Советские реактивные двигатели. Реактивный самолет – самый мощный летательный аппарат современной авиации

Интересная статейка о прошлом, настоящем и будущем нашей ракетной отрасли и перспектив полетов в космос.

Создатель лучших в мире жидкостных ракетных двигателей академик Борис Каторгин объясняет, почему американцы до сих пор не могут повторить наших достижений в этой области и как сохранить советскую фору в будущем .

21 июня 2012 года на Петербургском экономическом форуме прошло награждение лауреатов премии «Глобальная энергия». Авторитетная комиссия отраслевых экспертов из разных стран выбрала три заявки из представленных 639 и назвала лауреатов премии 2012 года, которую уже привычно называют «нобелевкой для энергетиков». В итоге 33 миллиона премиальных рублей в этом году разделили известный изобретатель из Великобритании профессор Родней Джон Аллам и двое наших выдающихся ученых — академики РАН Борис Каторгин и Валерий Костюк .

Все трое имеют отношение к созданию криогенной техники, исследованию свойств криогенных продуктов и их применению в различных энергетических установках. Академик Борис Каторгин был награжден «за разработки высокоэффективных жидкостных ракетных двигателей на криогенных топливах, которые обеспечивают при высоких энергетических параметрах надежную работу космических систем в целях мирного использования космоса». При непосредственном участии Каторгина, более пятидесяти лет посвятившего предприятию ОКБ-456, известному сейчас как НПО «Энергомаш», создавались жидкостные ракетные двигатели (ЖРД), рабочие характеристики которых и теперь считаются лучшими в мире. Сам Каторгин занимался разработкой схем организации рабочего процесса в двигателях, смесеобразованием компонентов горючего и ликвидацией пульсации в камере сгорания. Известны также его фундаментальные работы по ядерным ракетным двигателям (ЯРД) с высоким удельным импульсом и наработки в области создания мощных непрерывных химических лазеров.


В самые тяжелые для российских наукоемких организаций времена, с 1991-го по 2009 год, Борис Каторгин возглавлял НПО «Энергомаш», совмещая должности генерального директора и генерального конструктора, и умудрился не только сохранить фирму, но и создать ряд новых двигателей. Отсутствие внутреннего заказа на двигатели заставило Каторгина искать заказчика на внешнем рынке. Одним из новых двигателей стал РД-180, разработанный в 1995 году специально для участия в тендере, организованном американской корпорацией Lockheed Martin, выбиравшей ЖРД для модернизируемого тогда ракетоносителя «Атлас». В результате НПО «Энергомаш» подписало договор на поставку 101 двигателя и к началу 2012 года уже поставило в США более 60 ЖРД, 35 из которых успешно отработали на «Атласах» при выводе спутников различного назначения.


Перед вручением премии «Эксперт» побеседовал с академиком Борисом Каторгиным о состоянии и перспективах развития жидкостных ракетных двигателей и выяснил, почему базирующиеся на разработках сорокалетней давности двигатели до сих пор считаются инновационными, а РД-180 не удалось воссоздать на американских заводах.

Борис Иванович, в чем именно ваша заслуга в создании отечественных жидкостных реактивных двигателей, и теперь считающихся лучшими в мире?


— Чтобы объяснить это неспециалисту, наверное, нужно особое умение. Для ЖРД я разрабатывал камеры сгорания, газогенераторы; в целом руководил созданием самих двигателей для мирного освоения космического пространства. (В камерах сгорания происходит смешение и горение топлива и окислителя и образуется объем раскаленных газов, которые, выбрасываясь затем через сопла, создают собственно реактивную тягу; в газогенераторах также сжигается топливная смесь, но уже для работы турбонасосов, которые под огромным давлением нагнетают топливо и окислитель в ту же камеру сгорания.« Эксперт» .)


Вы говорите о мирном освоении космоса, хотя очевидно, что все двигатели тягой от нескольких десятков до 800 тонн, которые создавались в НПО « Энергомаш», предназначались прежде всего для военных нужд.


— Нам не пришлось сбросить ни одной атомной бомбы, мы не доставили на наших ракетах ни одного ядерного заряда к цели, и слава богу. Все военные наработки пошли в мирный космос. Мы можем гордиться огромным вкладом нашей ракетно-космической техники в развитие человеческой цивилизации. Благодаря космонавтике родились целые технологические кластеры: космическая навигация, телекоммуникации, спутниковое телевидение, системы зондирования.


Двигатель для межконтинентальной баллистической ракеты Р-9, над которым вы работали, потом лег в основу чуть ли не всей нашей пилотируемой программы.


— Еще в конце 1950-х я проводил расчетно-экспериментальные работы для улучшения смесеобразования в камерах сгорания двигателя РД-111, который предназначался для той самой ракеты. Результаты работы до сих пор применяются в модифицированных двигателях РД-107 и РД-108 для той же ракеты «Союз», на них было совершено около двух тысяч космических полетов, включая все пилотируемые программы.


Два года назад я брал интервью у вашего коллеги, лауреата « Глобальной энергии» академика Александра Леонтьева. В разговоре о закрытых для широкой публики специалистах, коим Леонтьев сам когда- то был, он упомянул Виталия Иевлева, тоже много сделавшего для нашей космической отрасли.


— Многие работавшие на оборонку академики были засекречены — это факт. Сейчас многое рассекречено — это тоже факт. Александра Ивановича я знаю прекрасно: он работал над созданием методик расчета и способов охлаждения камер сгорания различных ракетных двигателей. Решить эту технологическую задачу было нелегко, особенно когда мы начали максимально выжимать химическую энергию топливной смеси для получения максимального удельного импульса, повышая среди прочих мер давление в камерах сгорания до 250 атмосфер. Возьмем самый мощный наш двигатель — РД-170. Расход топлива с окислителем — керосином с жидким кислородом, идущим через двигатель, — 2,5 тонны в секунду. Тепловые потоки в нем достигают 50 мегаватт на квадратный метр — это огромная энергия. Температура в камере сгорания — 3,5 тысячи градусов Цельсия. Надо было придумать специальное охлаждение для камеры сгорания, чтобы она могла расчетно работать и выдерживала тепловой напор. Александр Иванович как раз этим и занимался, и, надо сказать, потрудился он на славу. Виталий Михайлович Иевлев — член-корреспондент РАН, доктор технических наук, профессор, к сожалению, довольно рано умерший, — был ученым широчайшего профиля, обладал энциклопедической эрудицией. Как и Леонтьев, он много работал над методикой расчета высоконапряженных тепловых конструкций. Работы их где-то пересекались, где-то интегрировались, и в итоге получилась прекрасная методика, по которой можно рассчитать теплонапряженность любых камер сгорания; сейчас, пожалуй, пользуясь ею, это может сделать любой студент. Кроме того, Виталий Михайлович принимал активное участие в разработке ядерных, плазменных ракетных двигателей. Здесь наши интересы пересекались в те годы, когда «Энергомаш» занимался тем же.


В нашей беседе с Леонтьевым мы затронули тему продажи энергомашевских двигателей РД-180 в США, и Александр Иванович рассказал, что во многом этот двигатель — результат наработок, которые были сделаны как раз при создании РД-170, и в каком- то смысле его половинка. Что это — действительно результат обратного масштабирования?


— Любой двигатель в новой размерности — это, конечно, новый аппарат. РД-180 с тягой 400 тонн действительно в два раза меньше РД-170 с тягой 800 тонн. У РД-191, предназначенного для нашей новой ракеты «Ангара», тяга и вовсе 200 тонн. Что же общего у этих двигателей? Все они имеют по одному турбонасосу, но камер сгорания у РД-170 четыре, у «американского» РД-180 — две, у РД-191 — одна. Для каждого двигателя нужен свой турбонасосный агрегат — ведь если однокамерный РД-170 потребляет примерно 2,5 тонны топлива в секунду, для чего был разработан турбонасос мощностью 180 тысяч киловатт, в два с лишним раза превосходящий, например, мощность реактора атомного ледокола «Арктика», то двухкамерный РД-180 — лишь половину, 1,2 тонны. В разработке турбонасосов для РД-180 и РД-191 я участвовал напрямую и в то же время руководил созданием этих двигателей в целом.


Камера сгорания, значит, на всех этих двигателях одна и та же, только количество их разное?


