Простой дифференциал. Различие принципов действия

Дифференциал в автомобиле работает с целью осуществления следующих трёх задач:

  1. Дифференциал передаёт мощность двигателя на колёса машины.
  2. Делает последний шаг в уменьшении числа оборотов к колёсам (мы ведь помним, что первый такой шаг делает коробка передач) и, следовательно, увеличивая крутящий момент , передаваемый тем же ведущим колёсам.
  3. Передавая мощность на ведущие колёса (всегда на чётное количество колёс на одной оси: на два или на все четыре), дифференциал позволяет каждому из них вращаться с разными скоростями (это именно то, от чего дифференциал заработал своё название).

В этой статье Вы узнаете, почему Ваш автомобиль нуждается в разных оборотах вращения колёс, как это обеспечивается, что такое дифференциал, как дифференциал работает и каковы его основные недостатки. Мы также рассмотрим несколько его типов.

Для чего нужен дифференциал?

Автомобильные колёса вращаются с разной скоростью, особенно это заметно при повороте. Вы можете видеть в анимации ниже, что каждое колесо проезжает очень разное расстояние, когда автомобиль поворачивает, и что внутренние колёса проезжают гораздо более короткое расстояние, чем внешние. Поскольку скорость равна расстоянию, поделённому на время, необходимое для проезда этого расстояния, то получается, что колёса, которые проезжают меньшее расстояние, вращаются с более низкой скоростью: так, при повороте налево левые колёса будут крутиться медленнее, чем правые, и наоборот. Также следует отметить, что передние колёса проезжают расстояние, отличающееся от того, которое проезжают задние колёса.

Кликните для просмотра анимации

Для автомобилей с приводом только на одну ось колёс - будь то на задние колёса или же на передние - разность вращения передних колёс к задним это не проблема. Нет никакой связи между ними, поэтому они вращаются независимо. Но ведущие колёса связаны между собой так, чтобы один двигатель и трансмиссия должны приводить в движение оба колеса, при этом, с разной скоростью их вращения. Но как же быть, если двигатель у нас всего один?! Если Ваш автомобиль не оснащён дифференциалом, колёса должны быть заблокированы вместе, будучи вынужденными вращаться с одной и той же скоростью. Это сделало бы манёвры поворотов - даже под небольшим углом - сложными: у таких автомобилей, чтобы иметь возможность повернуть, одной из шин обязательно придётся скользить, либо другой обязательно пробуксовывать. А с современными покрышками и асфальтовыми дорогами для этого потребуется достаточно много сил. Эта сила должна будет передаваться через ось от одного колеса к другому, возложив, таким образом, очень тяжёлое бремя на компоненты оси.

Именно с этой проблемой безукоризненно справляется дифференциал.

Что такое дифференциал?

Дифференциал - это устройство, которое разделяет крутящий момент двигателя на два пути с выходами, что позволяет каждому выходу вращаться с различной скоростью.

Дифференциал имеется на всех современных легковых и грузовых автомобилях, а также на многих полноприводных машинах. Причём, все полноприводные авто должны иметь дифференциал между каждым набором ведущих колёс на одной оси, и, кроме того, они нуждаются в дифференциале между парами передних и задних колёс (помните начало статьи - потому что передние колёса проходят другую дистанцию, в отличие от задних колёс при движении автомобиля по направлению, отличному от прямого?).

Тем не менее, некоторые полноприводные машины не имеют дифференциала между передними и задними колёсами, и, вместо этого, эти пары колёс тесно связаны между собой так, что передние и задние колёса должны крутиться с одной и той же скоростью. Вот почему на таких автомобилях производители не рекомендуют ездит по твёрдому покрытию в режиме полного привода, а включать его только на бездорожье.

А теперь давайте выясним, в каком месте автомобиля обычно располагается дифференциал в зависимости от типа привода автомобиля:



Как работает дифференциал?

Мы начнем с простейшего типа дифференциала, называемого открытым дифференциалом . Но сначала мы должны изучить некоторые термины - посмотрите на рисунок ниже, там Вы найдёте основные компоненты работы дифференциала:


Таким образом, дифференциал состоит из следующих основных частей:

  1. Ведущий вал - передаёт крутящий момент, ведя его от коробки передач к началу дифференциала
  2. Ведущая шестерня ведущего вала - косозубая небольшая шестерня в форме конуса, которая используется для сцепки с механизмом дифференциала
  3. Коронная шестерня - ведомая шестерня также в форме конуса, которая приводится в движение (вращение) ведущей шестерней. Ведущая и ведомая шестерня, вместе взятые, называются главной передачей и именно они служат последним этапом уменьшения скорости вращения, которое в конечном счёте достигнет колёс (коронная шестерня всегда меньше ведущей, а, значит, ведущей шестерне придётся сделать намного больше оборотов, пока ведомая сделает всего один оборот вокруг себя).
  4. Шестерни полуосей - это последние шестерни на пути передачи вращения от ведущего вала к колёсам.
  5. Сателлиты - планетарный механизм, который как раз и осуществляет ключевую роль в обеспечении разности вращения колёс при повороте.
  6. Полуоси - валы, идущие от дифференциала непосредственно к колёсам.

А теперь давайте перейдём к ключевому и самому важному понимаю, как работает дифференциал, и посмотрим на анимации ниже, как вышеперечисленные компоненты открытого дифференциала работают в двух случаях:

  • Когда автомобиль едет прямо.
  • Когда автомобиль поворачивает.

