала. Нагрузка на опорные поверхности шатунных подшипников распределяется равномерно, так как они расположены симметрично относительно оси стержня. На нижней головке шатуна есть небольшое отверстие 3 (двигатели автомобилей ГАЗ-24 "Волга", ГАЗ-53А, ЗИЛ-130) для подачи масла на стенки цилиндра или на распределительный вал.

КОЛЕНЧАТЫЙ ВАЛ И МАХОВИК

Силы от шатуне соединенных с поршнями, воспринимает коленчатый вал, который испытывает большие нагрузки и подвергается скручиванию, изгибу и истиранию. Крутящий момент, развиваемый на коленчатом валу, передается на трансмиссию автомобиля, а также используется для привода в действие различных механизмов и деталей двигателя.

Коленчатый вал (рис.7, а) имеет следующие части: коренные 7 и шатунные 3 шейки, щеки 8, противовесы 4, передний конец 1 и задний конец (хвостовик) с маслоотражателем 5, маслосгонной резьбой и фланцем 6 для крепления маховика. Шатунные шейки служат для соединения коленчатого вала с шатунами. Коренные шейки вала входят в подшипники, установленные в блоке цилиндров. Щеки соединяют коренные и шатунные шейки вала, образуя колена или кривошипы. Противовесы, расположенные на коленчатом валу, разгружают коренные подшипники от сил инерции и создаваемых ими моментов.

Форма коленчатого вала зависит от числа и расположения цилиндров, порядка работы и тактности двигателя. Коленчатый вал изготовляют горячей штамповкой из легированной стали (двигатели автомобилей ЗИЛ-130, МАЗ-5335, КамАЗ-5320 и др.) или отливают из высокопрочного чугуна (двигатели автомобилей


Рис.7. Коленчатые валы:

а - двигателя автомобиля ЗИЛ-130; б - дизеля ЯМЗ-236; в - дизеля автомобиля КамАЗ-5320; А - величина перекрытия шеек; 1 - передний конец вала; 2 - грязеуловительная полость в шатунной шейке; 3 - шатунная шейка; 4 - противовесы; 5 и 15 - маслоотражатели; 6 - фланец для крепления маховика; 7 - коренная шейка; 8 - щека; 9 - гайка; 10 - передние съемные противовесы; 11 - распределительная шестерня; 12 - шестерня привода масляного насоса; 13 - винт; 14 - съемный противовес; 16 - установочные штифты; 17 – шпонка.

ГАЗ-24 "Волга", ГАЗ-53А, "Жигули" и др.) вместе с противовесами или без них. Шатунные шейки коленчатого вала располагают так, чтобы одноименные такты (например, такты расширения) в разных цилиндрах двигателя происходили через равные промежутки (по углу поворота), а силы инерции, возникающие в цилиндрах, взаимно уравновешивались. Если расположение колен коленчатого вала не обеспечивает взаимного уравновешивания сил инерции и создаваемых ими моментов, то на таких коленчатых валах устанавливают противовесы или оборудуют двигатели специальными уравновешивающими механизмами.

Для повышения износостойкости и долговечности шатунных и коренных шеек их закаливают токами высокой частоты (т. в. ч), после чего шлифуют и полируют. Переход от шеек к щекам, называемый галтелью, делают плавным, чтобы избежать концентрации напряжений и возможных поломок коленчатого вала. Для повышения жесткости и надежности коленчатых валов применяют перекрытие шеек, характеризуемое величиной А (рис.7, б). Размеры шеек коленчатых валов следующие: у двигателя автомобиля ГАЗ-53А диаметр шатунной шейки равен 60 мм, а коренной 70 мм; у двигателя автомобиля КамАЗ-5320 диаметр шатунной шейки равен 80 мм, а коренной 95 мм.

Коленчатый вал дизеля ЯМЗ-236 (рис.7, б) имеет три шатунные шейки 3, расположенные под углом 120°, и четыре коренные шейки 7. На коленчатом валу установлено семь противовесов, а восьмой отлит в виде прилива вместе с маховиком. Установка на коленчатом валу, кроме основных противовесов, двух выносных улучшает уравновешивание моментов сил инерции, возникающих при работе двигателя, так как чередование одноименных тактов при порядке работы 1-4-2-5-3-6 происходит неравномерно. Коленчатые валы дизелей ЯМЗ-236 и дизелей автомобилей КамАЗ не имеют фланцев для крепления маховиков. Коленчатые валы большинства двигателей имеют грязеуловительные полости 2 в шатунных шейках для дополнительной центробежной очистки масла.

В качестве коренных подшипников для коленчатого вала применяют тонкостенные вкладыши, изготовленные из сталеалюминевой ленты. У коренных вкладышей толщина стенки весьма мала (1,9-2,8 мм для карбюраторных двигателей и 3-6 мм для дизелей), поэтому после их установки на место форма внутреннего отверстия подшипника зависит только от точности расточки гнезда. На карбюраторных двигателях (автомобилей ГАЗ-24 "Волга", ГАЗ-53А и ЗИЛ-130) не применяют коренные трехслойные вкладыши (стальная лента, медно-никелевый подслой и слой антифрикционного сплава) из-за низкого предела выносливости применявшегося антифрикционного слоя. Здесь используют только двухслойные вкладыши, хорошо/ работающие в двигателях с большой угловой скоростью коленчатого вала и значительными нагрузками.