— Да, и это наше главное достижение. В одной такой камере диаметром всего 380 миллиметров сгорает чуть больше 0,6 тонны топлива в секунду. Без преувеличения, эта камера — уникальное высокотеплонапряженное оборудование со специальными поясами защиты от мощных тепловых потоков. Защита осуществляется не только за счет внешнего охлаждения стенок камеры, но и благодаря хитроумному способу «выстилания» на них пленки горючего, которое, испаряясь, охлаждает стенку. На базе этой выдающейся камеры, равной которой в мире нет, мы изготавливаем лучшие свои двигатели: РД-170 и РД-171 для «Энергии» и «Зенита», РД-180 для американского «Атласа» и РД-191 для новой российской ракеты «Ангара».


— « Ангара» должна была заменить « Протон- М» еще несколько лет назад, но создатели ракеты столкнулись с серьезными проблемами, первые летные испытания неоднократно откладывались, и проект вроде бы продолжает буксовать.


— Проблемы действительно были. Сейчас принято решение о запуске ракеты в 2013 году. Особенность «Ангары» в том, что на основе ее универсальных ракетных модулей можно создать целое семейство ракетоносителей грузоподъемностью от 2,5 до 25 тонн для вывода грузов на низкую околоземную орбиту на базе универсального же кислородно-керосинового двигателя РД-191. «Ангара-1″ имеет один двигатель, «Ангара-3″ — три с общей тягой 600 тонн, у «Ангары-5″ будет 1000 тонн тяги, то есть она сможет выводить на орбиту больше грузов, чем «Протон». К тому же вместо очень токсичного гептила, который сжигается в двигателях «Протона», мы используем экологически чистое топливо, после сгорания которого остаются лишь вода да углекислый газ.


Как получилось, что тот же РД-170, который создавался еще в середине 1970- х, до сих пор остается, по сути, инновационным продуктом, а его технологии используются в качестве базовых для новых ЖРД?


— Похожая история случилась с самолетом, созданным после Второй мировой Владимиром Михайловичем Мясищевым(дальний стратегический бомбардировщик серии М, разработка московского ОКБ-23 1950-х годов. — « Эксперт» ). По многим параметрам самолет опережал свое время лет эдак на тридцать, и элементы его конструкции потом заимствовали другие авиастроители. Так и здесь: в РД-170 очень много новых элементов, материалов, конструкторских решений. По моим оценкам, они не устареют еще несколько десятилетий. В этом заслуга прежде всего основателя НПО «Энергомаш» и его генерального конструктора Валентина Петровича Глушко и членкора РАНВиталия Петровича Радовского, возглавившего фирму после смерти Глушко. (Отметим, что лучшие в мире энергетические и эксплуатационные характеристики РД-170 во многом обеспечиваются благодаря решению Каторгиным проблемы подавления высокочастотной неустойчивости горения за счет разработки антипульсационных перегородок в той же камере сгорания. — « Эксперт» .) А двигатель РД-253 первой ступени для ракетоносителя «Протон»? Принятый на вооружение еще в 1965 году, он настолько совершенен, что до сих пор никем не превзойден. Именно так учил конструировать Глушко — на пределе возможного и обязательно выше среднемирового уровня. Важно помнить и другое: страна инвестировала в свое технологическое будущее. Как было в Советском Союзе? Министерство общего машиностроения, в ведении которого, в частности, находились космос и ракеты, только на НИОКР тратило 22 процента своего огромного бюджета — по всем направлениям, включая двигательное. Сегодня объем финансирования исследований намного меньше, и это говорит о многом.


Не означает ли достижение этими ЖРД неких совершенных качеств, причем случилось это полвека назад, что ракетный двигатель с химическим источником энергии в каком- то смысле изживает себя: основные открытия сделаны и в новых поколениях ЖРД, сейчас речь идет скорее о так называемых поддерживающих инновациях?


— Безусловно нет. Жидкостные ракетные двигатели востребованы и будут востребованы еще очень долго, потому что никакая другая техника не в состоянии более надежно и экономично поднять груз с Земли и вывести его на околоземную орбиту. Они безопасны с точки зрения экологии, особенно те, что работают на жидком кислороде и керосине. Но для полетов к звездам и другим галактикам ЖРД, конечно, совсем непригодны. Масса всей метагалактики — 1056 граммов. Для того чтобы разогнаться на ЖРД хотя бы до четверти скорости света, потребуется совершенно невероятный объем топлива — 103200 граммов, так что даже думать об этом глупо. У ЖРД есть своя ниша — маршевые двигатели. На жидкостных двигателях можно разогнать носитель до второй космической скорости, долететь до Марса, и все.


Следующий этап — ядерные ракетные двигатели?


— Конечно. Доживем ли мы еще до каких-то этапов — неизвестно, а для разработки ЯРД многое было сделано уже в советское время. Сейчас под руководством Центра Келдыша во главе с академиком Анатолием Сазоновичем Коротеевым разрабатывается так называемый транспортно-энергетический модуль. Конструкторы пришли к выводу, что можно создать менее напряженный, чем был в СССР, ядерный реактор с газовым охлаждением, который будет работать и как электростанция, и как источник энергии для плазменных двигателей при передвижении в космосе. Такой реактор проектируется сейчас в НИКИЭТ имени Н. А. Доллежаля под руководством члена-корреспондента РАН Юрия Григорьевича Драгунова. В проекте также участвует калининградское КБ «Факел», где создаются электрореактивные двигатели. Как и в советское время, не обойдется без воронежского КБ химавтоматики, где будут изготавливаться газовые турбины, компрессоры, чтобы по замкнутому контуру гонять теплоноситель — газовую смесь.


А пока полетаем на ЖРД?


— Конечно, и мы четко видим перспективы дальнейшего развития этих двигателей. Есть задачи тактические, долгосрочные, тут предела нет: внедрение новых, более жаростойких покрытий, новых композитных материалов, уменьшение массы двигателей, повышение их надежности, упрощение схемы управления. Можно внедрить ряд элементов для более тщательного контроля за износом деталей и других процессов, происходящих в двигателе. Есть задачи стратегические: к примеру, освоение в качестве горючего сжиженного метана и ацетилена вместе с аммиаком или трехкомпонентного топлива. НПО «Энергомаш» занимается разработкой трехкомпонентного двигателя. Такой ЖРД мог бы применяться в качестве двигателя и первой, и второй ступени. На первой ступени он использует хорошо освоенные компоненты: кислород, жидкий керосин, а если добавить еще около пяти процентов водорода, то значительно увеличится удельный импульс — одна из главных энергетических характеристик двигателя, а это значит, что можно отправить в космос больше полезного груза. На первой ступени вырабатывается весь керосин с добавкой водорода, а на второй тот же самый двигатель переходит от работы на трехкомпонентном топливе на двухкомпонентное — водород и кислород.


Мы уже создали экспериментальный двигатель, правда, небольшой размерности и тягой всего около 7 тонн, провели 44 испытания, сделали натурные смесительные элементы в форсунки, в газогенераторе, в камере сгорания и выяснили, что можно сначала работать на трех компонентах, а потом плавно переходить на два. Все получается, достигается высокая полнота сгорания, но чтобы идти дальше, нужен более крупный образец, нужно дорабатывать стенды, чтобы запускать в камеру сгорания компоненты, которые мы собираемся применять в настоящем двигателе: жидкие водород и кислород, а также керосин. Думаю, это очень перспективное направление и большой шаг вперед. И надеюсь кое-что успеть сделать при жизни.


Почему американцы, получив право на воспроизведение РД-180, не могут сделать его уже много лет?


— Американцы очень прагматичны. В 1990-х, в самом начале работы с нами, они поняли, что в энергетической области мы намного опередили их и надо у нас эти технологии перенимать. К примеру, наш двигатель РД-170 за один запуск за счет большего удельного импульса мог вывезти полезного груза на две тонны больше, чем их самый мощный F-1, что означало по тем временам 20 миллионов долларов выигрыша. Они объявили конкурс на двигатель тягой 400 тонн для своих «Атласов», который выиграл наш РД-180. Тогда американцы думали, что они начнут с нами работать, а года через четыре возьмут наши технологии и будут сами их воспроизводить. Я им сразу сказал: вы затратите больше миллиарда долларов и десять лет. Четыре года прошло, и они говорят: да, надо шесть лет. Прошли еще годы, они говорят: нет, надо еще восемь лет. Прошло уже семнадцать лет, и они ни один двигатель не воспроизвели. Им сейчас только на стендовое оборудование для этого нужны миллиарды долларов. У нас на «Энергомаше» есть стенды, где в барокамере можно испытывать тот же двигатель РД-170, мощность струи которого достигает 27 миллионов киловатт.