Посмотрите сами - всё достаточно просто:

Нажмите на кнопку "Поворачиваем", чтобы увидеть, как работает дифференциал во время поворота, и "Едем прямо", чтобы посмотреть, как движутся его компоненты во время прямолинейного движения

Как мы видим, когда мы едем прямо на своей машине, то фактически весь механизм дифференциала крутится с одной скоростью: частота вращения входного вала равна частоте вращения полуосей и, соответственно, частоте вращения колёс. Но стоит нам немного повернуть руль, как ситуация меняется, и в свою главную роль вступают теперь сателлиты, которые разблокируются за счёт разности нагрузки на колёса (когда одно колесо пытается пробуксовать, крутясь быстрее), и вся мощность от двигателя теперь проходит через них. А за счёт того, что два сателлита - это две независимые шестерни, получается, что они и передают разную частоту вращения полуосям, как бы раздваивая её, но не деля всю мощность поровну, а передавая наибольшую мощность тому колесу, которое движется по внешнему краю во время поворота автомобиля и, соответственно, раскручивая его сильнее (повышая его количество оборотов). И разность передаваемой мощности при этом тем сильнее, чем круче поворачивает машина (точнее, чем меньше радиус поворота этой машины).

Какой главный недостаток дифференциала?

Открытый дифференциал передаёт вращение тому или иному колесу практически в любом соотношении, в том числе и в соотношении 100%/0% - когда одно из ведущих колёс принимает весь крутящий момент на себя. В то же время распределение такого вращения между колёсами происходит при изменении нагрузки на эти колёса (а вместе с ними на полуоси) - то есть колесо с меньшей нагрузкой в повороте получает больше вращения. Но здесь кроется один существенный недостаток, который имеет место при определённых условиях, а именно, когда оба ведущих колеса находятся в грязи, снегу или на льду, и автомобиль начинает буксовать - в этом случае то колесо, которое имеет меньшее сцепление с поверхностью, будет получать львиную долю вращения. Проще говоря, если Вы, к примеру, застряли в снегу , сев "на пузо" - когда одно колесо сцеплено с поверхностью снега, а второе вовсе висит в воздухе, то получать мощность за счёт соответствующего распределения по полуосям дифференциала будет как раз то колесо, которое находится на весу, и именно оно будет беспомощно крутиться в воздухе. Особенно остро данная проблема стоит у внедорожников и вездеходов.

Какие виды дифференциалов бывают?

Решением этих проблем является дифференциал повышенного трения (LSD, его ещё называют дифференциалом с ограниченным проскальзыванием ). Дифференциалы повышенного трения используют различные механизмы для обеспечения нормального дифференциального действия в различных условиях езды. Когда колесо скользит, такой дифференциал позволяет передать больше крутящего момента как раз на нескользящее колесо.

На внедорожниках и вездеходах также применяются дифференциалы с ручным отключением, которые, впрочем, очень часто не защищены от случайного отключения или отключения не в то время по незнанию - дело в том, что возможность отключения дифференциала на ходу влечёт за собой возможную его поломку, и это распространённая проблема.

Что такое вискомуфта (вязкая муфта)?

Вискомуфта чаще всего встречается во всех полноприводных машинах. И, если Вы читали статью о принципе работы гидротрансформатора , то знайте, что вискомуфта имеет схожую с ним схему работы. Она широко используется для связи задних колёс с передними таким образом, что когда один набор колёс начинает проскальзывать, крутящий момент будет передан на другой набор, тем самым решая злободневную проблему буксующего колеса, описанную выше.

Вязкая муфта имеет два набора пластин внутри герметичного корпуса, который заполнен вязкой жидкостью (несколько более вязкой, чем трансмиссионное масло , к примеру). Один набор пластин соединён с каждым выходным валом. В нормальных условиях оба набора пластин и их порция вязкой жидкости движутся с одной и той же скоростью. Но когда одна ось пытается вращаться быстрее, возможно, потому что она проскальзывает, множество пластин, соответствующих колёсам этой оси, вращаются быстрее, чем другие. Вязкая жидкость, находящаяся между пластинами, пытается догнать более быстрые диски, тем самым ведя за собой к этому и медленные диски. Это передает больший крутящий момент на медленнее вращающиеся колёса, которые как раз и не скользят.


Устройство вискомуфты

Когда автомобиль поворачивает, разница в скорости между колёсами на одной оси не так велика, как тогда, когда одно из колёс попросту проскальзывает. Чем быстрее пластины вращаются относительно друг друга, тем больше крутящего момента приходится на муфту. Муфта не мешает виткам крутиться, потому что величина крутящего момента, передаваемого во время поворота, мала.

Простой эксперимент с яйцом поможет объяснить поведение вискомуфты. Если Вы поставите яйцо на кухонный стол, скорлупа, белок и желток будут неподвижны. Но когда Вы начнёте раскручивать яйцо, скорлупа яйца будет двигаться с более высокой скоростью, чем белок, а белок немного быстрее, ем желток, но желток затем быстро наверстает упущенное. Кстати, чтобы убедиться в этих словах, проведите эксперимент, как только у Вас появится яйцо: раскрутите его достаточно быстро, а затем остановите его, потом просто отпустите яйцо, и оно начнёт снова вращаться (ну, или хотя бы дёрнется в сторону предыдущего вращения). В этом эксперименте мы использовали трение между скорлупой, белком и желтком, применяя силу только на скорлупу. Сначала мы раскрутили фактически скорлупу, и с некоторой задержкой за скорлупой за счёт трения начали раскручиваться белок, а затем и желток. А когда мы остановили скорлупу, то то же трение - между всё еще движущимся желтком, белком и скорлупой - применило силу к скорлупе, заставляя его ускориться. Так и в случае вискомуфты, сила передаётся между жидкостью и наборами пластин таким же образом, как между желтком, белком и скорлупой.