Широкое использование высокооловянистых сталеалюминевых вкладышей вызвано тем, что они обладают повышенной усталостной прочностью, хорошими противозадирными свойствами и коррозионной стойкостью, что повышает надежность двигателя. Вкладыши коренных подшипников дизеля автомобиля КамАЗ-5320 трехслойные, с рабочим слоем из свинцовистой бронзы. Вкладыши коренных подшипников дизеля ЯМЗ-236 и дизеля автомобиля КамАЗ-5320 невзаимозаменяемые, а двигателей автомобилей ГАЗ 24 "Волга" и ЗИЛ-130 соответственно взаимозаменяемы.

Вследствие работы сцепления и косозубых шестерен механизма газоpacпределения возникают силы, стремящиеся сдвинуть коленчатый вал вдоль оси. Поэтому один из коренных подшипников коленчатого вала делают упорным, воспринимающим осевые нагрузки и удерживающим вал от смещения. В двигателях автомобилей ГАЗ и ЗИЛ упорным является первый коренной подшипник.

Коленчатый вал 6 (рис.8, а) удерживается от осевого смещения двумя стальными неподвижными шайбами 11 и 10, установленными с обеих сторон первого коренного подшипника. Переднюю шайбу 11 удерживают от вращения штифты 8 и 15, один из которых запрессован в блок 9 цилиндров, а другой в крышку 14 коренного подшипника. Задняя шайба 10 имеет прямоугольный выступ, входящий в паз крышки. Плоскостью, залитой баббитом, шайба 10 обращена к шлифованному пояску щеки коленчатого вала, а шайба - к упорной стальной шайбе 16, установленной на шпонке 12 между торцом передней коренной шейки коленчатого вала и распределительной шестерней 17.



Рис.8. Уплотнение коленчатого вала:

а - упорный подшипник и уплотнение переднего конца вала; б - уплотнение заднего конца вала; 1 - самоподжимной сальник; 2 - пылеотражатель; 3 - шкив привода водяного насоса, вентилятора и генератора; 4 - ступица; 5 - храповик; б - коленчатый вал; 7 - крышка распределительных шестерен; 8 и 15 - штифты; 9 - блок цилиндров; 10 - задняя неподвижная шайба; 11 - передняя неподвижная шайба; 12 - шпонка; 13 - вкладыш; 14 - крышка коренного подшипника; 16 - упорная вращающаяся шайба; 17 - распределительная шестерня; 18 - маслоотражатель; 19 - маслоотражательный гребень; 20 - болт крепления маховика; 21 - маслосгонная накатка; 22 - шарикоподшипник вала сцепления; 23 - фланец; 24 - сальник; 25 - держатель сальника; 26 - маховик

На переднем конце коленчатого вала кроме шестерни 17 расположены маслоотражатель 18, ступица 4 шкива 3 привода водяного насоса, вентилятора и генератора. В торец коленчатого вала ввернут храповик 5, служащий для пуска двигателя при помощи пусковой рукоятки и удерживающий от смещения детали, установленные на конце вала. Передний конец коленчатого вала уплотнен самоподжимным резиновым сальником 1, расположенным в крышке 7 распределительных шестерен, и маслоотражателем 18. Масло не может попасть на сальник, так как он защищен специальным корпусом с отогнутыми краями. На ступицу шкива напрессован пылеотражатель 2, защищающий сальник от пыли и песка.

Уплотнение заднего конца коленчатого вала 6 (рис.8, б) состоит из сальника 24 маслосгонной накатки 21 и маслоотражательного гребня 19.

Сальник 24 представляет собой асбестовый шнур, пропитанный антифрикционным составом и покрытый графитом. Сальник состоит из двух половин" помещенных в канавки блока 9 цилиндров и в держатель 25 сальника, привернутый к блоку. В задний торец коленчатого вала запрессован шарикоподшипник 22 вала сцепления. Фланец 23, отштампованный как одно целое с коленчатым валом, служит для крепления маховика 26 болтами 20 - изготовленными из высококачественной стали. Передние и задние концы коленчатых валов дизелей и двигателей автомобилей "Жигули", "Москвич" тщательно уплотняют самоподжимными сальниками и маслоотражателями.

От осевого смещения коленчатые валы дизеля ЯМЗ-236 и дизеля автомобиля КамАЗ-5320 удерживаются двумя парами упорных полуколец, изготовленных из бронзы (дизель ЯМЗ-236) или из сталеалюминия (дизель автомобиля КамАЗ-5320) и установленных в выточках задней коренной опоры. Верхние полукольца укреплены к торцам блока цилиндров, а нижние имеют выступы для фиксации их в крышке заднего коренного подшипника.

Маховик. Для накопления энергии в течение рабочего хода, вращения коленчатого вала во время вспомогательных тактов, уменьшения неравномерности вращения вала, сглаживания момента перехода деталей кривошипно-шатунного механизма через мертвые точки, облегчения пуска двигателя и трогания автомобиля с места служит маховик. При пуске двигателя в цилиндрах происходят вспышки рабочей смеси и маховик обеспечивает вращение коленчатого вала от конца рабочего хода в одном цилиндре до его начала в следующем цилиндре в соответствии с порядком работы двигателя.