Я не ослышался — 27 гигаватт? Это больше установленной мощности всех АЭС « Росатома».


— Двадцать семь гигаватт — это мощность струи, которая развивается относительно за короткое время. При испытаниях на стенде энергия струи сначала гасится в специальном бассейне, затем в трубе рассеивания диаметром 16 метров и высотой 100 метров. Чтобы построить подобный стенд, в котором помещается двигатель, создающий такую мощность, надо вложить огромные деньги. Американцы сейчас отказались от этого и берут готовое изделие. В результате мы продаем не сырье, а продукт с огромной добавленной стоимостью, в который вложен высокоинтеллектуальный труд. К сожалению, в России это редкий пример хайтек-продаж за границу в таком большом объеме. Но это доказывает, что при правильной постановке вопроса мы способны на многое.


Борис Иванович, что надо сделать, чтобы не растерять фору, набранную советским ракетным двигателестроением? Наверное, кроме недостатка финансирования НИОКР очень болезненна и другая проблема — кадровая?


— Чтобы остаться на мировом рынке, надо все время идти вперед, создавать новую продукцию. Видимо, пока нас до конца не прижало и гром не грянул. Но государству надо осознать, что без новых разработок оно окажется на задворках мирового рынка, и сегодня, в этот переходный период, пока мы еще не доросли до нормального капитализма, в новое должно прежде всего вкладывать оно — государство. Затем можно передавать разработку для выпуска серии частной компании на условиях, выгодных и государству, и бизнесу. Не верю, что придумать разумные методы созидания нового невозможно, без них о развитии и инновациях говорить бесполезно.


Кадры есть. Я руковожу кафедрой в Московском авиационном институте, где мы готовим и двигателистов, и лазерщиков. Ребята умнющие, они хотят заниматься делом, которому учатся, но надо дать им нормальный начальный импульс, чтобы они не уходили, как сейчас многие, писать программы для распределения товаров в магазинах. Для этого надо создать соответствующую лабораторную обстановку, дать достойную зарплату. Выстроить правильную структуру взаимодействия науки и Министерства образования. Та же Академия наук решает много вопросов, связанных с кадровой подготовкой. Ведь среди действующих членов академии, членов-корреспондентов много специалистов, которые руководят высокотехнологическими предприятиями и научно-исследовательскими институтами, мощными КБ. Они прямо заинтересованы, чтобы на приписанных к их организациям кафедрах воспитывались необходимые специалисты в области техники, физики, химии, чтобы они сразу получали не просто профильного выпускника вуза, а готового специалиста с некоторым жизненным и научно-техническим опытом. Так было всегда: самые лучшие специалисты рождались в институтах и на предприятиях, где существовали образовательные кафедры. У нас на «Энергомаше» и в НПО Лавочкина работают кафедры филиала МАИ «Комета», которой я руковожу. Есть старые кадры, которые могут передать опыт молодым. Но времени осталось совсем немного, и потери будут безвозвратные: для того, чтобы просто вернуться на существующий сейчас уровень, придется затратить гораздо больше сил, чем сегодня надо для его поддержания.


А вот и довольно свежие новости:


Самарское предприятие «Кузнецов» заключило предварительный договор на поставку Вашингтону 50 НК-33 - силовых установок, разработанных для советской лунной программы.

Опцион (разрешение) на поставку до 2020 года указанного количества двигателей заключен с американской корпорацией «Орбитал сайенсиз» (Orbital Sciences), выпускающей спутники и ракеты-носители, и компанией «Аэроджет» (Аerojet), являющейся одним из крупнейших в США производителей ракетных двигателей. Речь идет о предварительной договоренности, поскольку опционный договор предполагает право, но не обязательство покупателя совершить покупку на заранее определенных условиях. Два модифицированных двигателя НК-33 используются на первой ступени разработанной в США по контракту с НАСА ракеты-носителя «Антарес» (проектное название «Таурус-2»). Носитель предназначен для доставки грузов на МКС. Первый его запуск запланирован на 2013 год. Двигатель НК-33 разработан для ракеты-носителя Н1, которая должна была доставить советских космонавтов на Луну.


Была еще как то в блоге и довольно спорная информация, описывающая

Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

December 10th, 2012

Продолжая цикл статей (лишь потому что мне нужен еще один реферат, теперь по предмету "двигатели") - статья о весьма перспективном и многообещающем проекте двигателя SABRE. В общем то о нем и в рунете немало написано, но по большей части весьма сумбурные заметки и дифирамбы на сайтах новостных агентств, а вот статья на английской википедии мне весьма глянулась, они вообще, приятно богаты деталями и подробностями - статьи на английской википедии.

Так что в основу сего поста (и моего будущего реферата) легла именно статься, в оригинале лежащая по адресу: http://en.wikipedia.org/wiki/SABRE_(rocket_engine) , так же было немного добавлено отсебятины и пояснений, и собран по просторам инета иллюстративный материал (вот чем чем, а богатством картинок статьи на википедии не отличаются)

Ниже следует


SABRE (Synergistic Air-Breathing Rocket Engine) – Синергичный воздушно-реактивный ракетный двигатель – концепт, разрабатываемый компанией Reaction Engines Limited, гиперзвуковой гибридный воздушно реактивный/ракетный двигатель с предварительным охлаждением. Двигатель разрабатывается для обеспечения возможности одноступенчатого выхода на орбиту для аэрокосмической системы Skylon. SABRE представляет собой эволюционное развитие серии LACE и LACE-подобных двигателей, разрабатывавшихся Аланом Бондом в начале/середине 1980 в рамках проекта HOTOL.

Конструктивно это один двигатель с комбинированным рабочим циклом, имеющий два режима работы. В воздушно-реактивном режиме сочетается турбокомпрессор с легким теплообменником-охладителем, расположенным непосредственно за конусом воздухозаборника. На высокой скорости теплообменник охлаждает горячий, сжатый воздухозаборником воздух, что в позволяет обеспечить необычайно высокую степень сжатия в двигателе. Сжатый воздух далее подается в камеру сгорания, как у обычного ракетного двигателя, где он обеспечивает воспламенение жидкого водорода. Низкая температура воздуха позволяет использовать легкие сплавы и снизить общий вес двигателя – что весьма критично для выхода на орбиту. Добавим, что в отличии от LACE концептов, предшествувавших этому двигателю, SABRE не сжижает воздух, что дает большую эффективность.


Рис.1. Аэрокосмический ЛА Skylon и двигатель SABRE

После закрытия конуса воздухозаборника на скорости М = 5,14 и высоте 28,5 км, система продолжает работать в закрытом цикле высокопроизводительного ракетного двигателя, потребляющего жидкий кислород и жидкий водород с находящихся на борту баков, позволяя Skylon достичь орбитальной скорости после выхода из атмосферы в крутом наборе высоты.

Так же, на основе двигателя SABRE, был разработан воздушно-реактивный, называемый Scimitar, для перспективного гиперзвукового пассажирского авиалайнера А2, разрабатываемого в рамках программы LAPCAT, финансированной Европейским Союзом.

В ноябре 2012 компания Reaction Engines объявила о успешном завершении серии испытаний, которые подтверждают работоспособность системы охлаждения двигателя – одного из главных препятствий на пути к завершению проекта. Европейское космическое агенство (ESA) так же оценило теплообменник-охладитель двигателя SABRE, и подтвердило наличие технологий, необходимых для воплощения двигателя в металле.



Рис.2. Модель двигателя SABRE

История

Идея двигателя с предварительным охлаждением впервые возникла у Роберта Кармайкла в 1955 году. За этим следовала идея двигателя с сжижением воздуха (LACE), первоначально изучалась Marquardt и General Dynamics в 1960х годах, как часть работ US Air Force по проекту Aerospaceplane.
LACE система располагается непосредственно за сверхзвуковым воздухозаборником – таким образом сжатый воздух попадает сразу в теплообменник где моментально охлаждается с использование некоторого количества жидкого водорода, хранящегося на борту в качестве топлива. Полученный жидкий воздух затем обрабатывается, для извлечения жидкого кислорода, который поступает в двигатель. Однако количество прошедшего через теплообменник и нагретого водорода, значительно больше, чем может быть сожжено в двигателе, и его избыток просто сливается за борт (тем не менее он тоже дает некоторый прирост тяги).