Что такое дифференциал Torsen?

Дифференциал Torsen является чисто механическим устройством: он не завязан никакой , а также муфтами или вязкими жидкостями и по своей сути представляет собой довольно простой механизм, очень схожий с открытым дифференциалом.

Torsen работает также, как и открытый дифференциал, когда величина крутящего момента между двумя ведущими колёсами равная. Но как только одно из колёс начинает терять сцепление с дорогой, разница в крутящем моменте приводит к блокировке вместе шестерен в дифференциале Torsen.

Такой дифференциал часто используется в мощных и очень мощных полноприводных машинах. Как и вискомуфта, он часто используется для передачи мощности между передними и задними колёсами. И в этом применении дифференциал Torsen превосходит вискомусту, потому что передаёт крутящий момент на колёса стабильно перед тем, как фактически начинается скольжение. Однако, если один набор колёс теряет сцепление с дорогой полностью, то дифференциал Torsen будет не в состоянии перенести крутящий момент на другой набор колёс из-за своей конструкции и принципа работы такого дифференциала.


Так выглядит современный дифференциал Torsen

Кстати, почти все автомобили Hummer используют дифференциал Torsen между передней и задней осями. При этом, руководство пользователя для Hummer предлагает новое решение проблемы, когда одно колесо полностью теряет сцепление с дорогой: нажимайте на педаль тормоза . Применяя тормоз, крутящий момент подаётся на колёса, которые находятся в воздухе, а затем переходят к колёсам, которые смогут вытащить автомобиль из "каши".

КАК РАБОТАЮТ ДИФФЕРЕНЦИАЛЫ

В этой статье мы расскажем о работе дифференциалов, а также зачем он необходим автомобилю и о его недостатках.

Что такое дифференциал?

Дифференциал – это устройство, которое распределяет крутящий момент по двум направлениям, допуская вращение каждого выхода с разной скоростью. Он используется во всех современных автомобилях и грузовиках, а также на машинах с постоянным полным приводом. Причем в последних - между каждой парой колес, потому что передние проходят разный путь в повороте по сравнению с задними. Системы непостоянного полного привода не имеют дифференциала между передними и задними колесами; вместо этого во время механической блокировки передние и задние колеса вынуждены вращаться с одинаковой средней скоростью. Вот почему такие системы полного привода не рекомендуют использовать на сухом асфальте: с включенным полным приводом машина тяжело поворачивается на асфальте.

Дифференциал выполняет сразу 3 функции:

Направляет мощность двигателя на колеса;

Является последним этапом понижения передачи в машине, замедляя частоту вращения трансмиссии перед тем, как мощность пойдет на колеса;

Направляя мощность на колеса, позволяет им вращаться с разными скоростями (это свойство дало имя дифференциалу).

Зачем нужен дифференциал

Колеса машины вращаются с разными скоростями, особенно в поворотах - внутренние колеса проходят меньший путь, чем наружные, а значит, и с меньшей скоростью. При этом передние колеса проходят разное расстояние по сравнению с задними. Если бы машина не имела дифференциалов, то колеса вращались бы с одной и той же скоростью. Это сильно затруднило бы повороты: чтобы поворачивать, одно колесо должно было бы проскальзывать, т.е. буксовать. Усилие от одного колеса через ось переходило бы, серьезно нагружая ее компоненты.


Открытые дифференциалы

Начнем с простейшего варианта, называемого открытым дифференциалом. Когда машина едет по прямой, оба ведущих колеса вращаются с одинаковой скоростью. Первичная шестерня вращает коронную шестерню и корпус дифференциала, при этом ни одна из шестерен в корпусе не вращается – обе полуосевые шестерни заблокированы, так как движение идет по прямой. Обратите внимание, что пара “первичная шестерня и коронная шестерня” - это последнее передаточное число в машине, которое часто называют передаточным числом моста или передаточным числом главной передачи. Если оно составляет 4,10, тогда число зубьев коронной шестерни в 4,10 раза больше числа зубьев первичной шестерни. При повороте подключаются полуосевая и ведущая шестерни, обеспечивая разные скорости для колес.

Дифференциал в разрезе. Классические автомобильные дифференциалы основаны на планетарной передаче. Карданный вал (1 ) через коническую зубчатую передачу вращает ротор (2 ). Ротор через шестерни (3 ) вращает полуоси (4 ). Такое зацепление имеет не одну, а две степени свободы, и каждая из полуосей вращается с такой скоростью, с какой может. Постоянна лишь суммарная скорость вращения полуосей

Бездорожье

Это еще одна ситуация, когда простой дифференциал может привести к проблеме. Допустим, у вас полно¬приводный внедорожник или «паркетник» с открытым дифференциалом на передней и задней оси. Как мы упоминали ранее, открытые дифференциалы подают всегда одинаковый крутящий момент на оба колеса. Если одно из передних и одно из задних колес повиснут в воздухе одновременно, то они будут беспомощно крутиться в воздухе, а автомобиль вообще не сможет двигаться вперед. Решение этой проблемы – дифференциалы повышенного трения (limited slip differential (LSD)). Они используют различные механизмы, чтобы работать, как обычные дифференциалы при поворотах. При скольжении одного колеса дифференциалы повышенного трения позволяют подавать больше крутящего момента на колесо с тягой.

