Техника на паровом двигателе. Паровой двигатель своими руками

Начал свою экспансию еще в начале 19-го века. И уже в то время строились не только большие агрегаты для промышленных целей, но также и декоративные. В большинстве своем их покупателями были богатые вельможи, которые хотели позабавить себя и своих детишек. После того как паровые агрегаты плотно вошли в жизнь социума, декоративные двигатели начали применяться в университетах и школах в качестве образовательных образцов.

Паровые двигатели современности

В начале 20-го века актуальность паровых машин начала падать. Одной из немногих компаний, которые продолжили выпуск декоративных мини-двигателей, стала британская фирма Mamod, которая позволяет приобрести образец подобной техники даже сегодня. Но стоимость таких паровых двигателей легко переваливает за две сотни фунтов стерлингов, что не так и мало для безделушки на пару вечеров. Тем более для тех, кто любит собирать всяческие механизмы самостоятельно, гораздо интереснее создать простой паровой двигатель своими руками.

Очень простое. Огонь нагревает котел с водой. Под действием температуры вода превращается в пар, который толкает поршень. Пока в емкости есть вода, соединенный с поршнем маховик будет вращаться. Это стандартная схема строения парового двигателя. Но можно собрать модель и совершенно другой комплектации.

Что же, перейдем от теоретической части к более увлекательным вещам. Если вам интересно делать что-то своими руками, и вас удивляют столь экзотичные машины, то эта статья именно для вас, в ней мы с радостью расскажем о различных способах того, как собрать двигатель своими руками паровой. При этом сам процесс создания механизма дарит радость не меньшую, чем его запуск.

Метод 1: мини-паровой двигатель своими руками

Итак, начнем. Соберем самый простой паровой двигатель своими руками. Чертежи, сложные инструменты и особые знания при этом не нужны.

Для начала берем из-под любого напитка. Отрезаем от нее нижнюю треть. Так как в результате получим острые края, то их необходимо загнуть внутрь плоскогубцами. Делаем это осторожно, чтобы не порезаться. Так как большинство алюминиевых банок имеют вогнутое дно, то необходимо его выровнять. Достаточно плотно прижать его пальцем к какой-нибудь твердой поверхности.

На расстоянии 1,5 см от верхнего края полученного «стакана» необходимо сделать два отверстия друг напротив друга. Желательно для этого использовать дырокол, так как необходимо, чтобы они получились в диаметре не менее 3 мм. На дно банки кладем декоративную свечку. Теперь берем обычную столовую фольгу, мнем ее, после чего оборачиваем со всех сторон нашу мини-горелку.

Мини-сопла

Далее нужно взять кусок медной трубки длиной 15-20 см. Важно, чтобы внутри она была полой, так как это будет наш главный механизм приведения конструкции в движение. Центральную часть трубки оборачивают вокруг карандаша 2 или 3 раза, так, чтобы получилась небольшая спираль.

Теперь необходимо разместить этот элемент так, чтобы изогнутое место размещалось непосредственно над фитилем свечки. Для этого придаем трубке формы буквы «М». При этом выводим участки, которые опускаются вниз, через проделанные отверстия в банке. Таким образом, медная трубка жестко фиксируется над фитилем, а ее края являются своеобразными соплами. Для того чтобы конструкция могла вращаться, необходимо отогнуть противоположные концы «М-элемента» на 90 градусов в разные стороны. Конструкция парового двигателя готова.

Запуск двигателя

Банку размещают в емкости с водой. При этом необходимо, чтобы края трубки находились под ее поверхностью. Если сопла недостаточно длинные, то можно добавить на дно банки небольшой грузик. Но будьте осторожны — не потопите весь двигатель.

Теперь необходимо заполнить трубку водой. Для этого можно опустить один край в воду, а вторым втягивать воздух как через трубочку. Опускаем банку на воду. Поджигаем фитиль свечки. Через некоторое время вода в спирали превратится в пар, который под давлением будет вылетать из противоположных концов сопел. Банка начнет вращаться в емкости достаточно быстро. Вот такой у нас получился двигатель своими руками паровой. Как видите, все просто.

Модель парового двигателя для взрослых

Теперь усложним задачу. Соберем более серьезный двигатель своими руками паровой. Для начала необходимо взять банку из-под краски. При этом следует убедиться, что она абсолютно чистая. На стенке на 2-3 см от дна вырезаем прямоугольник с размерами 15 х 5 см. Длинная сторона размещается параллельно дну банки. Из металлической сетки вырезаем кусок площадью 12 х 24 см. С обоих концов длинной стороны отмеряем 6 см. Отгибаем эти участки под углом 90 градусов. У нас получается маленький «столик-платформа» площадью 12 х 12 см с ногами по 6 см. Устанавливаем полученную конструкцию на дно банки.