Маховик отливают из серого чугуна; на ободе маховика для увеличения момента инерции располагают основную массу металла. На обод маховика напрессовывают или надевают зубчатый венец, необходимый для вращения коленчатого вала при пуске двигателя стартером. Венец крепят болтами. Поверхность маховика, соприкасающуюся с ведомым диском сцепления, шлифуют и полируют.

На ободе или торце маховика имеются метки, позволяющие установить поршень первого цилиндра в в. м. т. Коленчатый вал в сборе с маховиком и сцеплением подвергают динамической и статической балансировке, чтобы неуравновешенные силы инерции не вызывали вибрации двигателя и сильного износа коренных подшипников. Обычно маховик крепят к фланцу коленчатого вала болтами, которые подвергают термической обработке и шлифованию. Корончатые гайки, навернутые на эти болты, тщательно шплинтуют. Одно из крепежных отверстий на маховике и во фланце смещено по окружности на несколько градусов (2° у двигателей автомобиля ЗИЛ-130), что обеспечивает точное соединение маховика и коленчатого вала, если их почему-либо разбирали.

У дизеля ЯМЗ-236 и дизеля автомобиля КамАЗ-5320 маховик крепят болтами, которые ввертывают непосредственно в коленчатый вал. В этом случае маховик точно фиксируют относительно шеек коленчатого вала двумя шрифтами 16 (см. рис.30).

КАРТЕР ДВИГАТЕЛЯ

Картер состоит из двух частей - верхней и нижней, Верхнюю часть картера отливают как одно целое с блоком цилиндров. Здесь устанавливают коленчатый и распределительный валы, а также другие узлы и детали двигателя. Нижняя половина картера предохраняет от загрязнения детали кривошипно-шатунного и газораспределительного механизмов и, кроме того, используется как резервуар для масла. Поэтому нижнюю половину картера часто называют масляным картером, или поддоном, Он закрывает блок цилиндров снизу.

Рис.9. Масляный картер дизеля ЯМЗ-236:

1 - поддон; 2. - фланец поддона; 3 - прокладка; 4 - перегородки; 5 - медно-асбестовая прокладка; 6 - пробка сливного отверстия

Внутри поддона 1 (рис.9) устанавливают горизонтальные или вертикальные перегородки 4, которые задерживают движение масляных волн и защищают уплотнения картера от ударов масла. В поддоне есть сливное отверстие для масла, закрываемое пробкой 6.

Для плотного соединения между блоком цилиндров и фланцем 2 поддона ставят уплотнительную прокладку 3. Плоскость разъема блока цилиндров может проходить по оси коленчатого вала, но на большинстве двигателей ее смещают вниз, чтобы повысить жесткость верхней половины картера.

КРЕПЛЕНИЕ ДВИГАТЕЛЯ НА РАМЕ

Несмотря на хорошую уравновешенность современных автомобильных двигателей, во время их работы все же возникают вибрации, которые не должны передаваться на раму. Поэтому крепление (подвеска) двигателя должно быть таким, чтобы уменьшить передачу вибраций на раму автомобиля и предотвратить появление напряжений в блоке цилиндров при перекосах рамы вследствие движения автомобиля по неровной дороге. Двигатели крепят к рамам или полурамам в трех, четырех и пяти точках.

Двигатель автомобиля ГАЗ-24 "Волга" крепят в трех точках на резиновых подушках. Две опоры расположены в передней части блока цилиндров, по его сторонам, а одна опора сзади, под передней частью удлинителя коробки передач.

Двигатель автомобиля ЗИЛ-130 прикреплен к раме в трех точках: одна опора спереди и две сзади (лапы картера сцепления). Двигатель автомобиля ГАЗ-53А прикреплен к раме в четырех точках: две опоры спереди и две сзади (лапы картера маховика и сцепления). Дизель автомобиля КамАЗ-5320 крепят в пяти точках (рис.10): две опоры спереди установлены на блоке 1 цилиндров по его сторонам; две опоры сзади укреплены с обеих сторон картера 13 маховика; одна поддерживающая опора расположена на картере 22 коробки передач.

Передние опоры состоят из кронштейна 4, соединенного с блоком 1 цилиндров, а через резиновую подушку 7 и стяжку 6 - с кронштейном 5. Последний приклепан к стойке 9, а стойка - к лонжерону 10 рамы.

Задние опоры состоят из кронштейна 12 двигателя, укрепленного на картере 13 маховика, и кронштейна 11 задней опоры, приклепанного к лонжерону 10 рамы. Кронштейн 11 с крышкой 20 охватывают башмак 16, установленных между кронштейнами и соединенный болтом 15 с кронштейном 12. Башмак изготовлен из алюминиевого сплава и находится в резиновой подушке 14. Между крышкой 20 и кронштейном 11 помещены регулировочные прокладки 2L Стальная втулка 18, запрессованная в башмак, предохраняет его от смятия.