Дифференциалы с постоянным моментом блокировки

Этот вид дифференциалов повышенного трения использует все элементы открытого дифференциала, добавляя пружины и набор сцепления. В некоторых используется конусообразное сцепление, подобно синхронизаторам механической КПП. Пружины толкают полуосевые шестерни, которые закреплены на корпусе дифференциала, на сцепление. Сцепление срабатывает при возникновении разницы в скоростях вращения колес оси, например в повороте. Сцепление сопротивляется разнице в скорости вращения колес. Если одно колесо пытается вращаться быстрее другого, ему сначала надо преодолеть сцепление. Жесткость пружин и трение сцепления определяют значение крутящего момента на преодоление сопротивления. Вернемся к ситуации, когда одно колесо имеет сцепление с дорогой, а второе находится на льду. Дифференциалы с постоянным моментом блокировки даже при нахождении одного колеса на льду без тяги позволяют передать крутящий момент на другое колесо. Крутящий момент, идущий на колесо не на льду, равен максимальному усилию на преодоление сопротивления сцепления внутри дифференциала. В результате автомобиль продолжает движение с ограниченной мощностью.

Вискостная муфта

Вискостная муфта часто применяется в полноприводных автомобилях для соединения передней оси с задней. Когда передняя ось начинает буксовать, крутящий момент идет на заднюю. Вискостная муфта представляет собой набор дисков внутри закрытого корпуса, заполненного тягучей жидкостью. Каждый набор дисков соединен с выходной полуосью. В нормальных условиях оба набора дисков и жидкость вискомуфты вращаются с одинаковой скоростью. Когда один из мостов пытается вращаться быстрее, например при пробуксовке, соответствующий ему набор дисков начинает вращаться быстрее, чем другой. Вискостная жидкость, которая находится между дисками, пытается догнать ускорившиеся диски, увлекая за собой медленные диски, передавая больший крутящий момент на медленные колеса, то есть на те, которые не буксуют. Чем больше разница в скорости вращения между дисками, тем больший крутящий момент передает вискостная муфта. Она не вмешивается в повороты, потому что получаемый крутящий момент очень мал. Кстати, в этом состоит ее основной недостаток: крутящий момент не передается, пока колесо не начнет буксовать.

Блокирующийся дифференциал и Торсен (Torsen®)

Блокировка дифференциала используется для внедорожников. Она добавляет к свободному дифференциалу электрический, пневматический и гидравлический механизм, чтобы жестко соединить шестерни между собой. Этот механизм включается водителем вручную, и во включенном режиме оба колеса вращаются с одинаковой скоростью. Если одно из колес окажется в воздухе или на льду, это никак не влияет на второе. Оба колеса продолжают вращаться с одинаковой скоростью, как будто ничего не случилось. Дифференциал Torsen (означет – чувствующий момент – Torque Sensing) – это чисто механическое устройство; в нем нет электроники, сцеплений и вискостных жидкостей. Дифференциал Torsen – это несколько червячных передач, вращающихся внутри герметичного цилиндрического корпуса. От углов наклона червяков и применяемых материалов зависит коэффициент блокировки. Он определяет, когда и какой дополнительный момент должен перейти на ось, имеющую лучшее сцепление с дорогой. Но как только одно из колес теряет тягу, разница в крутящем моменте колес вынуждает зацепляться шестерни Torsen. Форма шестерен в этом дифференциале определяет коэффициент передачи крутящего момента. Например, если конкретный дифференциал Torsen сконструирован с передаточным числом 5:1, то он способен увеличивать вплоть до 5 раз крутящий момент на колесо с хорошей тягой. Дифференциал Torsen часто находит применение в спортивных полноприводных машинах. Подобно вискомуфте, он используется для передачи крутящего момента между передней и задней осью. В этом случае дифференциал предпочтительнее вискомуфты, потому что передает крутящий момент на колеса до того момента, как начинается пробуксовка. Определяющей характеристикой Torsen стало передаточное соотношение крутящего момента TBR (Torque Bias Ratio). Типичные значения – от 2 до 6.

Дифференциалы и тяга

Открытый дифференциал всегда подает одинаковый крутящий момент на каждое колесо. Существуют два фактора, от которых зависит количество крутящего момента на колеса: мощность и тяга. На сухой дороге, когда тяга в избытке, количество крутящего момента ограничено возможностями двигателя до колес; в условиях слабой тяги, например при езде по льду, количество максимального крутящего момента равно тому значению, при котором колесо начинает проскальзывать в данных условиях. Итак, даже если машина может произвести больше крутящего момента, необходима тяга, чтобы передать его к дороге. Если дать больше газа в момент пробуксовки, колеса просто начнут больше проскальзывать.

На льду

Рассмотрим, что происходит, если одно колесо буксует, а другое имеет хорошее сцепление со льдом. Вот тут проявляется слабость открытых дифференциалов. Дело в том, что открытые дифференциалы подают всегда одинаковый крутящий момент на оба колеса, а его максимальное значение – это момент начала пробуксовки. На льду не надо иметь большой крутящий момент, чтобы заставить колеса пробуксовывать. Когда колесо с хорошей тягой получает лишь тот ограниченный крутящий момент, который может быть направлен на колесо с меньшим сцеплением, машина не может быстро ехать.

Его основное предназначение заключается в распределении, изменении и передачи крутящего момента, а при необходимости, для обеспечения вращения двух потребителей с различными угловыми скоростями.