По периметру крышки необходимо сделать несколько отверстий и разместить их в форме полукруга вдоль одной половины крышки. Желательно, чтобы отверстия имели диаметр около 1 см. Это необходимо для того, чтобы обеспечить надлежащую вентиляцию внутреннего пространства. Паровой двигатель не сможет хорошо работать, если к источнику огня не будет попадать достаточное количество воздуха.

Основной элемент

Из медной трубки делаем спираль. Необходимо взять около 6 метров мягкой медной трубки диаметром 1/4-дюйма (0,64 см). От одного конца отмеряем 30 см. Начиная с этой точки, необходимо сделать пять витков спирали диаметром 12 см каждая. Остальную часть трубы изгибают в 15 колец диаметром по 8 см. Таким образом, на другом конце должно остаться 20 см свободной трубки.

Оба вывода пропускают через вентиляционные отверстия в крышке банки. Если окажется, что длины прямого участка недостаточно для этого, то можно разогнуть один виток спирали. На установленную заранее платформу кладут уголь. При этом спираль должна размещаться как раз над этой площадкой. Уголь аккуратно раскладывают между ее витками. Теперь банку можно закрыть. В итоге мы получили топку, которая приведет в действие двигатель. Своими руками паровой двигатель почти сделан. Осталось немного.

Емкость для воды

Теперь необходимо взять еще одну банку из-под краски, но уже меньшего размера. В центре ее крышки сверлят отверстие диаметром в 1 см. Сбоку банки проделывают еще два отверстия — одно почти у дна, второе — выше, у самой крышки.

Берут два корка, в центре которых проделывают отверстие с диаметров медной трубки. В один корок вставляют 25 см пластиковой трубы, в другой — 10 см, так, чтобы их край едва выглядывал из пробок. В нижнее отверстие малой банки вставляют корок с длинной трубкой, в верхнее - более короткую трубку. Меньшую банку размещаем на большой банке краски так, чтобы отверстие на дне было на противоположной стороне от вентиляционных проходов большой банки.

Результат

В итоге должна получиться следующая конструкция. В малую банку заливается вода, которая через отверстие в дне вытекает в медную трубку. Под спиралью разжигается огонь, который нагревает медную емкость. Горячий пар поднимается по трубке вверх.

Для того чтобы механизм получился завершенным, необходимо присоединить к верхнему концу медной трубки поршень и маховик. В итоге тепловая энергия горения будет преобразовываться в механические силы вращения колеса. Существует огромное количество различных схем для создания такого двигателя внешнего сгорания, но во всех них всегда задействованы два элемента - огонь и вода.

Кроме такой конструкции, можно собрать паровой но это материал для совершенно отдельной статьи.

15 ряд ли кто-то сомневается, что одной из главных движущих сил прогресса являются человеческая лень и стремление к комфорту. Это подтверждается бесчисленными сказками, где транспорт передвигается «по щучьему велению», а у счастливчиков имеются волшебные помощники, избавляющие хозяина от необходимости сделать хоть какое-то физическое усилие. Но поскольку в реальности «само» ничего не делается, на протяжении всей истории человечества лучшие умы корпели над изобретениями, которые помогли бы воплотить эти мечты в жизнь.

Если говорить на языке физики и техники, нужно было изобрести устройство, которое смогло бы преобразовать тот или иной вид энергии в полезную механическую работу. С древнейших времен главным и основным источником энергии была мускульная сила человека и животных, а все имеющиеся технические приспособления в лучшем случае помогали использовать ее более рационально и продуктивно. Позднее люди научились применять силу ветра и воды, текущей или падающей с высоты, заставив их работать в ветряных и водяных двигателях . Однако мощность таких двигателей была невелика, и надо было осваивать более перспективные виды энергии тепловую, химическую и электрическую.

Первое известное тепловое устройство, работавшее за счет силы пара, было построено греческим ученым Архимедом в III в. до н. э. Это была пушка, один конец которой нагревали, а затем заливали туда воду. Мгновенно нагреваясь, вода превращалась в пар, который, расширяясь, выталкивал из жерла ядро. Спустя два столетия другой греческий ученый Герон Александрийский создал и описал еще одну тепловую машину полый железный шар, способный вращаться вокруг горизонтальной оси. Из закрытого котла с кипящей водой пар по трубке поступал в шар, откуда выходил наружу через изогнутые сопла, при этом шар приходил во вращение.

Пароход «Мэйфлауэр» на реке Миссисипи. 1855 г.