В 1989 года, когда финансирование проекта HOTOL было прекращено, Бонд и другие специалисты образуют компанию Reaction Engines Limited для продолжения исследования. Теплообменник двигателя RB545 (который предполагалось использовать в проекте HOTOL) имел некоторые проблемы с хрупкостью конструкции, а так же относительно высоким расходом жидкого водорода. Так же его использование было невозможно – патент на двигатель принадлежал компании Rolls Royce, и самый существенный аргумент – двигатель был объявлен совершенно секретным. По этому Бонд пошел на разработку нового двигателя SABRE, развивая идеи, заложенные в предыдущий проект.

По состоянию на ноябрь 2012 года, было завершено тестирование оборудования в рамках темы «Технология теплообменника, критичная для гибридного ракетного двигателя, питаемого воздухом и жидким кислородом». Это был важный этап в процессе разработки SABRE, который продемонстрировал потенциальным инвесторам жизнеспособность технологии. Двигатель основан на теплообменнике, способном охладить поступающий воздух до -150°C (-238°F). Охлажденный воздух смешивается с жидким водородом и сгорая, обеспечивает тягу для атмосферного полета, перед переключением на жидкий кислород из баков, при полете вне атмосферы. Успешные испытания этой, столь критической технологи, подтвердили что теплообменник может обеспечить потребности двигателя в получении достаточного количества кислорода из атмосферы для работы с высокой эффективностью в условиях низко-высотного полета.

На авиашоу Фарнборо 2012 Дэвид Уиллетс, являющийся министром по делам университетов и науки Объединенного королевства, выступил по этому поводу с речью. В частности, он сказал, что данный двигатель, разработчиком которого является компания Reaction Engines, реально может повлиять на условия игры, действующие в космической отрасли. Успешно завершившиеся испытания системы предварительного охлаждения являются подтверждением высокой оценки концепции двигателя, которую сделало Космическое агентство Великобритании в 2010 году. Министр также добавил, что если однажды им удастся использовать данную технологию для осуществления собственных полетов коммерческого назначения, то это, несомненно, будет фантастическим по своему масштабу достижением.

Министр также отметил, что существует маленькая вероятность того, что Европейское космическое агентство согласится финансировать Skylon, поэтому Великобритания должна быть готова заниматься строительством космолета по большей части на свои средства.



Рис.3. Аэрокосмический ЛА Skylon - компоновка

Следующий этап программы SABRE предусматривает наземные испытания масштабной модели двигателя, способной продемонстрировать полный цикл. ESA выразило уверенность в успешной постройке демонстратора и заявило о том, что он будет представлять собой «важную веху в развитии этой программы и прорыв в вопросе двигательных установок по всему миру»

Конструкция



Рис.4. Компоновка двигателя SABRE

Подобно RB545, конструкция SABRE скорее ближе к традиционному ракетному двигателю, чем к воздушно реактивному. Гибридный Воздушно-реактивный/Ракетный двигатель с предварительным охлаждением использует жидкое водородное топливо в сочетании с окислителем, поставляемым либо в виде газообразного воздуха с помощью компрессора, либо в виде жидкого кислорода, поставляемого из топливных баков с помощью турбонасоса.

В передней части двигателя расположен простой осесимметричный воздухозаборник в виде конуса, который тормозит воздух до дозвуковых скоростей, используя всего два отраженных скачка уплотнения.

Часть воздуха через теплообменник в центральную часть двигателя, а оставшийся проходит через кольцевой канал в второй контур, представляющий собой обычный ПВРД. Центральная часть, расположенная за теплообменником, представляет собой турбокомпрессор, приводящийся в движение газообразным гелием, циркулирующим по замкнутому каналу цикла Брайтона. Сжатый компрессором воздух поступает под высоким давлением в четыре камеры сгорания ракетного двигателя комбинированного цикла.



Рис.5. Упрощенный цикл работы двигателя SABRE

Теплообменник

Поступающий в двигатель на сверх/гиперзвуковых скоростях воздух становится очень горячим после торможения и сжатия в воздухозаборнике. С высокими температурами в реактивных двигателях традиционно справлялись используя тяжелые сплавы на основе меди или никеля, за счет снижения степени сжатия компрессора, а так же снижением оборотов, во избежание перегрева и плавления конструкции. Однако для одноступенчатого КА такие тяжелые материалы неприменимы, и необходима максимально возможная тяга, для выхода на орбиту в кратчайшее время, чтобы минимизировать тяжесть потерь.

При использовании газообразного гелия в качестве теплоносителя, воздух в теплообменнике существенно охлаждается от 1000°C до -150°C, при этом избегая сжижения воздуха или конденсации водяного пара на стенках теплообменника.



Рис.6. Модель одно из модулей теплообменника

Предыдущие версии теплообменника, например применяемые в проекте HOTOL пропускали водородное топливо непосредственно через теплообменник, но использование гелия как промежуточного контура между воздухом и холодным топливом сняло проблему водородной хрупкости конструкции теплообменника. Однако резкое охлаждение воздуха сулит определенные проблемы – необходимо предотвратить блокировку теплообменника замороженным водяным паром и иными фракциями. В ноябре 2012 года был продемонстрирован образец теплообменника, способный охладить атмосферный воздух до -150°C за 0,01 с.
Одной из инноваций теплообменника SABRE служит спиральное размещение трубок с халагентом, что значительно обещает поднять его эффективность.



Рис.7. Опытный образец теплообменника SABRE

Компрессор

На скорости М=5 и высоте 25 километров, что составляет 20% орбитальной скорости и высоты, необходимой для выхода на орбиту, охлажденный в теплообменнике воздух попадает в весьма обыкновенный турбокомпрессор, конструктивно подобный используемым в обычных турбореактивных двигателях, но обеспечивающий необычайно высокую степень сжатия, благодаря крайне низкой температуре входящего воздуха. Это позволяет сжать воздух до 140 атмосфер перед подачей в камеры сгорания основного двигателя. В отличии от турбореактивных двигателей, турбокомпрессор приводится в действие турбиной, расположенной в гелиевом контуре, а не от действия продуктов сгорания, как в обычных турбореактивных двигателей. Таким образом турбокомпрессор работает на тепле, полученным гелем в теплообменнике.

Гелиевый цикл

Тепло переходит от воздуха к гелию. Горячий гелий из теплообменника «гелий-воздух» охлаждается в теплообменнике «гелий-водород», отдавая тепло жидкому водородному топливу. Контур, в котором циркулирует гелий, работает согласно циклу Брайтона, как охлаждая двигатель в критических местах, так и для привода энергетических турбин и многочисленных агрегатов двигателя. Остаток тепловой энергии используется для испарения части водорода, который сжигается в внешнем, прямоточном контуре.

Глушитель

Для охлаждения гелия, его прокачивают через бак с азотом. В настоящее время для тестов используется не жидкий азот а вода, которая испаряется, понижая температуру гелия и глушит шум от выхлопных газов.

Двигатель

Благодаря тому, что гибридный ракетный двигатель обладает далеко не нулевой статической тягой, летательный аппарат может взлететь в обычном, воздушно-реактивном режиме, без посторонней помощи, подобно оснащенным обычными турбореактивными двигателями. При наборе высоты и падении атмосферного давления, все больше и больше воздуха направляется в компрессор, а эффективность сжатия в воздухозаборнике только снижается. В этом режиме реактивный двигатель может работать на намного большей высоте, чем это было возможно в обычном случае.
При достижении скорости М=5.5 воздушнореактивный двигатель становится не эффективным и отключается, и теперь в ракетный двигатель поступает хранящийся на борту жидкий кислород и жидкий водород, так вплоть до достижения орбитальной скорости (соизмеримо с М=25). Турбонасосные агрегаты приводятся тем же гелиевым контуром, который теперь получает тепло в специальных «предварительных камерах сгорания».
Необычное конструкционное решение системы охлаждения камер сгорания - в качестве охлаждающего вещества используется окислитель (воздух/жидкий кислород) вместо жидкого водорода, во избежание перерасхода водорода и нарушения стехиометрического соотношения (соотношение топлива к окислителю).