Поддерживающая опора состоит из кронштейна 23, укрепленного на картере 22 коробки передач. Полку кронштейна охватывает находящаяся в обойме 25 прямоугольная резиновая подушка 27, соединенная через накладку 26 с поперечиной 24. Последняя соединена с кронштейнами 28, приклепанными к лонжеронам рамы. Резиновые подушки, находящиеся под опорами, снижают ударные нагрузки на двигатель при движении

Рис.10. Крепление двигателя автомобиля КамАЗ-5320:

а - двигатель; б - передняя опора; в - задняя опора; г - поддерживающая опора; 1 - блок цилиндров; 2 - штифт; 3 - шпилька; 4, 8, 23 и 28 - кронштейны; 5, 15 и 16 - болты; б - стяжка; 7, 14 и 27 - резиновые, подушки; 9 - стойка; 10 - лонжерон рамы; 11 - кронштейн задней опоры; 12 - кронштейн двигателя; 13 - картер маховика; 15 - башмак; 17 - защитный колпак; 18 - втулка; 20 - крышка; 21 - регулировочная прокладка; 22 - картер коробки передач; 24 - поперечина; 25 - обойма подушки; 26 - накладка подушки автомобиля и уменьшают вибрацию рамы. Кроме того, опоры удерживают двигатель от продольного смещения при выключении сцепления, резком разгоне или торможении автомобиля. Для этих же целей двигатель автомобиля ЗИЛ-130 соединяют с передней поперечиной рамы реактивной тягой.

По характеру рабочего процесса поршневые ДВС, устанавливаемые на большинстве автомобилей, делятся на двигатели с внешним смесеобразованием и воспламенением топливо-воздушной смеси от электрической искры и с внутренним смесеобразованием и воспламенением смеси от сжатия. Первые работают на бензине, вторые – на дизельном топливе.

Бензиновые двигатели работают на жидком топливе с принудительным зажиганием. Перед попаданием в цилиндры топливо в определенных пропорциях смешивается с воздухом – эту функцию выполняют карбюратор или инжектор, закрепляемые на двигателе снаружи. По-этому бензиновые двигатели называют также двигателями с внешним смесеобразованием.

Дизельные двигатели работают на жидком топливе (солярке) по принципу воспламенения от сжатия. Топливо подает в цилиндры форсунка, а уже внутри цилиндров оно смешивается с воздухом.

Есть еще один вид ДВС – газовые , работающие на метане или пропан-бутане. По принципу работы они практически не отличаются от бензиновых.

Кривошипно-шатунный механизм (КШМ)

Кривошипно-шатунный механизм преобразует возвратно-поступательное движение поршня в цилиндре во вращательное движение коленчатого вала двигателя.

Ранее мы рассматривали устройство и работу одноцилиндрового двигателя. Но на большинстве современных легковых автомобилей установлены моторы с четырьмя и более цилиндрами. Такие моторы имеют либо обычное расположение цилиндров, либо V-образное.

В первом случае цилиндры расположены в одну линию, во втором – в два ряда с некоторым углом между ними. Эта информация нужна исключительно для общего развития, поскольку для успешной сдачи экзамена в ГИБДД необходимо знать устройство и работу лишь двух видов ДВС: с одним цилиндром и с четырьмя (причем на примере советских автомобилей).

У стандартного четырехцилиндрового двигателя кривошипно-шатунный механизм состоит из следующих элементов:

♦ блока цилиндров с картером;

♦ головки блока цилиндров;

♦ поддона картера двигателя;

♦ поршней в комплекте с поршневыми

♦ кольцами и пальцами;

♦ шатунов, на которых закреплены поршни (см. рис. 2.4);

♦ коленчатого вала (см. рис. 2.5);

♦ маховика.

В блоке цилиндров расположены поршни, шатуны и коленчатый вал, образующие шатунно-поршневую группу (рис. 2.10), а также другие системы двигателя.

Блок цилиндров – «сердце» ДВС. Кроме шатунно-поршневой группы, в нем предусмотрены литые и высверленные каналы и отверстия, а также места установки подшипников.

На подшипниках в блоке цилиндров вращается коленчатый вал (см. рис. 2.5). Во внутренних полостях блока, между его двойными стенками, циркулирует охлаждающая жидкость, там же проходят специальные каналы системы смазки двигателя, по которым циркулирует масло. Наружное оборудование двигателя монтируется преимущественно на блоке цилиндров и при работающем моторе составляет с ним единое целое. Нижняя часть блока называется картером и представляет собой поддон (резервуар) для масла.


Рис. 2.10. Детали шатунно-поршневой группы:

1 – маслосъемное поршневое кольцо; 2, 3 – компрессионные поршневые кольца; 4, 6 – поршни; 5 – поршневой палец; 7 – шатун; 8 – крышка шатуна; 9 – шатунный вкладыш; 10 – отверстие на шатуне для выхода масла; 11 – метка «П» на поршне


Верхняя часть двигателя – вторая по значимости и по величине его составляющая – называется головкой блока цилиндров . В ней расположены камеры сгорания, клапаны и свечи зажигания, а также распределительный вал (на большинстве двигателей легковых автомобилей). В головке, как и в блоке цилиндров, предусмотрены каналы и полости для циркуляции охлаждающей жидкости и масла. Головка крепится к блоку цилиндров с помощью резьбовых соединений, а сверху через прокладку закрывается штампованной крышкой.

ДВС работает в очень жестком режиме: коленчатый вал двигателя на холостом ходу совершает около 1000 оборотов в минуту, то есть за секунду – около 16 полных вращений.