Полтора тысячелетия «геронов шар» был всего лишь забавной игрушкой, и только в XVI в. ученые задумались о возможности практического применения тепловой энергии. Знаменитый изобретатель Леонардо да Винчи был первым, кто предположил, что пар может выполнять полезную работу. Об этом свидетельствуют рисунки в его рукописях, изображающие цилиндр и поршень. Да Винчи утверждал, что если под поршень в цилиндр поместить воду, а сам цилиндр нагреть, то образующийся водяной пар будет расширяться, что заставит его искать выход и перемещать поршень вверх. Параллельно арабский инженер Таги аль Дин разработал проект устройства, в котором пар, направляемый на закрепленные по ободу колеса лопасти, вращал вертел. В XVII в. похожую машину построил итальянский изобретатель Джованни Бранка. Приводимое в движение паром анкерное устройство поочередно поднимало и опускало пару пестов в ступах, в результате чего можно было дробить зерно. Однако в этих прообразах паровых турбин поток пара был слишком рассеянным, в результате чего происходила значительная потеря энергии.

До конца XVII в. создаваемые паровые машины были скорее единичными техническими диковинками, поскольку экономических предпосылок для их массового использования еще не было. В 1б70-х годах французский изобретатель Дени Папен и голландский физик Христиан Гюйгенс работали над машиной, в которой поршень поднимался за счет расширения газов при взрыве пороха. В 1680 г. Папен создал вариант двигателя, в котором вместо пороха использовалась вода. Ее наливали в цилиндр под поршень, а сам цилиндр разогревали снизу, при этом образующийся пар поднимал поршень. Затем цилиндр охлаждали, и находящийся в нем пар конденсировался, снова превращаясь в воду.

Паровой двигатель Д. Папена.

Поршень, как и в случае порохового двигателя, под действием своего веса и атмосферного давления опускался. Папен также считается изобретателем парового котла, поскольку именно он понял, что для автоматизации цикла пар должен подаваться в цилиндр извне (поэтому паровой двигатель считается двигателем внешнего сгорания: топливо, разогревающее воду сжигается вне рабочего цилиндра).

Первым паровым двигателем, который был не без успеха использован на производстве, стала сконструированная в 1698 г. английским военным инженером Томасом Севери «пожарная установка». Это устройство, самим изобретателем названное «друг рудокопа», представляло собой паровой насос, который использовался для вращения колес водяной мельницы и для откачки воды из шахт. Машина была не слишком эффективной из-за больших потерь тепла во время охлаждения контейнера и достаточно опасной в эксплуатации, поскольку из-за высокого давления пара трубопроводы и емкости двигателя нередко взрывались.

В 1712 г. английский кузнец Томас Ньюкомен продемонстрировал свой «атмосферный двигатель». Это был усовершенствованный паровой двигатель Севери, в котором рабочее давление пара удалось значительно снизить, следовательно, двигатель стал более безопасным. Пар из котла поступал в основание цилиндра и поднимал поршень.

Сколько лошадей?

Понятие лошадиной силы как единицы мощности паровой машины ввел Дж. Уатт. Но первым термин стал применять Т. Севери еще в 1698 г. При этом подход у них был разный. Севери оценивал мощность своего насоса, исходя из того, что для его работы в сутки потребуется 10 меняющихся по мере усталости лошадей. Уатт же учитывал только работающих на данный момент пару запряженных лошадей. В итоге получалось, что мощность почти одинаковых паровых машин Севери оценивал в 10 «лошадок», а Уатт только в две.

Откачка воды из угольной шахты при помощи паровой машины Т. Ньюкомена. Иллюстрация из The Universal Magazine. 1747 г.

К. Ф. фон Бреда. Потрет Джеймса Уатта. 1792 г.

При впрыскивании в цилиндр холодной воды пар конденсировался, образовывался вакуум, и под воздействием атмосферного давления поршень опускался. Этот обратный ход удалял воду из цилиндра и посредством цепи, соединенной с коромыслом, поднимал шток насоса. Именно машина Ньюкомена явилась первым паровым двигателем, с которым принято связывать начало промышленной революции в Англии. Она оказалась настолько удачной, что использовалась в Европе более 50 лет. Тем не менее в конструкцию вносились некоторые важные изменения. В частности, в 1718 г. англичанин Генри Бейтон изобрел распределительный механизм, который автоматически включал или отключал пар и впускал воду. Он же дополнил паровой котел предохранительным клапаном.

Проект первой в мире паровой машины, способной непосредственно приводить в действие любые рабочие механизмы, предложил в 1763 г. русский изобретатель Иван Иванович Ползунов, механик на Колывано-Воскресенских горнорудных заводах Алтая. Его машина представляла собой двухцилиндровый вакуумный агрегат с поршнями, соединенными цепью, перекинутой через шкив. Все действия в нем совершались автоматически. Вместо опытного образца заводское начальство потребовало сразу построить большую машину для мощной воздуходувки. Двигатель строили почти два года, и до запуска изобретатель не дожил. Машина успешно прошла испытания и была запущена в эксплуатацию. Уже через три месяца она не только оправдала затраты, но и дала прибыль. Однако через некоторое время котел дал течь, и по непонятным соображениям чинить машину не стали.