Межколесный дифференциал – это дифференциал, предназначенный для привода ведущих колес, если же он установлен между ведущими мостами в полноприводном автомобиле – межосевой интервал.

Как правило, дифференциал автомобиля располагается в следующим местах:

В основе дифференциала лежит планетарный редуктор. Используемый в редукторе вид зубчатой передачи условно делит дифференциал на три следующих вида:

  • Червячный
  • Цилиндрический
  • Конический

Червячный – самый универсальный дифференциал и может быть установлен как между осями, так и между колесами. Цилиндрический тип, как правило, располагается в автомобилях между осями. Конический тип применяется в основном как межколесный.

Различают также несимметричный и симметричный дифференциалы автомобиля. Несимметричный тип устанавливается между двумя приводными осями и позволяет передавать крутящий момент в различных пропорциях. Симметричный тип, как правило, устанавливается на главных передачах и позволяет передает на два колеса равный по значению крутящий момент.

Устройство автомобильного дифференциала

Основными элементами дифференциала являются:

  • Полуосевые шестерни
  • Шестерни сателлитов
  • Корпус

Схема дифференциала переднеприводного автомобиля:
1 — ведомая шестерня главной передачи; 2 — фрагмент ведущей шестерни главной передачи; 3 — ось сателлитов; 4 — сателлит; 5 — корпус дифференциала; 6 — правый фланцевый вал; 7 — сальник; 8 — конический роликовый подшипник; 9 — полуосевая шестерня; 10 — левый фланцевый вал; 11 — фрагмент картера коробки передач.

Шестерни сателлитов по своему принципу работы напоминают планетарный редуктор и служат для соединения между собой корпуса и полуосевой шестерни. Последние в свою очередь соединяются с помощью шлицов с ведущими колесами. В различных конструкциях используются четыре или два сателлита, в легковых автомобилей чаще используется второй вариант.

Чашка дифференциала или корпус – ее основное предназначение заключается в том, чтобы передавать через сателлиты крутящий момент от главной передачи к полуосевым шестерням. Внутри него располагаются оси для вращения сателлит.

Солнечные или полуосевые шестерни – предназначены для передачи крутящего момента с помощью полуосей на ведущие колеса. Левая и правая шестерни могут иметь как одинаковое, так и различное между собой число зубцов. В свою очередь шестерни с различным число зубов используются для образование несимметричного дифференциала, а с одинаковым количеством – для симметричного.

Принцип работы автомобильного дифференциала

Работает дифференциал следующим образом: вращая одно из ведущих колес автомобиля, второе начнет вращаться в противоположном направлении, но при этом должно выполняться условие неподвижности карданного вала. В данном случае стеллиты вращаются в свих осях, играя роль шестерни.

Если завести двигатель и включить сцепление и любую из передач, начнет свое вращение карданный вал, передающий свой крутящий момент через цилиндрические и конические шестерни коробке дифференциала.

Таким образом, во время движения автомобиля по кривой траектории одно колесо замедляет свой ход, второе наоборот увеличивает его. В результате устраняется пробуксовка и скольжение колес и каждое из них вращается с той скоростью, которая необходима для безопасного движения.

Во время движения автомобиля по прямой, ничего особенного не происходи и дифференциал передает крутящий момент на оба колеса в одинаковом соотношении. Шестерни полуосевые вращаются с одинаковой угловой скоростью, так как сателлиты в этом случае находятся в неподвижном состоянии.

При движении на скользких покрытиях дифференциал обладает одним существенным недостатком – он может вызвать боковой занос машины, так как на буксующем колесе низкая сила сцепления с покрытием и оно начинает вращаться в холостую.

Самые простейшие дифференциалы автомобиля обладают еще одним недостатком. При попадании грязи или прочих сторонних элементов между шлицами крутящий момент может передаваться в различном соотношении, даже 0 к 100. Таким образом, одно колесо останется в абсолютно статичном положение.

Современные модели практически лишены данного недостатка. Их устройство отличается ручной или автоматической более жесткой . Более того, во многих легковых современных машинах устанавливаются системы стабилизации и курсовой устойчивости, позволяющие оптимизировать в зависимости от траектории движения автомобиля распределение крутящего момента.

Как работает дифференциал — видео:

На этом всё, теперь вы знаете устройство дифференциала.

Основная задача трансмиссии в конструкции любого автомобиля – изменение передаточного числа, полученного от силовой установки и передача вращения на ведущие колеса.

Если рассматривать конструкцию заднеприводного автомобиля, то в состав его трансмиссии входит коробка передач (она меняет передаточное число), карданная передача (посредством ее осуществляется передача вращения на заднюю ведущую ось) и редуктор (передает вращение на полуоси, к которым крепятся колеса). Но в этой конструкции есть одна особенность – колеса в определенных случаях должны вращаться с различной скоростью. И чтобы это осуществить, в редуктор добавили еще один узел – дифференциал автомобиля.


1 - коробка сателлитов дифференциала правая;
2 - болт коробки сателлитов;
3 - опорная шайба шестерни;
4, 8 - полуосевые шестерни;
5 - опорная шайба сателлита;
6 - сателлиты;
7 - ось сателлитов;
9 - левая коробка сателлитов дифференциала.

Для чего нужен дифференциал

При прямолинейном передвижении дифференциал, в принципе и не нужен, поскольку ведущие колеса крутятся с одной скоростью. Но ведь часто возникает надобность проходить и повороты. При этом колеса идут по различным радиусам, то есть пройденное расстояние при повороте у колес одной оси отличаются. Движущееся по внутреннему радиусу колесо проходит значительно меньший путь, чем идущее по внешнему.