При движении автомобиля количество оборотов возрастает в 2–5 раз, то есть всего лишь за одну секунду коленвал совершает до 80 оборотов. При этом коленвал связан с поршнями, причем всего за пол-оборота вала поршень проделывает весь путь в цилиндре сверху вниз или наоборот, а за полный оборот – совершает два хода, да еще с полной остановкой в верхней и нижней мертвых точках и последующим изменением направления движения на противоположное. При этом поршни перемещаются в цилиндрах при очень высоких температурах и давлении.

Газораспределительный механизм (ГРМ)

Газораспределительный механизм предназначен для своевременного впуска в цилиндры двигателя горючей смеси и выпуска отработавших газов. Также он обеспечивает надежную изоляцию камеры сгорания от окружающей среды во время тактов сжатия и рабочего хода.

ГРМ состоит из следующих основных элементов (рис. 2.11):

♦ распределительного вала;

♦ рычагов;

♦ ремня газораспределительного механизма (ремень ГРМ) или цепи;

♦ впускных и выпускных клапанов с мощными пружинами;

♦ впускных и выпускных каналов.


Рис. 2.11. Газораспределительный механизм:

1 – коленчатый вал; 2 – ведущая звездочка; 3 – звездочка натяжного устройства; 4 – двуплечий рычаг; 5 – пружина; 6 – регулировочный винт; 7 – коромысло; 8 – ось коромысла; 9 – наконечник регулировочного винта; 10 – опорная шайба пружины; 11 – наружная и внутренняя пружины; 12 – крепления опорной шайбы на клапане; 13, 16 – выпускной и впускной клапаны; 14 – кулачок; 15 – ведомая звездочка распределительного вала; 17 – упорный фланец


Распределительный вал в большинстве двигателей легковых автомобилей установлен на головке блока цилиндров. Его образуют кулачки (эксцентрики), количество которых соответствует числу клапанов двигателя, то есть каждый кулачок работает только со своим конкретным клапаном. При вращении распределительного вала его кулачки через рычаги воздействуют на клапаны. Этим обеспечивается своевременное открытие и закрытие впускных и выпускных клапанов. Иными словами, для открытия и закрытия клапанов должен повернуться распределительный (или кулачковый) вал.

В большинстве ДВС распредвал вращается от коленвала: с помощью или цепной передачи, или зубчатого ремня, натяжение которых регулируется специальными устройствами.

Ременный привод работает тише, прост в установке, не требует смазки, упрощает конструкцию двигателя и снижает его массу. Цепной привод имеет обратный эффект. Но если рвется ремень ГРМ, выходят из строя клапаны, если же повреждена цепь, то «страдает» фактически только она. Натяжение в цепном приводе регулируется подпружиненным плунжером, а ремня – роликом.

Большинство современных двигателей оснащено ременным приводом распредвала.

На примере одноцилиндрового ДВС рассмотрим работу газораспределительного механизма (см. рис. 2.7). Распредвал, получив вращение от коленвала, поворачивается. Его кулачок набегает на рычаг, который нажимает на стержень подпружиненного клапана и, преодолев сопротивление пружины, открывает его. Продолжая вращаться, кулачок сбегает с рычага (толкателя), и под воздействием пружины клапан закрывается. Дальше поршень через открытый впускной или выпускной клапан соответственно засасывает горючую смесь или выталкивает отработавшие газы.

Для лучшего наполнения цилиндров рабочей смесью впускной клапан открывается чуть раньше того момента, когда поршень достигает ВМТ, а выпускной (для лучшей очистки от отработавших газов) – несколько раньше, чем поршень доходит до НМТ. В результате впускной клапан начинает открываться в тот момент, когда выпускной клапан еще полностью не закрылся. Такое положение клапанов называется их перекрытием . Когда же оба клапана в одном цилиндре надежно закрыты, происходит такт сжатия или рабочий ход поршня.

Система питания карбюраторного двигателя

Система питания двигателя предназначена для хранения, очистки и подачи топлива, очистки воздуха, приготовления горючей смеси и по-дачи ее в цилиндры двигателя. Количество и качество этой смеси должно быть разным при различных режимах работы двигателя, что также находится «в компетенции» системы питания. Поскольку мы будем рассматривать работу бензиновых двигателей, топливом у нас всегда будет бензин.

В зависимости от вида устройства, осуществляющего подготовку топливо-воздушной смеси, двигатели могут быть инжекторными, карбюраторными или оборудованными моновпрыском.

Система питания состоит из следующих основных элементов (рис. 2.12):

♦ топливного бака;

♦ топливопроводов;

♦ фильтров очистки топлива;

топливного насоса;

воздушного фильтра;

♦ карбюратора или инжектора с электронной системой управления.

Топливный бак (или бензохранилище) – это специальная металлическая емкость вместимостью 40–80 литров, которая чаще всего устанавливается в задней (более безопасной) части легкового автомобиля. Топливо в бензобак заливают через горловину, в которой предусмотрена трубка для выхода воздуха при заправке. На некоторых машинах в самой нижней точке бензобака есть сливная пробка, позволяющая при необходимости полностью очистить бак от нежелательных составляющих бензина – воды и мусора.