Примерно в это же время в Англии над созданием паровой машины работал шотландец Джеймс Уатт. Он занимался усовершенствованием двигателя Ньюкомена. Было ясно, что основной недостаток машины Ньюкомена состоял в попеременном нагревании и охлаждении цилиндра. Уатт предположил, что цилиндр может постоянно оставаться горячим, если до конденсации отводить пар в отдельный резервуар через трубопровод с клапаном. Более того, цилиндр может оставаться горячим, а конденсатор холодным, если снаружи их покрыть теплоизоляционным материалом. В 1768 г. он получил на свое изобретение патент, но построить машину смог только в 1776 г. Она оказалась вдвое эффективнее машины Ньюкомена.

Паровая машина Ползунова.

И. И. Ползунов.

В 1782 г. появилась созданная Уаттом первая универсальная паровая машина двойного действия. Ее крышка была оснащена сальником, который обеспечивал поршню свободное движение штока и в то же время предотвращал утечку пара из цилиндра. Пар поступал в цилиндр с двух сторон поршня попеременно, таким образом, поршень совершал с помощью пара и рабочий, и обратный ход, чего не было в прежних машинах. Уатт получил на свою «ротативную паровую машину» патент, и она начала широко применяться для приведения в действие станков и машин сначала на прядильных и ткацких фабриках, а затем и на других промышленных предприятиях.

Паровоз «Пыхтящий Билли».

Макет паровой машины Дж. Уатта.

Помимо промышленности паровые машины прочно заняли место в сельском хозяйстве и на транспорте. Еще в 1850 г. английский изобретатель Уильям Говард использовал для пахоты локомобиль компактный передвижной паровой двигатель. В 1879 г. крестьянин Федор Блинов из Саратовской губернии построил и запатентовал первый в мире гусеничный трактор, приводимый в действие паровой машиной мощностью 20 л. с.

Первый образец автомобиля с паровым двигателем в 1769 г. испытал французский изобретатель Николя Жозе Кюньо, его творение получило известность как «малая паровая телега Кюньо». Год спустя публике представили уже «большую паровую телегу Кюньо». В 1788 г. в США было организовано пароходное сообщение по реке Делавер между городами Филадельфия и Берлингтон. Сконструированный Джоном Фитчем пароход мог принять на борт 30 пассажиров и везти их со скоростью 7-8 миль в час. А в 1804 г. Ричард Тревитик продемонстрировал первый самоходный железнодорожный локомотив на паровой тяге, построенный на металлургическом заводе Пенидаррен в Мер-тир-Тидвиле (Южный Уэльс).

Несмотря на все усилия инженеров, довольно низкий КПД паровых двигателей повысить так и не удалось, и уже к концу XIX в. с полной отдачей послужившие техническому прогрессу машины начали постепенно сдавать свои позиции. На автомобильном транспорте они уступили место двигателям внутреннего сгорания, на железной дороге и в промышленности электродвигателям. Однако в теплоэнергетике и на отдельных видах транспорта паровые машины (в особенности паровые турбины) по-прежнему используются достаточно широко.

Паровая турбина сталелитейного завода.

Паровой машиной называется тепловой двигатель, в котором по­тенциальная энергия расширяющегося пара преобразуется в меха­ническую энергию, отдаваемую потребителю.

С принципом действия машины ознакомимся, воспользовавшись упрощенной схемой фиг. 1.

Внутри цилиндра 2 находится поршень 10, который может пере­мещаться вперед и назад под давлением пара; в цилиндре имеются четыре канала, которые могут открываться и закрываться. Два верх­них пароподводящих канала 1 и 3 соединены трубопроводом с паро­вым котлом, и через них в цилиндр может поступать свежий пар. Через два нижних капала 9 и 11 пар, уже совершивший работу, выпускается из цилиндра.

На схеме показан момент, когда каналы 1 и 9 открыты, каналы 3 и 11 закрыты. Поэтому свежий пар из котла по каналу 1 поступает в левую полость цилиндра и своим давлением перемещает поршень вправо; в это время отработавший пар по каналу 9 из правой полости цилиндра удаляется. При крайнем правом положении поршня каналы 1 и 9 закрыты, а 3 для впуска свежего пара и 11 для выпуска отработавшего пара открыты, вследствие чего поршень переместится влево. При крайнем левом положении поршня открываются каналы 1 и 9 и закрываются каналы 3 и 11 и процесс повторяется. Таким образом, создается прямолинейное возвратно-поступательное движе­ние поршня.