Второй существенный момент – реактивное сопло. Эффективность работы реактивного сопла зависит от его геометрии и атмосферного давления. В то время как геометрия сопла остается неизменной, давление существенно изменяется с высотой, следовательно сопла, высокоэффективные в нижних слоях атмосферы, существенно теряют свою эффективность с достижением больших высот.
В традиционных, многоступенчатых системах, это преодолевается простым использованием разной геометрии, для каждой ступени и соответствующего этапа полета. Но в одноступенчатой системе мы все время используем одно и то же сопло.



Рис.8. Сравнение работы различных реактивных сопел в атмосфере и вакууме

Как выход планируется использование специального Expansion-Deflection (ED nozzle) – регулируемого реактивного сопла разрабатываемого в рамках проекта STERN , которое состоит из традиционного колокола (правда сравнительно короче обычного), и регулируемого центрального тела, которое отклоняет поток газа к стенкам. Изменяя положение центрального тела, можно добиться того что выхлоп не займет всю площадь донного среза, а лишь кольцеобразный участок, регулируя занимаемую им площадь соответственно атмосферному давлению.

Так же, в многокамерном двигателе, можно регулировать вектор тяги, изменяя площадь сечения, а следовательно и вклад в общую тягу, каждой камеры.



Рис.9. Реактивное сопло Expansion-Deflection (ED nozzle)

Прямоточный контур

Отказ от сжижения воздуха поднял эффективность работы двигателя, снизив затраты теплоносителя путем снижения энтропии. Однако даже простое охлаждение воздуха требует больше водорода, чем может быть сожжено в первом контуре двигателя.

Избыток водорода сливается за борт, но не просто так, а сжигается в ряде камер сгорания, которые расположены в внешнем кольцевом воздушном канале, образующем прямоточную часть двигателя, в которую поступает воздух, пошедший в обход теплообменника. Второй, прямоточный контур снижает потери вследствие сопротивления воздуха, не попавшего в теплообменник, и так же дает некоторую часть тяги.
На низких скоростях в обход теплообменника/компрессора идет очень большое количество воздуха, а с ростом скорости, для сохранения эффективности большая часть воздуха наоборот, попадает в компрессор.
Это отличает систему от турбопрямоточного двигателя, где все обстоит с точностью до наоборот – на малых скоростях большие массы воздуха идут через компрессор, а на больших – в его обход, через прямоточный контур, который становится настолько эффективным, что берет на себя ведущую роль.

Производительность

Расчетная тяговооруженность SABRE предполагается свыше 14 единиц, при этом тяговооруженность обычных реактивных двигателей лежит в пределах 5, и всего лишь 2 для сверхзвуковых прямоточных двигателей. Столь высокая производительность получена благодаря использованию сверхохлажденного воздуха, который становится весьма плотным и требует меньшего сжатия, и, что более существенно, благодаря низким рабочим температурам стало возможным использовать легкие сплавы для большей части конструкции двигателя. Общая производительность обещает быть выше, чем в случае RB545 или сверхзвуковых прямоточных двигателей.

Двигатель имеет высокий удельный импульс в атмосфере, который достигает 3500 сек. Для сравнения обычный ракетный двигатель имеет удельный импульс в лучшем случае около 450, и даже перспективный «тепловой» ядерный ракетный двигатель обещает достичь лишь величины 900 сек.

Комбинация высокой топливной эффективности и низкой массы двигателя дает Skylon возможность достичь орбиты в одноступенчатом режиме, при этом работая как воздушно-реактивный до скорости М=5,14 и высоты 28,5 км. При этом аэрокосмический аппарат достигнет орбиты с большой полезной нагрузкой относительно взлетного веса, какая не могла быть ранее достигнутой ни одним, неядерным транспортным средством.

Подобно RB545, идея предварительного охлаждения увеличивает массу и сложность системы, что в обычных условиях служит антитезисом принципу конструирования ракетных систем. Также теплообменник очень агрессивная и сложная часть конструкции двигателя SABRE. Правда следует отметить что масса этого теплообменника предполагается на порядок ниже существующих образцов, и эксперименты показали что это может быть достигнуто. Экспериментальный теплообменник добился теплообмена почти в 1 ГВт/м2, что считается мировым рекордом. Небольшие модули будущего теплообменника уже изготовлены.

Потери от дополнительного веса системы компенсируются в закрытом цикле (теплообменник-турбокомпрессор) также как дополнительный вес крыльев Skylon увеличивая общий вес системы, так же способствуют общему увеличению эффективности больше, чем снижению ее. Это большей частью компенсируется разными траекториями полета. Обычные ракеты-носители стартуют вертикально, с крайне низкими скоростями (если говорить о тангенциальной а не нормальной скорости), этот, на первый взгляд неэффективных ход, позволяет быстрей пронзить атмосферу и набирать тангенциальную скорость уже в безвоздушной среде, не теряя скорость на трении о воздух.

В то же время большая топливная эффективность двигателя SABRE позволяют очень пологий подъем (при котором растет больше тангенциальная, чем нормальная составляющая скорости), воздух скорее способствует чем тормозит систему (окислитель и рабочее тело для двигателя, подъемная сила для крыльев), дает в итоге намного меньший расход топлива для достижения орбитальной скорости.

Некоторые характеристики

Тяга в пустоте – 2940 кН
Тяга на уровне моря – 1960 кН
Тяговоруженность (двигателя) – около 14 (в атмосфере)
Удельный импульс в вакууме – 460 сек
Удельный импульс на уровне моря – 3600 сек

Преимущества

В отличии от традиционных ракетных двигателей, и подобно иным типам воздушно-реактивных двигателей, гибридный реактивный двигатель может использовать воздух, для сжигания топлива, снижая необходимый вес ракетного топлива, и тем увеличивая вес полезной нагрузки.

ПВРД и ГПВРД должны провести большое количество времени в нижних слоях атмосферы, чтобы достичь скорости, достаточной для выхода на орбиту, что выводит на передний план проблему интенсивного нагрева на гиперзвуке, а так же потери в следствии значительно веса и сложности теплозащиты.

Гибридный реактивный двигатель подобный SABRE нуждается только в достижении низкой гиперзвуковой скорости (напомним: гиперзвук – все что после М=5, следовательно М = 5,14 это самое начало гиперзвукового диапазона скоростей) в нижних слоях атмосферы, перед переходом на закрытый цикл работы и крутом подъеме с набором скорости в ракетном режиме.

В отличии от ПВРД или ГПВРД, SABRE способен обеспечить высокую тягу от нулевой скорости и до М=5,14, от земли и до больших высот, с высокой эффективностью во всем диапазоне. Кроме того, возможность создания тяги при нулевой скорости означает возможность испытаний двигателя на земле, что значительно сокращает стоимость разработки.

Так же вашему вниманию предлагается некоторое число ссылок

  • Физика
  • Ракетные двигатели - одна из вершин технического прогресса. Работающие на пределе материалы, сотни атмосфер, тысячи градусов и сотни тонн тяги - это не может не восхищать. Но разных двигателей много, какие же из них самые лучшие? Чьи инженеры поднимутся на пьедестал почета? Пришло, наконец, время со всей прямотой ответить на этот вопрос.

    К сожалению, по внешнему виду двигателя нельзя сказать, насколько он замечательный. Приходится закапываться в скучные цифры характеристик каждого двигателя. Но их много, какую выбрать?

    Мощнее

    Ну, наверное, чем мощнее двигатель, тем он лучше? Больше ракета, больше грузоподъемность, быстрее начинает двигаться освоение космоса, разве не так? Но если мы посмотрим на лидера в этой области, нас ждет некоторое разочарование. Самая большая тяга из всех двигателей, 1400 тонн, у бокового ускорителя Спейс Шаттла.

    Несмотря на всю мощь, твердотопливные ускорители сложно назвать символом технического прогресса, потому что конструктивно они являются всего лишь стальным (или композитным, но это неважно) цилиндром с топливом. Во-вторых, эти ускорители вымерли вместе с шаттлами в 2011 году, что подрывает впечатление их успешности. Да, те, кто следят за новостями о новой американской сверхтяжелой ракете SLS скажут мне, что для нее разрабатываются новые твердотопливные ускорители, тяга которых составит уже 1600 тонн, но, во-первых, полетит эта ракета еще не скоро, не раньше конца 2018 года. А во-вторых, концепция «возьмем больше сегментов с топливом, чтобы тяга была еще больше» является экстенсивным путем развития, при желании, можно поставить еще больше сегментов и получить еще большую тягу, предел тут пока не достигнут, и незаметно, чтобы этот путь вел к техническому совершенству.