Если при этом обеспечить равную передачу вращения на каждое из колес, то одно из них начнет пробуксовывать, при этом и возникает большая нагрузка на элементы трансмиссии. В результате происходит повышенный и высока вероятность повреждения приводных элементов.

Чтобы этого не произошло, требуется перераспределение вращения на колеса в соответствии с условиями движения. Другими словами нужно, чтобы при прохождении поворота движущееся по внутреннему радиусу колесо – замедлилось, а идущее по внешнему – ускорилось. Именно это и обеспечивает добавленный в конструкцию трансмиссии авто дифференциал.

Виды и их особенности дифференциалов

Видео: GPS Навигатор — описание и тест

Видов дифференциалов по месту установки – два:

  1. Межколесный.
  2. Межосевой.

Первый используется на всех легковых авто с одной ведущей осью, и в его задачу входит только выполнение своей функции. На заднеприводных авто он располагается в заднем мосту и устанавливается на редуктор. То есть редуктор передает вращение на полуоси не напрямую, а через дифференциал.

Что касается переднеприводных авто, то из-за отсутствия карданной передачи и моста с редуктором, вращение от передается напрямую на дифференциал (они размещены в одном корпусе), а от него уже оно поступает на приводные валы.

Межосевой дифференциал используется на полноприводных авто, у которых обе оси являются ведущими. Там он нужен для того, чтобы правильно распределять получаемое вращение по осям при движении по неровностям. К примеру, авто движется на подъем, в результате чего задняя ось находится в низком положении относительно передней. В результате происходит перераспределение массы авто, она начинает больше давить на задок, и установленный узел в этом случае повышает крутящий момент на задних ведущих колесах. И все выполняется с точностью до наоборот на спусках.

При этом на полноприводных авто также требуется распределение вращения и на колесах, поэтому у них в общей сложности используется 3 дифференциала (1 – межосевой и 2 – межколесных).

Конструкция, принцип работы дифференциала

Дифференциалы, используемые на авто, делаются на основе обычного редуктора планетарного типа. Основными его составными компонентами являются:

  • корпус, он же — чашка (выполняет роль ведущего элемента);
  • сателлиты;
  • ведомые шестеренки;

Видео: Как работает дифференциал / How Differential Steering Works (на русском)

Эта конструкция может использовать разные виды зубчатых передач:

  1. Цилиндрические.
  2. Конические.
  3. Червячные;

Видео: Дифференциал, обзор конструкции, принцип действия

Редуктор состоит из двух шестерён (малой ведущей и большой ведомой). Часто ведомую из-за ее размера называют еще зубчатым колесом. Вот к ней и крепиться чашка при помощи болтового соединения. Внутри чашки сделаны оси для крепления сателлитов. Количество их может варьироваться в зависимости от значения крутящего момента. На легковых авто, где усилия не особо высокие, устанавливается по два сателлита, на внедорожниках же их количество может составлять 4 штуки.

Сателлиты находятся в постоянном зацеплении с правой и левой ведомыми шестернями (вторые получаются зажатыми между первыми). Ведомые шестеренки закрепляются посредством шлицевого соединения на полуосях (в переднеприводных авто они соединены с приводными валами).

Количество зубьев на ведомых шестернях может быть как одинаковым (симметричный дифференциал), так и разным (ассиметричный). Первый тип обеспечивает распределение вращения по полуосям (приводным валам) в равном соотношении, а у второго это выполняется в строго определенных значениях.

Из-за этих особенностей симметричный тип используется в качестве межколесного, а ассиметричный – межосевого дифференциалов.

Работает планетарный узел так: во время прямолинейного движения оба колеса ведущей оси получают одинаковое сопротивление от дорожного полотна. Вращение, получаемое от коробки передач передается на ведомое зубчатое колесо редуктора, а вместе с ним и крутиться чашка дифференциала с размещенными в ней сателлитными осями. Поскольку сопротивление одинаково, то сателлиты осуществляют передачу крутящего момента на ведомые шестеренки в одинаковых соотношениях, то есть скорость вращения их, а вместе с ними и полуосей, равна. При этом сателлиты лишь передают вращение, сами же они остаются неподвижными относительно своих осей.

При вхождении в поворот, колеса начинают двигаться по разным радиусам. При этом, идущее по внутреннему радиусу получает большее сопротивление, чем внешнее. Это сопротивление обеспечивает замедление вращения ведомой шестеренки, из-за чего сателлиты начинают крутиться на осях. В результате начала движения сателлитов, скорость вращения полуоси наружного колеса возрастает, то есть происходит изменение угловых скоростей полуосей (приводных валов). Примечательно, что общая скорость вращения обеих полуосей соответствует скорости вращение зубчатого колеса редуктора, но увеличенной вдвое. При этом крутящий момент от разницы угловых скоростей не меняется, и он разделяется на ведущие колеса равномерно.

В результате такой работы узла при прохождении поворотов удается избежать появления пробуксовки и увеличения нагрузки на элементы трансмиссии.

Блокировка дифференциала

Блокировка дифферециала с гидроприводом включения

Но у автомобильного дифференциала есть существенный недостаток, который проявляется в случае, когда сопротивление вращению на одном из колес полностью пропадает (к примеру, оно попало на скользкий участок дороги). В результате особенностей работы, у колеса, потерявшего сопротивление дороги, максимально возрастает угловая скорость. То есть, по сути, все вращение передается только на него, в то время как второе колесо из-за сопротивления останавливается.