Для преобразования этого движения во вращательное приме­няется так называемый кривошипно-шатунный механизм. Он состоит из поршневого штока- 4, соединенного одним концом с поршнем, а другим шарнирно, посредством ползуна (крейцкопфа) 5, скользящего между направляющими параллелями, с шатуном 6, который передает движение, на коренной вал 7 через его колено или кривошип 8.

Величина вращающего момента на коренном валу не является постоянной. В самом деле, силу Р , направленную вдоль штока (фиг. 2), можно разложить на две составляющие: К , направленную вдоль шатуна, и N , перпендикулярную к плоскости направляющих параллелей. Сила N не оказывает никакого влияния на движение, а только прижимает ползун к направляющим параллелям. Сила К передается вдоль шатуна и действует на кривошип. Здесь ее опять можно разложить на две составляющие: силу Z , направленную по радиусу кривошипа и прижимающую вал к подшипникам, и силу Т , перпендикулярную к кривошипу и вызывающую вращение вала. Величина силы Т определится из рассмотрения треугольника AKZ. Так как угол ZAK = ? + ?, то

Т = К sin (? + ?).

Но из треугольника ОКР сила

K= P/ cos ?

поэтому

T= Psin ( ? + ?) / cos ? ,

При работе машины за один оборот вала углы ? и ? и сила Р непрерывно меняются, а поэтому величина крутящей (тангенциаль­ной) силы Т также переменна. Чтобы создать равномерное вращение коренного вала в течение одного оборота, на него насаживают тяжелое колесо-маховик, за счет инерции которого поддерживается постоян­ная угловая скорость вращения вала. В те моменты, когда сила Т возрастает, она не может сразу же увеличить скорость вращения вала, пока не ускорится движение маховика, чего не происходит мгновенно, так как маховик обладает большой массой. В те моменты, когда работа, производимая крутящей силой Т , становится меньше работы сил сопротивления, создаваемых потребителем, маховик опять-таки в силу своей инерции не может сразу уменьшить свою ско­рость и, отдавая полученную при своем разгоне энергию, помогает поршню преодолевать нагрузку.

При крайних положениях поршня углы? + ? = 0, поэтому sin (? + ?) =0 и, следовательно, Т = 0. Так как вращающее уси­лие в этих положениях отсутствует, то, если машина была бы без маховика, сна должна была бы остановиться. Эти крайние положения поршня называются мертвыми положениями или мертвыми точками. Через них кривошип переходит также за счет инерции маховика.

При мертвых положениях поршень не доводится до соприкоснове­ния с крышками цилиндра, между поршнем и крышкой остается так называемое вредное пространство. В объем вредного прост­ранства включается также объем паровых каналов от органов парорас­пределения до цилиндра.

Ходом поршня S называется путь, проходимый поршнем при перемещении из одного крайнего положения в другое. Если расстояние от центра коренного вала до центра пальца кривошипа - радиус кривошипа - обозначить через R, то S = 2R.

Рабочим объемом цилиндра V h называется объем, описываемый поршнем.

Обычно паровые машины бывают двойного (двухстороннего) действия (см. фиг. 1). Иногда применяются машины односторон­него действия, в которых пар оказывает давление на поршень только со стороны крышки; другая сторона цилиндра в таких маши­нах остается открытой.

В зависимости от давления, с которым пар покидает цилиндр, машины разделяются на выхлопны е, если пар выходит в атмо­сферу, конденсационные, если пар выходит в конденсатор (холодильник, где поддерживается пониженное давление), и тепло фикационные, у которых отработавший в машине пар исполь­зуется для каких-либо целей (отопление, сушка и пр.)

Паровая машина стала первым механическим двигателем, для которого нашлось широкое практическое применение. Первые поршневые паровые машины начали вначале применяться на фабричном производстве, а позднее их смогли соединить с колёсами и получить самодвижущиеся машины:

  • пароходы;
  • паровозы;
  • тракторы;
  • автомобили.

История изобретения паровой машины

Основной принцип действия любой паровой машины заключается в том, что энергия горячего пара преобразуется в механическую энергию, которая может быть:

  • возвратно-поступательной;
  • вращательной.

А полученная механическая энергия может уже использоваться для полезных целей. Принцип работы паровой машины был понятен ещё древним грекам, но в тёмные века люди о нём прочно забыли. Вновь интерес к этой проблеме возродился только в 17-м веке. Итальянец Джованни Бранка в 1629 году предложил модель собственной паровой турбины. Но из-за недопустимо больших потерь энергии эта первая паровая машина в мире практического применения не нашла.