    Второе место по тяге держит отечественный жидкостной двигатель РД-171М - 793 тонны.


    Четыре камеры сгорания - это один двигатель. И человек для масштаба

    Казалось бы - вот он, наш герой. Но, если это лучший двигатель, где его успех? Ладно, ракета «Энергия» погибла под обломками развалившегося Советского Союза, а «Зенит» прикончила политика отношений России и Украины. Но почему США покупают у нас не этот замечательный двигатель, а вдвое меньший РД-180? Почему РД-180, начинавшийся как «половинка» РД-170, сейчас выдает больше, чем половину тяги РД-170 - целых 416 тонн? Странно. Непонятно.

    Третье и четвертое места по тяге занимают двигатели с ракет, которые больше не летают. Твердотопливному UA1207 (714 тонн), стоявшему на Титане IV, и звезде лунной программы двигателю F-1 (679 тонн) почему-то не помогли дожить до сегодняшнего дня выдающиеся показатели по мощности. Может быть, какой-нибудь другой параметр важнее?

    Эффективнее

    Какой показатель определяет эффективность двигателя? Если ракетный двигатель сжигает топливо, чтобы разгонять ракету, то, чем эффективнее он это делает, тем меньше топлива нам нужно потратить для того, чтобы долететь до орбиты/Луны/Марса/Альфы Центавра. В баллистике для оценки такой эффективности есть специальный параметр - удельный импульс.
    Удельный импульс показывает, сколько секунд двигатель может развивать тягу в 1 Ньютон на одном килограмме топлива

    Рекордсмены по тяге оказываются, в лучшем случае, в середине списка, если отсортировать его по удельному импульсу, а F-1 с твердотопливными ускорителями оказываются глубоко в хвосте. Казалось бы, вот она, важнейшая характеристика. Но посмотрим на лидеров списка. С показателем 9620 секунд на первом месте располагается малоизвестный электрореактивный двигатель HiPEP


    Это не пожар в микроволновке, а настоящий ракетный двигатель. Правда, микроволновка ему все-таки приходится очень отдаленным родственником...

    Двигатель HiPEP разрабатывался для закрытого проекта зонда для исследования лун Юпитера, и работы по нему были остановлены в 2005 году. На испытаниях прототип двигателя, как говорит официальный отчет NASA, развил удельный импульс 9620 секунд, потребляя 40 кВт энергии.

    Второе и третье места занимают еще не летавшие электрореактивные двигатели VASIMR (5000 секунд) и NEXT (4100 секунд), показавшие свои характеристики на испытательных стендах. А летавшие в космос двигатели (например, серия отечественных двигателей СПД от ОКБ «Факел») имеют показатели до 3000 секунд.


    Двигатели серии СПД. Кто сказал «классные колонки с подсветкой»?

    Почему же эти двигатели еще не вытеснили все остальные? Ответ прост, если мы посмотрим на другие их параметры. Тяга электрореактивных двигателей измеряется, увы, в граммах, а в атмосфере они вообще не могут работать. Поэтому собрать на таких двигателях сверхэффективную ракету-носитель не получится. А в космосе они требуют киловатты энергии, что не всякие спутники могут себе позволить. Поэтому электрореактивные двигатели используются, в основном, только на межпланетных станциях и геостационарных коммуникационных спутниках.

    Ну, хорошо, скажет читатель, отбросим электрореактивные двигатели. Кто будет рекордсменом по удельному импульсу среди химических двигателей?

    С показателем 462 секунды в лидерах среди химических двигателей окажутся отечественный КВД1 и американский RL-10. И если КВД1 летал всего шесть раз в составе индийской ракеты GSLV, то RL-10 - успешный и уважаемый двигатель для верхних ступеней и разгонных блоков, прекрасно работающий уже много лет. В теории, можно собрать ракету-носитель целиком из таких двигателей, но тяга одного двигателя в 11 тонн означает, что на первую и вторую ступень их придется ставить десятками, и желающих так делать нет.

    Можно ли совместить большую тягу и высокий удельный импульс? Химические двигатели уперлись в законы нашего мира (ну не горит водород с кислородом с удельным импульсом больше ~460, физика запрещает). Были проекты атомных двигателей ( , ), но дальше проектов это пока не ушло. Но, в целом, если человечество сможет скрестить высокую тягу с высоким удельным импульсом, это сделает космос доступней. Есть ли еще показатели, по которым можно оценить двигатель?

    Напряженней

    Ракетный двигатель выбрасывает массу (продукты сгорания или рабочее тело), создавая тягу. Чем больше давление давление в камере сгорания, тем больше тяга и, главным образом в атмосфере, удельный импульс. Двигатель с более высоким давлением в камере сгорания будет эффективнее двигателя с низким давлением на том же топливе. И если мы отсортируем список двигателей по давлению в камере сгорания, то пьедестал будет оккупирован Россией/СССР - в нашей конструкторской школе всячески старались делать эффективные двигатели с высокими параметрами. Первые три места занимает семейство кислородно-керосиновых двигателей на базе РД-170: РД-191 (259 атм), РД-180 (258 атм), РД-171М (246 атм).


    Камера сгорания РД-180 в музее. Обратите внимание на количество шпилек, удерживающих крышку камеры сгорания, и расстояние между ними. Хорошо видно, как тяжело удержать стремящиеся сорвать крышку 258 атмосфер давления

    Четвертое место у советского РД-0120 (216 атм), который держит первенство среди водородно-кислородных двигателей и летал два раза на РН «Энергия». Пятое место тоже у нашего двигателя - РД-264 на топливной паре несимметричный диметилгидразин/азотный тетраоксид на РН «Днепр» работает с давлением в 207 атм. И только на шестом месте будет американский двигатель Спейс Шаттла RS-25 с двумястами тремя атмосферами.

    Надежней

    Каким бы ни был многообещающим по характеристикам двигатель, если он взрывается через раз, пользы от него немного. Сравнительно недавно, например, компания Orbital была вынуждена отказаться от использования хранившихся десятилетиями двигателей НК-33 с очень высокими характеристиками, потому что авария на испытательном стенде и феерический по красоте ночной взрыв двигателя на РН Antares поставили под сомнение целесообразность использования этих двигателей дальше. Теперь Antares будут пересаживать на российский же РД-181.


    Большая фотография по ссылке

    Верно и обратное - двигатель, который не отличается выдающимися значениями тяги или удельного импульса, но надежен, будет популярен. Чем длиннее история использования двигателя, тем больше статистика, и тем больше багов в нем успели отловить на уже случившихся авариях. Двигатели РД-107/108, стоящие на «Союзе», ведут свою родословную от тех самых двигателей, которые запускали первый спутник и Гагарина, и, несмотря на модернизации, имеют достаточно невысокие на сегодняшний день параметры. Но высочайшая надежность во многом окупает это.

    Доступней

    Двигатель, который ты не можешь построить или купить, не имеет для тебя никакой ценности. Этот параметр не выразить в числах, но он не становится от этого менее важным. Частные компании часто не могут купить готовые двигатели задорого, и вынуждены делать свои, пусть и попроще. Несмотря на то, что те не блещут характеристиками, это лучшие двигатели для их разработчиков. Например, давление в камере сгорания двигателя Merlin-1D компании SpaceX составляет всего 95 атмосфер, рубеж, который инженеры СССР перешли в 1960-х, а США - в 1980-х. Но Маск может делать эти двигатели на своих производственных мощностях и получать по себестоимости в нужных количествах, десятками в год, и это круто.


    Двигатель Merlin-1D. Выхлоп из газогенератора как на «Атласах» шестьдесят лет назад, зато доступно

    TWR

    Раз уж зашла речь о спейсэксовских «Мерлинах», нельзя не упомянуть характеристику, которую всячески форсили пиарщики и фанаты SpaceX - тяговооруженность. Тяговооруженность (она же удельная тяга или TWR) - это отношение тяги двигателя к его весу. По этому параметру двигатели Merlin с большим отрывом впереди, у них он выше 150. На сайте SpaceX пишут, что это делает двигатель «самым эффективным из всех когда-либо построенных», и эта информация разносится пиарщиками и фанатами по другим ресурсам. В английской Википедии даже шла тихая война, когда этот параметр запихивался, куда только можно, что привело к тому, что в таблице сравнения двигателей этот столбец вообще убрали. Увы, в таком заявлении гораздо больше пиара, нежели правды. В чистом виде тяговооруженность двигателя можно получить только на стенде, а при старте настоящей ракеты двигатели будут составлять меньше процента от ее массы, и разница в массе двигателей ни на что не повлияет. Несмотря на то, что двигатель с высоким TWR будет более технологичным, чем с низким, это скорее мера технической простоты и ненапряженности двигателя. Например, по параметру тяговооруженности двигатель F-1 (94) превосходит РД-180 (78), но по удельному импульсу и давлению в камере сгорания F-1 будет заметно уступать. И возносить тяговооруженность на пьедестал как самую важную для ракетного двигателя характеристику, по меньшей мере наивно.