В результате автомобиль обездвиживается, поскольку из-за низкого сопротивления на одном колесе падает и крутящий момент на нем. А поскольку дифференциал работает симметрично, то на втором колесе момент тоже очень мал, и его явно недостаточно, чтобы заставить его вращаться. Чтобы решить такую проблему, достаточно лишь замедлить вращение буксующего колеса, тем самым повысив крутящий момент на нем, и соответственно, на втором колесе. И для этого применяются блокировки дифференциала.

Видео: GБлокировки дифференциала для УАЗа, разновидность и принцип работы

Все просто – если обеспечить жесткое соединение одной полуоси с чашкой дифференциала, то она просто не сможет вращаться быстрее, чем шестерня редуктора. Из-за этого не будет происходить перераспределение вращения, крутящий момент на обеих полуосях будет одинаковым, и его хватит, чтобы обеспечить вращение и колеса, на котором имеется сопротивление, то есть автомобиль сможет двигаться даже в случае потери сопротивления на одном из колес.

Блокировки дифференциала различаются по степени блокирования и бывают они с:

  1. Полной.
  2. Частичной блокировкой.

Полная описана выше и указывает она на то, что происходит жесткое соединение элементов дифференциала машины, по сути, он просто прекращает выполнять свои функции и крутящий момент подается равно на обе полуоси.

В частичной же блокировке передача усилия между составными элементами узла ограничена определенной величиной, что обеспечивает повышение крутящего момента на колесе, получающем повышенное сопротивление.

Управление блокировкой

Блокировка может устанавливаться на любой автомобильный дифференциал, как межколесный, так и межосевой. При этом в полноприводных авто передний межколесный дифференциал обычно не оснащают блокировкой, чтобы не оказывать влияние на управляемость авто. Задействование же блокировки, если она имеется, может осуществляться в ручном и автоматическом режиме.

Ручное включение подразумевает принудительное блокирование дифференциала, то есть оно задействуется только когда нужно. При этом водитель задействует привод, в результате чего происходит жесткое соединение составных элементов дифференциала между собой.

Привод блокировки может быть:

  • механический;
  • гидравлический;
  • пневматический;
  • электромеханический;

Основной недостаток ручного управления крыт в надобности соблюдения условий эксплуатации. Так, заблокированный дифференциал может повредить трансмиссию в случае, когда оба колеса окажутся на дороге с хорошими сцепными свойствами. Такое может произойти, к примеру, когда водитель забыл разблокировать дифференциал в авто после преодоления бездорожья.

Виды самоблокирующихся дифференциалов

Дифференциалы, у которых блокирование происходит в автоматическом режиме, называются самоблокирующимися. В них, при определенных условиях происходит самостоятельная блокировка, без какого-либо участия водителя. Точно также он и разблокируется.

Видео: Кардан Главная передача Дифференциал

Самый простой самоблокирующийся дифференциал – дисковый, имеющий в своей конструкции дополнительный элемент – пакет фрикционных дисков, одна часть которого жестко соединена с чашкой дифференциала, а вторая – с одной из осей. При этом диски прижаты друг к другу.

Действует такая блокировка очень просто: при прямолинейном движении машины чашка и полуось вращаются с одной скоростью, а вместе с ними и фрикционный пакет.

В случае повышения угловой скорости на одной из полуосей, она начинает вращаться быстрее чашки. При этом одна часть фрикционного пакета (закрепленная на оси) ускоряется относительно второй. А поскольку они прижаты, то между ними возникает сила трения, которая и препятствует повышению угловой скорости, соответственно крутящий момент на колесе с большим сопротивлением повышается.

Примерно так же действует и вязкостная муфта, она же вискомуфта, которая сейчас является достаточно распространенным способом заблокировать дифференциал в автоматическом режиме. Но из-за больших габаритных размеров ее в качестве межколесной блокировки не используют. Муфта устанавливается только на межосном дифференциале, как вспомогательное устройство, а в некоторых случаях она полностью его заменяет.

Конструкция этой муфты такая: имеется герметичный корпус, с помещенным в нее пакетом дисков, одна половина которого жестко связана с ведущим валом (от которого подается вращения) а вторая – с ведомым.

Вискомуфта в разобраном состоянии

Все пространство между дисками заполнено дилатантной жидкостью, особенность которой заключается в повышаемой вязкости при перемешивании.

Действует вискомуфта примерно также же, как и дисковая блокировка. Пока валы вращаются с одной скоростью, перемешивание жидкости, расположенной между дисками, не происходит. Но как только появляется разница в скоростях вращения, диски начинают мешать жидкость из-за чего она становиться более вязкой. В результате повышения вязкости жидкости, которая при большой разнице скоростей может стать практически твердой, выравнивается угловая скорость на валах.

Существует также электронная блокировка дифференциала, которая используется на межколесном дифференциале автомобиля. Причем в качестве основного рабочего элемента в ней выступает антиблокировочная система тормозов.

Такая блокировка имеет свое обозначение – , суть работы которой сводится к тому, что в случае увеличения угловой скорости на одном ведущем колесе, тормозная система притормаживает его, тем самым повышая крутящий момент на другом колесе.

В случае с автомобилем, дифференциал отвечает за распределение момента между ведущими колесами, а также позволяет колесам вращаться с разной угловой скоростью при определенных условиях.