Этот француз – медик по образованию, переехал в 1675 году в Англию, где отметился целым рядом изобретений. Так, им изобретён «папенов котёл» – прообраз современной пароварки. Папен смог заметить взаимосвязь между ростом давления и температуры кипения жидкости. Он смог соорудить герметичный котёл, где поддерживалось повышенное давление. В результате этого вода в нём закипала при повышенной температуре, а продукты стало возможно готовить при температуре выше 100 градусов, что ускоряло процесс приготовления пищи.

Накануне переезда в Туманный Альбион Папен изобрёл пороховой двигатель. Сгорающий в цилиндре порох толкал поршень. Образовавшиеся пороховые газы удалялись через клапан, а оставшиеся остывали, благодаря чему в цилиндре возникало лёгкое разрежение, и давление атмосферы возвращало на место поршень.

По подобному же принципу Папен создал в 1698 году аналогичный двигатель, но уже на воде. Это фактически была первая паровая машина.

Несмотря на то, что сама идея сулила немалые выгоды, своему автору она дивидендов не принесла. Дело в том, что несколько раньше Сейвери (английский механик) запатентовал свой паровой насос, что было на тот момент единственным способом применения для паровой машины. Так вышло, что изобретатель первой паровой машины Дени Папен умер в 1714 году в Лондоне, будучи бедным и одиноким.

Машина Томаса Ньюкомена

Больших барышей смог добиться этот предприимчивый англичанин. Ему было 35 лет, когда создавалась машина Папена. Ньюкомен тщательно изучил наследие Папена и Сейвери и отметил недостатки обеих моделей, а сильные идеи взял на вооружение. Сотрудничая со специалистом по водопроводам и стеклу Д. Калли, Ньюкомен создал к 1712 году первую свою модель, продолжив историю создания паровых машин. Её принципиальная работа выглядела так:

  • в конструкции был вертикальный цилиндр с поршнем (от Папена);
  • пар генерировался в отдельном котле, который действовал по принципу изобретения Сэйвери;
  • герметичность паровому цилиндру обеспечивала обтягивающая поршень кожа.

Нагнетая давление, устройство Ньюкомена поднимало из шахт воду. Но оно было очень громоздкое и чрезвычайно прожорливое на уголь. Но эти недостатки не помешали полувековой эксплуатации данного изобретения на шахтах. Благодаря нему стало возможно реанимировать ранее заброшенные из-за подтопления грунтовой водой шахты. Но поскольку его машина была компиляцией ранних изобретений, то Ньюкомен патента на неё получить не смог.

Машина Уатта

Решающий шаг смог сделать британец Джеймс Уатт, благодаря усилиям которого появилась достаточно мощная и компактная первая поршневая паровая машина. Будучи механиком университета Глазго, Уатт в 1763 году взялся за починку паровой машины Ньюкомена. В процессе ремонта он придумал способ сокращения её прожорливости – её цилиндр нужно было поддерживать в нагретом состоянии.

Но требовалось решить ещё проблему конденсации пара. Решение он уловил, проходя мимо прачечных, из-под крышек котлов которых валили пар. Он сообразил, что пар является газом, который и следует запустить в цилиндр с пониженным давлением. Он добился герметичности системы поршень-цилиндр путём обмотки первого промасленной пеньковой верёвкой, после чего стал возможным отказ от атмосферного давления – заметный шаг вперёд.

В 1769 году Уатт запатентовал паровую машину, в которой температура пара и важнейших деталей была одинаковой.

Видео о первой паровой машине Джеймса Уатта

Но в жизни Уатту везло меньше, и патент ему пришлось заложить за долги. Через 3 года он познакомился с богатым промышленником Мэттью Болтоном, который выкупил для Уатта его патенты. Под его опекой Уатт вернулся к работе. Уже в 1773 году новая модель Уатта на испытаниях продемонстрировала гораздо меньшее потребление угля, чем требовали её предшественники. А ещё через год Англия начала промышленный выпуск машин Уатта. В 1781 году Уатт запатентовал паровую машину, которая приводила в действие промышленные станки. Ещё чуть позднее эти же технологии стали использоваться для движения пароходов и поездов, что станет подлинной технической революцией.

Нам не менее дорог Иван Ползунов – русский изобретатель первой паровой машины, которая была способна приводить в действие многие рабочие механизмы. Причём, сделал он это изобретение раньше Уайта – в 1763 году, работая на алтайских горнорудных заводах. Он ознакомил со своим проектом начальника заводов, а тот получил из столицы добро на сборку агрегата. Ползунову приказали построить большую машину.

Эта работа заняла 21 месяц, но когда она была почти готова, болевший чахоткой изобретатель умер, не дожив нескольких дней до её первых испытаний. Паровая машина Ползунова могла работать беспрерывно и в автоматическом режиме. Это было доказано в результате испытаний, проведённых в 1766 году учениками Ползунова. А через месяц машина уже начала трудиться, не только окупив все затраты на своё создание, но и принеся владельцам прибыль.