    Цена

    Этот параметр во многом связан с доступностью. Если вы делаете двигатель сами, то себестоимость вполне можно подсчитать. Если же покупаете, то этот параметр будет указан явно. К сожалению, по этому параметру не построить красивую таблицу, потому что себестоимость известна только производителям, а стоимость продажи двигателя тоже публикуется далеко не всегда. Также на цену влияет время, если в 2009 году РД-180 оценивался в $9 млн, то сейчас его оценивают в $11-15 млн.

    Вывод

    Как вы уже, наверное, догадались, введение было написано несколько провокационно (простите). На самом деле, у ракетных двигателей нет одного параметра, по которому их можно выстроить и четко сказать, какой самый лучший. Если же пытаться вывести формулу лучшего двигателя, то получится примерно следующее:
    Самый лучший ракетный двигатель - это такой двигатель, который вы можете произвести/купить , при этом он будет обладать тягой в требуемом вам диапазоне (не слишком большой или маленькой) и будет эффективным настолько(удельный импульс, давление в камере сгорания ), что его цена не станет неподъемной для вас.

    Скучно? Зато ближе всего к истине.

    И, в заключение, небольшой хит-парад двигателей, которые лично я считаю лучшими:


    Семейство РД-170/180/190 . Если вы из России или можете купить российские двигатели и вам нужны мощные двигатели на первую ступень, то отличным вариантом будет семейство РД-170/180/190. Эффективные, с высокими характеристиками и отличной статистикой надежности, эти двигатели находятся на острие технологического прогресса.


    Be-3 и RocketMotorTwo . Двигатели частных компаний, занимающихся суборбитальным туризмом, будут в космосе всего несколько минут, но это не мешает восхищаться красотой использованных технических решений. Водородный двигатель BE-3, перезапускаемый и дросселируемый в широком диапазоне, с тягой до 50 тонн и оригинальной схемой с открытым фазовым переходом, разработанный сравнительно небольшой командой - это круто. Что же касается RocketMotorTwo, то при всем скептицизме по отношению к Брэнсону и SpaceShipTwo, я не могу не восхищаться красотой и простотой схемы гибридного двигателя с твердым топливом и газообразным окислителем.

    F-1 и J-2 В 1960-х это были самые мощные двигатели в своих классах. Да и нельзя не любить двигатели, подарившие нам такую красоту.

    GE Aviation разрабатывает революционно новый реактивный двигатель, который сочетает в себе лучшие черты турбореактивных и турбовентиляторных двигателей, при этом обладает сверхзвуковой скоростью и эффективно использует топливо, сообщает zitata.org.

    В настоящее время в рамках проекта USAF ADVENT разрабатываются новые двигатели, которые экономят топливо на 25 процентов и снабжены новыми возможностями.

    В авиации существуют два основных вида реактивных двигателей: турбовентиляторные с низкой степенью двухконтурности, как правило, их называют турбореактивными двигателями и ТРД с высокой степенью двухконтурности. Турбореактивные двигатели с низкой степенью двухконтурности оптимизированы для высокой производительности, толкая различные истребители, но при этом используя невероятно много топлива. Результат производительности стандартного турбореактивного зависит от нескольких элементов (компрессор, камера сгорания, турбины и сопла).

    Напротив, ТРД с высокой степенью двухконтурности, являются мощнейшими устройствами гражданской авиации, оптимизированными для сверхмощных толчков с эффективным использованием топлива, но плохо зарекомендовавшими себя на сверхзвуковых скоростях. Обычный турбореактивный двигатель низкого давления получает воздушный поток от вентилятора, который приводится в действие реактивной турбиной. Затем, поток воздуха поступаемый от вентилятора обходит камеры сгорания, действуя как большой пропеллер.

    В ADVENT (ADaptive VErsitile ENgine Technology) двигателе появился третий, внешний байпас, который может быть открыт и закрыт в зависимости от условия полёта. При взлёте для уменьшения степени двухконтурности третий байпас закрыт. В результате этого, для увеличения тяги генерируется большой поток воздуха через компрессор высокого давления. При необходимости открывается третий байпас для увеличения степени двухконтурности и снижения расхода топлива.

    Дополнительный обходной канал расположен вдоль верхней и нижней части двигателя. Это третий канал будет открыт или закрыт, как часть переменного цикла. Если канал открыт — степень двухконтурности будет расти, снижая расход топлива и повышая звуковой диапазон до 40 процентов. Если каналы закрыты, дополнительный воздух проходит через компрессора высокого и низкого давлений, что безусловно повышает тягу, увеличивает толчок и обеспечивает сверхзвуковой производительностью при взлёте.

    Конструкция двигателя ADVENT основана на новых технологиях производства, таких как 3D печать сложных компонентов охлаждения и супермощных, но лёгкий керамических композитов. Они позволяют производить высокоэффективные реактивные двигатели, работающие при температуре выше температуры плавления стали.

    Инженеры разработали новый двигатель для лёгких полётов. «Мы хотим, чтобы двигатель был невероятно надёжным и позволил пилоту сосредоточиться на его миссии», — говорит Abe Levatter, руководитель проекта GE Aviation. Мы взяли на себя ответственность и разработали двигатель, который оптимизирован для любых полётов».

    В настоящее время GE тестирует основные компоненты двигателя и планирует запустить его в середине 2013 года. На видео, расположенном ниже можно увидеть новый двигатель ADVENT в действии.

    Реактивные самолеты - самые мощные и современные воздушные суда XX века. Их принципиальное отличие от других состоит в том, что они приводятся в движение с помощью воздушно-реактивного или реактивного двигателя. В настоящее время они составляют основу современной авиации, как гражданской, так и военной.

    История реактивных самолетов

    Реактивные самолеты впервые в истории авиации попытался создать румынский конструктор Анри Коанда. Это было в самом начале XX века, в 1910 году. Он с помощниками испытал самолет, названный в его честь Coanda-1910, который был оснащен поршневым двигателем вместо всем знакомого винта. Именно он приводил в движение элементарный лопастной компрессор.

    Однако многие сомневаются, что именно это был первый реактивный самолет. После окончания Второй мировой войны Коанда говорил, что созданный им образец был мотокомпрессорным воздушно-реактивным двигателем, противореча сам себе. В своих первоначальных публикациях и патентных заявках он ничего подобного не утверждал.

    На фотоснимках румынского самолета видно, что двигатель располагается возле деревянного фюзеляжа, поэтому при сжигании топлива пилот и самолет были бы уничтожены образовавшемся пожаром.

    Сам Коанда утверждал, что огонь действительно уничтожил хвост самолета во время первого полета, однако документальных подтверждений не сохранилось.

    Стоит отметить, что в реактивных самолетах, выпускавшихся в 1940 годах, обшивка была цельнометаллической и имела дополнительную тепловую защиту.

    Эксперименты с реактивными самолетами

    Официально первый реактивный самолет поднялся в воздух 20 июня 1939 года. Именно тогда состоялся первый экспериментальный полет авиасудна, созданного немецкими конструкторами. Чуть позже свои образцы выпустила Япония и страны антигитлеровской коалиции.

    Немецкая компания Heinkel начала опыты с реактивными самолетами в 1937 году. Уже через два года модель He-176 совершила свой первый официальный полет. Однако после первых пяти пробных вылетов стало очевидным, что запустить этот образец в серию нет никаких шансов.

    Проблемы первых реактивных самолетов

    Ошибок немецких конструкторов было несколько. Во-первых, двигатель был выбран жидкостно-реактивный. В нем использовались метанол и перекись водорода. Они выполняли функции горючего и окислителя.