Читайте в этой статье

Где находится дифференциал в устройстве трансмиссии автомобиля, виды дифференциалов

Как известно, автомобили бывают переднеприводными, заднеприводными, а также полноприводными. Что касается места расположения дифференциала:

  • если привод реализован на передние колеса, дифференциал находится в самой ;
  • на заднеприводном авто дифференциал устанавливается в картере заднего моста;
  • в автомобилях с полным приводом для привода ведущих колес дифференциал стоит в картере переднего и заднего моста, а для привода ведущих мостов механизм устанавливается в раздаточной коробке (раздатке).

Также дифференциалы бывают межколсесными и межосевыми. Если дифференциал использован для привода ведущих колес, это межколесный дифференциал. Межосевой дифференциал располагается между ведущими мостами применительно к автомобилям с полным приводом.

Что касается устройства и особенностей конструкции, в основу дифференциала положен планетарный редуктор. С учетом типа зубчатой передач, которая применена в редукторе, дифференциал (редуктор) может быть: коническим, цилиндрическим, червячным. Теперь давайте рассмотрим устройство и принцип работы дифференциала более подробно.

Устройство дифференциала и принцип работы

Начнем с первого типа. Конический дифференциал зачастую выполнят функцию межколесного дифференциала. Цилиндрический дифференциал обычно встречается на полном приводе и ставится между осями. Червячный дифференциал универсален, что позволяет ставить механизм как между колесами, так и использовать в качестве межосевого.

При этом наиболее распространенным является конический дифференциал, а базовые элементы его конструкции активно используются и в устройстве других типов дифференциалов. По этой причине рассмотрим устройство и принцип работы конического дифференциала в качестве примера.

  • Итак, конический дифференциал, как уже было сказано выше, фактически является планетарным редуктором. В конструкцию включены полуосевые шестерни и сателлиты, которые находятся в корпусе (чашке дифференциала).

На корпус от главной передачи передается крутящий момент, затем через сателлиты происходит его передача на полуосевые шестерни. Также на корпусе крепится ведомая шестерня главной передачи (крепление жесткое). В корпусе установлены оси, на осях вращаются сателлиты.

Сами сателлиты, которые реализуют функцию планетарной шестерни, позволяют соединить корпус и полуосевые шестерни. С учетом того, какую величину крутящего момента нужно передать, в конструкцию дифференциала могут интегрировать 2 или 4 четыре сателлита.

Солнечные (полуосевые шестерни) осуществляют передачу крутящего момента на ведущие колеса автомобиля. Передача происходит через полуоси, соединение полуосевых шестерен и полуосей выполнено через шлицы.

Полуосевые шестерни бывают левыми и правыми, с одинаковым или разным количеством зубьев. Если число зубьев одинаковое, тогда это симметричный дифференциал, разное количество зубьев на левой и правой шестерне используется в устройстве несимметричных дифференциалов.

В первом случае симметричный дифференциал позволяет распределять крутящий момент по осям в равной степени, причем независимо от величины угловых скоростей ведущих колес.

Такой дифференциал используют для установки между колесами (симметричный межколесный дифференциал). Несимметричный дифференциал способен разделять крутящий момент в том или ином соотношении. Данная особенность позволяет использовать его между ведущими осями.

Теперь перейдем к принципам работы дифференциала. Прежде всего, симметричный дифференциал работает в трех основных режимах. Первый режим – движение по прямой, второй — движение в повороте, третий — езда по дорогое с плохим сцеплением (грязь, лед и т.д.).

Когда автомобиль движется прямо, колеса испытывают равнозначное сопротивление. Происходит передача крутящего момента от главной передачи на корпус дифференциала. Вместе с корпусом перемещаются сателлиты, которые, в свою очередь, осуществляют передачу момента на ведущие колеса.

С учетом того, что вращения сателлитов на осях не происходит, движение полуосевых шестерен осуществляется с равной угловой скоростью, частота вращения левой и правой шестерни равна частоте вращения ведомой шестерни главной передачи.

Однако если машина заходит в поворот, колесо, которое находится ближе к центру (внутреннее ведущее) нагружается сильнее и начинает испытывать большее сопротивление сравнительно с наружным колесом (дальним от центра поворота).

В результате роста нагрузки внутренняя полуосевая шестерня несколько замедляет вращение, а это приводит к тому, что сателлиты начинают вращаться вокруг своей оси. Такое вращение сателлитов приводит к увеличению частоты вращения наружной полуосевой шестерни.

  • На практике возможность движения ведущих колес с разными угловыми скоростями делает возможным прохода поворота без пробуксовок. Кстати, крутящий момент все равно распределяется на ведущие колеса равнозначно.

Если же автомобиль забуксовал в грязи, в снегу или на льду, одно колесо испытывает большее сопротивление, чем другое. В этом случае дифференциал (благодаря своей конструкции) инициирует ускоренное вращение буксующего колеса, тогда как другое колесо замедляется.

Однако недостаточная сцепка с покрытием не позволяет получить большой крутящий момент на буксующем колесе, а особенность работы симметричного дифференциала не позволит также развить нужный момент на другом колесе. Часто в этом случае машина попросту не может продолжить дальнейшее движение.

Выходом из ситуации становится необходимость увеличения крутящего момента на колесе, которое не буксует. Для этого дифференциал необходимо заблокировать. По этой причине внедорожники имеют дополнительную возможность блокировки дифференциала, тогда как легковые авто и даже некоторые современные бюджетные «паркетники» лишены такой функции.

Читайте также

Устройство и принцип работы механической коробки передач. Виды механических коробок (двухвальная, трехвальная), особенности, отличия



Поделиться