Как Вы считаете, кого можно назвать первым изобретателем паровой машины? Расскажите об этом в

Область деятельности(техники), к которой относится описываемое изобретение

Изобретение относится к паровым двигателям.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Известен , содержащий цилиндр с внешним подводом тепла, поршень со штоком, поршень-вытеснитель и регенератор газа . В качестве рабочего вещества (рабочего тела, в цилиндре может быть использован какой-либо газ (воздух, гелий, водород и др.), который перегоняют через регенератор из одной части цилиндра в другую.

Недостатком этого устройства является сложность, вследствие чего двигатель не нашел широкого применения.

Известен паровой двигатель Уатта , содержащий цилиндр, разделенный на две части поршнем со штоком. В каждую часть цилиндра периодически подают перегретый пар и в то же время из другой части цилиндра отработанный пар выпускают в конденсатор или наружу. В качестве рабочего тела при работе двигателя обычно используют водяной пар.

Недостатком этого устройства является необходимость иметь дорогое, громоздкое и сложное устройство - паровой котел, вследствие чего этот двигатель, ранее широко использовавшийся, в настоящее время почти не применяется. Дополнительным недостатком Уатта является низкий коэффициент полезного действия по сравнению с двигателями внутреннего сгорания, которые в настоящее время используют вместо парового двигателя.

Наиболее близким по технической сущности и достигаемому результату является паровой двигатель , содержащий рабочий цилиндр, разделенный поршнем на две части, и соединенные с частями цилиндра соответственно две испарительные камеры с клапанами для впуска пара в части цилиндра и расположенные на двух частях цилиндра клапаны для выпуска отработанного пара.

Целью настоящего изобретения является упрощение конструкции при одновременном повышении коэффициента полезного действия.

Это достигается благодаря тому, что каждая часть цилиндра соединена с отдельной испарительной камерой длинными (2-5 м) патрубками и камеры вынесены в отдельное помещение или размещены на другой части агрегата, приводимого в движение двигателем.

Устройство отличается тем, что испарительные камеры нагревают горячими газами, отходящими от высокотемпературных агрегатов или горячими подземными водами.

Устройство отличается тем, что, с целью реализации замкнутого кругооборота испаряемой рабочей жидкости, патрубки для отвода отработанного пара соединены с конденсатором, соединенным с емкостью, из которой испаряемая жидкость поступает в испарительные камеры.

Устройство отличается тем, что при работе с замкнутым кругооборотом испаряемой жидкости в качестве рабочей жидкости кроме воды используют фреоны, метиловый или этиловый спирты и другие легкоиспаряемые жидкости или легкосжижаемые газы (углекислый газ и др.).

Сущность изобретения состоит в том, что в разогретую камеру через клапан впрыскивают порцию легкоиспаряемой жидкости (например, воды). Образовавшийся пар по патрубкам поступает в рабочий цилиндр и совершает работу, перемещая поршень со штоком, одновременно вытесняя отработанный пар из другой части цилиндра. Подавая пар поочередно то из одной камеры, то из другой в разные части цилиндра, вызывают поршня со штоком, как и в паровой машине Уатта.

Предлагаемый паровой двигатель не требует специального громоздкого парового котла. Так как камеры могут быть нагреты до температуры 1000 K и выше, получаемый в них пар будет иметь значительно более высокую температуру, чем используемый в паровой машине Уатта, и коэффициент полезного действия двигателя будет близок к коэффициенту двигателя внутреннего сгорания.

На фиг. 1 изображена принципиальная схема устройства парового двигателя в продольном разрезе. На фиг. 2 изображена схема реализации замкнутого кругооборота рабочей испаряемой жидкости. На фиг. 3 изображен наиболее простой вариант двигателя, в котором роль впускных и выпускных клапанов играют краны, открываемые и закрываемые штоком двигателя через систему шарнирно соединенных стержней.

Двигатель состоит из рабочего цилиндра 1, в котором расположен поршень 2 со штоком 3, пропущенным через уплотнение 4. Патрубками 5 рабочий цилиндр 1 соединен с постоянно нагреваемыми во время работы испарительными камерами 6, нагрев которых осуществляют продуктами горения топлива и, в частности, газовыми горелками 7 или форсунками для жидкого или пылевидного твердого топлива. К каждой камере присоединен длинный патрубок (2-5 м) 8 с клапаном 9 для впуска порции испаряемой жидкости. Камеры вынесены в отдельное помещение или размещены на другой части агрегата, приводимого в движение двигателем. Клапан 9 может иметь специальное охлаждение, которое на фиг. 1 и 3 не показано. К концам рабочего цилиндра 1 присоединены патрубки 10 с клапанами 11 для выпуска отработанного пара из цилиндра. Клапаны 11 также могут иметь специальное охлаждение. В простейшем случае клапаны 9 и 11 могут быть выполнены в виде кранов 9 и 11 (фиг. 3), рукоятки которых 12, 13 с помощью системы шарнирно соединенных стержней 14 и 15 присоединены к штоку 3 (фиг. 3). Для впуска первой порции испаряемой жидкости во время запуска двигателя на каждой камере выполнены патрубки 16 с кранами 17, открываемыми и закрываемыми вручную с помощью рукоятки 18.