    Разработчики предполагали, что эти реактивные самолеты смогут развивать скорость до одной тысячи километров в час. Однако на практике удалось добиться скорости только в 750 километров в час.

    Во-вторых, у самолета был непомерный расход топлива. С собой его приходилось брать столько, что авиасудно могло удалиться максимум на 60 километров от аэродрома. После ему требовалась дозаправка. Единственным плюсом, в сравнении с другими ранними моделями, стала быстрая скорость набора высоты. Она составляла 60 метров в секунду. При этом в судьбе этой модели определенную роль сыграли субъективные факторы. Так, она просто-напросто не понравилась Адольфу Гитлеру, который присутствовал на одном из пробных пусков.

    Первый серийный образец

    Несмотря на неудачу с первым образцом, именно немецким авиаконструкторам удалось раньше всех запустить реактивные самолеты в серийное производство.

    На поток был поставлен выпуск модели Me-262. Первый пробный полет этот самолет совершил в 1942 году, в самый разгар Второй мировой войны, когда Германия уже вторглась на территорию Советского Союза. Эта новинка могла существенно повлиять на окончательный исход войны. На вооружение немецкой армии это боевое воздушное судно поступило уже в 1944-м.

    Причем выпускался самолет в различных модификациях - и как разведчик, и как штурмовик, и как бомбардировщик, и как истребитель. Всего до конца войны было произведено полторы тысячи таких самолетов.

    Эти реактивные военные самолеты отличались завидными техническими характеристиками, по меркам того времени. На них были установлены два турбореактивных двигателя, в наличии имелся 8-ступенчатый осевой компрессор. В отличие от предыдущей модели эта, широко известная как "Мессершмитт", потребляла не так много топлива, имела хорошие летно-технические показатели.

    Скорость реактивного самолета достигала 870 километров в час, дальность полета составляла более тысячи километров, максимальная высота - свыше 12 тысяч метров, скорость набора высоты - 50 метров в секунду. Масса пустого воздушного судна была менее 4 тонн, полностью снаряженного достигала 6 тысяч килограммов.

    На вооружении "Мессершмиттов" стояли 30-миллиметровые пушки (их было не менее четырех), общая масса ракет и бомб, которые мог перевозить самолет, около полутора тысяч килограммов.

    В ходе Второй мировой войны "Мессершмитты" уничтожили 150 самолетов. Потери немецкой авиации составили около 100 воздушных судов. Эксперты отмечают, что количество потерь могло бы быть намного меньше, если бы пилоты были лучше подготовлены к работе на принципиально новом летательном аппарате. К тому же имелись проблемы с двигателем, который быстро изнашивался и был ненадежен.

    Японский образец

    В годы Второй мировой войны выпустить свой первый самолет с реактивным двигателем стремились практически все противоборствующие страны. Японские авиаинженеры отличились тем, что первыми стали использовать жидкостно-реактивный двигатель в серийном производстве. Он применялся в японском пилотируемом самолете-снаряде, на котором летали камикадзе. С конца 1944 года до конца Второй мировой войны на вооружение японской армии поступило более 800 таких воздушных судов.

    Технические характеристики японского реактивного самолета

    Так как этот самолет, по сути, был одноразовым - камикадзе сразу на нем разбивались, то и строили его по принципу "дешево и сердито". Носовую часть составлял деревянный планер, при взлете воздушное судно развивало скорость до 650 километров в час. Все за счет трех жидкостно-реактивных двигателей. Ни взлетных двигателей, ни шасси самолету не требовалось. Он обходился без них.

    Японский самолет для камикадзе доставлялся до цели бомбардировщиком Ohka, после чего включались жидкостно-реактивные двигатели.

    При этом сами японские инженеры и военные отмечали, что эффективность и производительность такой схемы была крайне низка. Сами бомбардировщики легко вычислялись с помощью локаторов, установленных на кораблях, входивших в состав американского военно-морского флота. Происходило это еще до того, как камикадзе успевали настроиться на цель. В конечном счете многие самолеты гибли еще на дальних подступах к конечной цели своего назначения. Причем сбивали как самолеты, в которых сидели камикадзе, так и бомбардировщики, которые их доставляли.

    Ответ Великобритании

    Со стороны Великобритании во Второй мировой войне принимал участие только один реактивный самолет - это Gloster Meteor. Свой первый боевой вылет он совершил в марте 1943 года.

    На вооружение великобританских королевских военно-воздушных сил он поступил в середине 1944 года. Его серийное производство продолжалось до 1955-го. А на вооружении эти самолеты находились вплоть до 70-х годов. Всего с конвейера сошли около трех с половиной тысяч этих воздушных судов. Причем самых различных модификаций.

    В период Второй мировой выпускались только две модификации истребителей, затем их количество увеличилось. Причем одна из модификаций была настолько секретной, что на территорию противника они не летали, чтобы в случае крушения не достаться авиационным инженерам врага.

    В основном они занимались отражением авиационных атак немецких самолетов. Базировались они под Брюсселем в Бельгии. Однако с февраля 1945 года немецкая авиация забыла об атаках, сконцентрировавшись исключительно на оборонительном потенциале. Поэтому в последний год Второй мировой войны из 200 с лишним самолетов Global Meteor были потеряны только два. Причем это не стало следствием усилий немецких авиатором. Оба самолета столкнулись между собой при заходе на посадку. На аэродроме в то время была сильная облачность.

    Технические характеристики британского самолета

    Британский самолет Global Meteor обладал завидными техническими характеристиками. Скорость реактивного самолета достигала почти 850 тысяч километров в час. Размах крыла больше 13 метров, взлетная масса около 6 с половиной тысяч килограммов. Взлетал самолет на высоту почти 13 с половиной километров, дальность полета при этом составляла более двух тысяч километров.

    На вооружении британского самолета находились четыре 30-миллиметровые пушки, которые обладали высокой эффективностью.

    Американцы в числе последних

    Среди всех основных участников Второй мировой одними из последних реактивный самолет выпустили военно-воздушные силы США. Американская модель Lockheed F-80 попала на аэродромы Великобритании только в апреле 1945 года. За месяц до капитуляции немецких войск. Поэтому поучаствовать в боевых действиях он практически не успел.

    Американцы активно применяли этот самолет через несколько лет во время войны в Корее. Именно в этой стране произошел первый в истории бой между двумя реактивными самолетами. С одной стороны был американский F-80, а с другой советский МиГ-15, который на тот момент был более современным, уже околозвуковым. Советский пилот одержал победу.

    Всего на вооружение американской армии поступило более полутора тысяч таких самолетов.

    Первый советский реактивный самолет сошел с конвейера в 1941 году. Его выпустили в рекордные сроки. 20 дней ушло на проектирование и еще месяц на производство. Сопло реактивного самолета выполняло функцию защиты его частей от излишнего нагрева.

    Первый советский образец представлял собой деревянный планер, к которому были прикреплены жидкостно-реактивные двигатели. Когда началась Великая Отечественная война, все наработки были переброшены на Урал. Там начались экспериментальные вылеты и испытания. По замыслу конструкторов, самолет должен был развивать скорость до 900 километров в час. Однако, как только первый его испытатель Григорий Бахчиванджи приблизился к отметке в 800 километров в час, воздушное судно рухнуло. Летчик-испытатель погиб.

    Окончательно доработать советскую модель реактивного самолета удалось только в 1945 году. Зато массовый выпуск начали сразу двух моделей - Як-15 и МиГ-9.

    В сравнении технических характеристик двух машин принимал участие сам Иосиф Сталин. В результате было принято решение использовать Як-15, как учебное воздушное судно, а МиГ-9 поступил в распоряжение ВВС. За три года было выпущено более 600 МиГов. Однако вскоре самолет был снят с производства.

    Основных причин было две. Разрабатывали его откровенно наспех, постоянно вносили изменения. К тому же сами пилоты относились к нему с подозрением. Чтобы освоить машину, требовалось много усилий, а ошибок в пилотаже допускать было категорически нельзя.

    В результате в 1948 году на смену пришел усовершенствованный МиГ-15. Советский реактивный самолет летит со скоростью более 860 километров в час.

    Пассажирский самолет

    Самый известный реактивный пассажирский самолет, наряду с английским Concorde, - советский ТУ-144. Обе этих модели входили в разряд сверхзвуковых.

    Советские самолеты поступили в производство в 1968 году. Звук реактивного самолета с тех пор стал часто раздаваться над советскими аэродромами.



    Поделиться