Бензин, залитый в бак легкового автомобиля, предварительно очищается сетчатым фильтром, установленным внутри бака на топливозаборнике. В бензобаке также размещен датчик уровня топлива (поплавок с реостатом), показания которого выводятся на щиток приборов.

Из топливного бака бензин подается к карбюратору по топливопроводу , который проходит под днищем автомобиля. По пути топливо проходит через фильтр тонкой очистки . Бензин из бака отправляет «в дорогу» топливный насос . Топливные насосы бывают механические и электрические. Механические насосы используют для машин с карбюраторными двигателями. На автомобили, оборудованные электронным впрыском, устанавливают электрические насосы.


Рис. 2.12. Система питания автомобиля:

1 – топливный бак; 2 – датчик указателя уровня топлива; 3 – карбюратор; 4 – воздушный фильтр; 5 – топливный насос; 6 – шланг подвода нагретого воздуха; 7 – выпускной трубопровод; 8 – дополнительный глушитель; 9 – основной глушитель; 10 – труба глушителя; 11 – топливопровод


Поскольку сейчас мы рассматриваем систему питания карбюраторного двигателя, остановимся подробнее на механических насосах.

Механический насос (рис. 2.13) состоит из корпуса, подпружиненной диафрагмы с механизмом привода, впускного и нагнетательного (выпускного) клапанов, а также сетчатого фильтра. Топливный насос в зависимости от марки автомобиля приводится в действие либо эксцентриком (кулачком) распредели тельного вала, либо эксцентриком, разме щенным на валу привода масляного насоса и прерывателя-распределителя. В обоих случаях вращающийся эксцентрик качает рычаг привода топливного насоса, прижатый к нему пружиной. Этот рычаг воздействует на шток с подпружиненной диафрагмой.

Когда рычаг тянет шток с диафрагмой вниз, пружина диафрагмы сжимается, и над ней создается разрежение, под действием которого впускной клапан, преодолев усилие своей пружины, открывается. Через этот клапан топливо из бака втягивается в пространство над диафрагмой. Когда рычаг освобождает шток диафрагмы (часть рычага, связанная со штоком, перемещается вверх), диафрагма под действием собственной пружины также перемещается вверх, впускной клапан закрывается, и бензин выдавливается через нагнетательный клапан к карбюратору. Этот процесс происходит при каждом повороте приводного вала с эксцентриком.


Рис. 2.13. Схема работы топливного насоса:

1 – фильтр; 2 – всасывающий клапан; 3 – нагнетательный клапан; 4 – подводная трубка; 5 – головка топливного насоса; 6 – штанга привода; 7 – тяга диафрагмы; 8 – рычаг привода топливного насоса; 9 – ось рычага привода


Бензин в карбюратор выталкивается только за счет усилия пружины диафрагмы при перемещении ее вверх. При заполнении карбюратора до необходимого уровня его специальный игольчатый клапан перекроет доступ бензина. Так как качать топливо будет некуда, диафрагма топливного насоса останется в нижнем положении: ее пружина будет не в силах преодолеть создавшееся сопротивление. И лишь когда двигатель израсходует часть топлива из карбюратора, его игольчатый клапан откроется и диафрагма под действием пружины сможет втолкнуть новую порцию топлива из бензонасоса в карбюратор.

Бензонасос имеет рычажок, выступающий из его корпуса наружу. Он предназначен для ручной подкачки топлива (например, при испарении бензина из карбюратора из-за длительного перерыва в эксплуатации).

Воздушный фильтр (рис. 2.14), расположенный сверху на карбюраторе, очищает воздух от пыли и других механических примесей перед поступлением его в карбюратор для последующего смешивания с бензином. В воздушный фильтр воздух поступает через трубу воздухозаборника, которая затем разделяется на две части. Через одну часть холодный воздух всасывается в теплую погоду (летом), через другую часть воздух, подогретый выпускным коллектором, всасывается в холодную погоду (зимой). Переход от «лета» к «зиме» и наоборот на разных автомобилях выполняется по-разному: либо с помощью специального рычажка-переключателя, либо поворотом корпуса воздушного фильтра, либо автоматически.


Рис. 2.14. Воздушный фильтр двигателя:

1 – гайка; 2 – шайба; 3 – уплотняющая прокладка; 4 – регулирующая перегородка; 5 – прокладка регулирующей перегородки; 6 – фильтрующий элемент приточной вентиляции картера; 7 – фильтрующий элемент воздуха; 8 – крышка; 9 – приемный патрубок подогретого воздуха; 10 – приемный патрубок холодного воздуха; 11 – корпус

Общее устройство карбюратора

Карбюратор предназначен для приготовления горючей смеси, разной по качеству (соотношению бензина и воздуха) и количеству в зависимости от режимов работы двигателя, и ее подачи в цилиндры двигателя.

Элементарный карбюратор состоит из следующих основных элементов (рис. 2.15):

♦ поплавковой камеры;

♦ поплавка с игольчатым запорным клапаном;

♦ распылителя;

♦ смесительной камеры;

♦ диффузора;

♦ воздушной и дроссельной заслонок;

♦ топливных и воздушных каналов с жиклерами.


Рис. 2.15. Схема карбюратора:

1 – рычаг ускорительного насоса; 2 – винт регулировки подачи топлива ускорительным насосом; 3 – топливный жиклер переходной системы второй камеры; 4 – воздушный жиклер эконостата; 5 – воздушный жиклер переходной системы; 6 – топливный жиклер эконостата; 7 – воздушный жиклер главной дозирующей системы второй камеры; 8 – эмульсионный жиклер эконостата; 9 – распылитель эконостата; 10 – распылитель главной дозирующей системы второй камеры; 11 – клапан распылителя ускорительного насоса; 12 – распылитель ускорительного насоса; 13 – воздушная заслонка; 14 – малый диффузор первой камеры; 15 – воздушный жиклер главной дозирующей системы первой камеры; 16 – воздушный жиклер пускового устройства; 17 – тяга; 18 – воздушный жиклер системы холостого хода; 19 – игольчатый клапан; 20 – топливный фильтр; 21 – электромагнитный клапан; 22 – топливный жиклер системы холостого хода; 23 – главный топливный жиклер первой камеры; 24 – корпус экономайзера; 25 – эмульсионный жиклер системы холостого хода; 26 – дроссельная заслонка первой камеры; 27 – распылитель главной дозирующей системы первой камеры; 28 – дроссельная заслонка второй камеры; 29 – главный топливный жиклер второй камеры


В поплавковой камере постоянный уровень топ лива поддерживается поплавком, соединенным с игольчатым клапаном . По мере расходования топлива поплавок опускается, открывается игольчатый клапан и новая порция бензина вливается в топливную камеру. При достижении нормального уровня в поплавковой камере поплавок, всплывая, закрывает иглой входное отверстие и прекращает доступ бензина. По трубке распылителя бензин из поплавковой камеры попадает в смесительную камеру , где смешивается с поступающим из входного патрубка воздухом. Уровень топлива в поплавковой камере несколько ниже кромки выходного отверстия распылителя, поэтому при неработающем двигателе топливо из поплавковой камеры не вытекает даже при наклонном положении машины.

Для дозирования бензина в нижнюю часть трубки распылителя ввернут жиклер, представляющий собой пробку с калиброванным отверстием. Диффузор (суженный внутри короткий патрубок) служит для увеличения скорости воздушного потока в центре смесительной камеры и создания разрежения около конца распылителя (при работающем двигателе), что необходимо для высасывания топлива из топливной камеры и лучшего его распыления. Количество горючей смеси, подаваемой в цилиндры двигателя, регулируется дроссельной заслонкой , связанной с педалью газа. Эта заслонка изменяет площадь проходного сечения за смесительной камерой. Водитель управляет заслонкой с помощью педали газа, расположенной под его правой ногой.

Простейший карбюратор не способен приготовить оптимальную по составу горючую смесь во всех режимах работы двигателя.

При увеличении степени открытия дроссельной заслонки смесь будет обогащаться.

Оптимальное же изменение состава смеси должно быть другим.

Современные карбюраторы бензиновых двигателей значительно отличаются от элементарного карбюратора главным образом за счет наличия дополнительных вспомогательных устройств, позволяющих в тех или иных режимах работы двигателя в определенной степени обеднять или обогащать смесь. Различают карбюраторы с восходящим, горизонтальным и падающим потоком. Наиболее часто используют карбюраторы с падающим потоком, в которых смесь в смесительной камере движется сверху вниз. Карбюратор может иметь одну или две камеры. В последнем случае они могут устанавливаться последовательно или параллельно. Чаще всего используются двухкамерные карбюраторы с параллельным расположением камер.

В общем случае современный карбюратор состоит из следующих основных устройств: главного дозирующего устройства, пускового устройства, системы холостого хода, экономайзера, ускорительного насоса, балансировочного устройства и ограничителя частоты вращения коленчатого вала. Иногда в состав карбюратора входят также эконостат и система принудительного холостого хода.

Кроме того, обычно под панелью приборов или прямо на ней есть специальная рукоятка, которая управляет воздушной заслонкой кар бюратора. В народе – попросту «подсос». Вытягивая ее, водитель прикрывает воздушную заслонку, ограничивая доступ воздуха и увеличивая разрежение в смесительной камере карбюратора. В результате бензин из поплавковой камеры высасывается более интенсивно и при недостатке воздуха готовит для мотора обогащенную горючую смесь, которая и необходима для пуска холодного двигателя.

Наиболее экономично карбюратор работает при средних нагрузках. Движение рывками (резкий разгон – торможение) увеличивает расход топлива, так как при резком нажатии на педаль газа двигателю для быстрого набора оборотов и исключения провалов в работе требуется обогащенная смесь.

Итак, подведем промежуточный итог: карбюратор – это сложное механическое устройство, смешивающее бензин с воздухом в определенных пропорциях и осуществляющее доставку подготовленной смеси к цилиндрам двигателя.

Простейший карбюратор доставляет топливо пропорционально количеству воздуха, проходящего через него.

Система питания двигателя с впрыском топлива

С середины 1980-х годов карбюраторы стали вытесняться более эффективными инжекторными системами. Главными их преимуществами являются лучшие пусковые свойства (они меньше зависят от окружающей температуры), надежность, экономичность, лучшие мощностные характеристики, а также меньшая токсичность выхлопа. Однако инжекторные системы более привередливы к качеству бензина. Так, не допускается работа двигателей с системой впрыска топлива на этилированном бензине. Это приводит к выходу из строя нейтрализатора и датчика концентрации кислорода.

Слово injector в переводе с английского означает «форсунка» (рис. 2.16). Первые системы питания, использовавшие принцип впрыска, появились в конце XIX века, однако из-за сложной конструкции и отсутствия должных систем управления не нашли широкого приме нения. Вновь о системах впрыска вспомнили в 1960-х годах. Тогда они были исключительно механическими, затем им на смену пришли современные системы впрыска с электронным управлением. Эти системы в зависимости от количества форсунок и места впрыска топлива делятся на одноточечные (моновпрысковые) (рис. 2.17, а ) и многоточечные (в них каждый цилиндр имеет персональную форсунку, впрыскивающую топливо во впускной коллектор в непосредственной близости от впускного клапана конкретного цилиндра) (рис. 2.17, б ).


Рис. 2.16. Электромагнитная форсунка


Моновпрыск направляет подготовленную смесь во впускной коллектор. В этом он схож с карбюратором. На современных транспортных средствах работой инжекторов и моновпрысков управляют электронные процессоры. Они контролируют работу каждого цилиндра.

Рассмотрим устройство простейшей инжекторной системы (рис. 2.18). Она включает в себя следующие элементы:

электрический бензонасос;

♦ регулятор давления;

электронный блок управления;

♦ датчики угла поворота дроссельной заслонки, температуры охлаждающей жидкости и количества оборотов коленчатого вала;

♦ инжектор.

Во впрысковой системе питания используют двухступенчатый неразборный электрический бензонасос роторно-роликового типа. Его устанавливают в топливном баке. Такой насос подает топливо под давлением свыше 280 кПа.


Регулятор давления поддерживает необходимую разницу давлений между топливом в форсунках и воздухом во впускном коллекторе. Он выполнен в виде мембранного клапана, установленного на топливной рампе. При повышении нагрузки двигателя этот регулятор увеличивает давление топлива, подаваемого к форсункам, а при снижении – уменьшает, возвращая избыток топлива по сливной магистрали в бак.


Рис. 2.17. Системы впрыска: а – одноточечная; б – многоточечная


Электронный блок управления (компьютер) – «мозг» системы впрыска топлива. Он обрабатывает информацию от датчиков и управляет всеми элементами системы питания. В него непрерывно поступают сведения о напряжении в бортовой сети автомобиля, его скорости, положении и количестве оборотов коленчатого вала, положении дроссельной заслонки, массовом расходе топлива, температуре охлаждающей жидкости, наличии детонации, содержании кислорода в выхлопе. Используя эту информацию, блок управляет подачей топлива, системой зажигания, регулятором холостого хода, вентилятором системы охлаждения, адсорбером системы улавливания паров бензина (в качестве адсорбера применяется активированный уголь), системой диагностики и т. д.


Рис. 2.18. Инжекторная система:

1 – топливный бак; 2 – электробензонасос; 3 – топливный фильтр; 4 – регулятор давления топлива; 5 – форсунка; 6 – электронный блок управления; 7 – датчик массового расхода воздуха; 8 – датчик положения дроссельной заслонки; 9 – датчик температуры ОЖ; 10 – регулятор ХХ; 11 – датчик положения коленвала; 12 – датчик кислорода; 13 – нейтрализатор; 14 – датчик детонации; 15 – клапан продувки адсорбера; 16 – адсорбер


При возникновении неполадок в системе электронный блок управления предупреждает о них водителя с помощью контрольной лампы Check Engine (этот индикатор может быть выполнен как в виде указанной надписи, так и в виде пиктограммы с изображением двигателя). В его оперативной памяти сохраняются диагностические коды, указывающие места возникновения неисправностей. Специалисты с помощью определенных манипуляций или специального считывающего устройства могут получить информацию об этих кодах и быстро обнаружить неполадки.


Датчик положения дроссельной заслонки размещен на дроссельном патрубке и связан с осью дроссельной заслонки. Он представляет собой потенциометр. При нажатии на педаль газа поворачивается дроссельная заслонка и увеличивается напряжение на выходе датчика.

Обрабатывая эту информацию, электронный блок управления корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки (то есть в зависимости от того, насколько сильно вы нажмете на педаль газа).


Датчик температуры охлаждающей жидкости – это термистор, то есть резистор, сопротивление которого зависит от температуры: при низкой температуре он имеет высокое сопротивление, а при высокой температуре – низкое. Датчик расположен в потоке охлаждающей жидкости двигателя. Элек тронный блок управления измеряет падение напряжения на датчике и таким образом определяет температуру охлаждающей жидкости. Эту температуру он постоянно учитывает, управляя работой большинства систем.


Датчик положения коленвала (индуктивный) координирует работу форсунок. С его помощью блок управления, получив информацию о положении коленчатого вала и соответственно о тактах двигателя, дает сигнал на срабатывание конкретной форсунки, которая в нужный момент подает распыленное топливо к соответствующему цилиндру.

Системы впрыска современных автомобилей, в отличие от простейшего инжектора , оборудуют целым рядом дополнительных устройств и датчиков, улучшающих работу двигателя: лямбда-зондом, каталитическим нейтрализатором, датчиками детонации и температуры впускного воздуха и т. д.



Поделиться