Для реализации замкнутого кругооборота испаряемой жидкости патрубки 10 для выпуска из цилиндра отработанного пара соединены с конденсатором 19 (фиг. 2), из которого по трубе 20 сконцентрированная жидкость поступает в емкость-бак 21, соединенный с камерами 6 патрубками 8.

Работа парового двигателя осуществляется следующим образом

С помощью крана 17 через патрубок 16 (фиг. 3) в одну из камер подают порцию испаряемой рабочей жидкости. Далее кран 17 закрывают и образовавшийся в камере 6 пар поступает в одну из частей цилиндра 1 через патрубок 5 и смещает поршень 2 со штоком 3 в крайнее левое или крайнее правое положение (фиг. 1). Запуск двигателя может быть осуществлен также механически перемещением поршня со штоком в крайнее левое или правое положение или с помощью стартера, как в двигателях внутреннего сгорания. С помощью устройств, используемых в двигателях внутреннего сгорания или с помощью передачи, показанной на фиг. 3, на короткое время открывают клапан 9 или кран 9 (фиг. 3) и подают порцию испаряемой жидкости в разогретую камеру, которая патрубком 5 соединена с той частью рабочего цилиндра 1, в которой в данное время расположен поршень 2. Одновременно открывается клапан 11 или кран 11 (фиг. 3) для выпуска через патрубок 10 отработанного пара из второй части цилиндра 1. По патрубку 10 пар поступает в конденсатор 19, откуда жидкость по трубе 20 поступает в емкость-бак 21 и далее по патрубкам 8 через клапан 9 поступает то в одну, то в другую камеру. Образующийся в камерах 6 пар вызывает возвратно-поступательное движение поршня со штоком, которое известными устройствами преобразуют во вращательное движение . Ход поршня в рабочем цилиндре 1 определяется расстоянием между патрубками 5, фиг. 1.

В целом работа предлагаемого двигателя подобна работе паровой машины Уатта . В режиме непрерывной работы двигателя температура рабочего цилиндра 1 и патрубков 5 и 10 должна быть выше, чем температура конденсации рабочей жидкости.

Достоинством предлагаемого двигателя является отсутствие громадного парового котла. Его заменяют малогабаритные камеры 6. Эти камеры могут быть нагреты до температуры 1000 K и выше, благодаря чему обеспечивается коэффициент полезного действия значительно более высокий, чем в паровой машине Уатта. Коэффициент полезного действия будет близок к коэффициенту полезного действия двигателя внутреннего сгорания.

Двигатель имеет довольно простую конструкцию. Крупным достоинством двигателя является то, что он может работать на любом топливе. Камеры 6 можно расположить даже в дымоходе, по которому идут горячие газы. Благодаря этому двигатель может утилизировать энергию тепловых отходов в виде горячих газов, отходящих от различных высокотемпературных агрегатов: металлургических печей, котельных топок, печей для отопления индивидуальных домов.

Двигатель может быть изготовлен в любой механической мастерской.

Предложенный двигатель может заменить двигатель внутреннего сгорания во многих районах, где имеется дефицит жидкого топлива для двигателей внутреннего сгорания. Например, он может широко использоваться в отдаленных районах Сибири и Дальнего Востока, где в избытке имеются дрова, уголь или сырая нефть, но имеется недостаток бензина или дизельного топлива.

Сжигание жидкого топлива в предлагаемом двигателе может быть осуществлено полнее, чем в двигателях внутреннего сгорания, и потому он будет меньше загрязнять воздух окружающей среды окисью углерода и углеводородами. В качестве рабочей жидкости могут быть использованы легкосжигаемые газы, например углекислый газ и др.

Если в качестве рабочей жидкости использовать в двигателе фреоны, метиловый или этиловый спирты, этиловый эфир и другие легкоиспаряемые жидкости, то двигатель можно применять для утилизации энергии горячих подземных вод, которые будут разогревать камеры 6 двигателя. Можно даже получать энергию, используя разность температуры воды на поверхности океана и в его глубине.

В целом применение предлагаемого двигателя даст большой экономический эффект, но количество его в настоящее время оценить трудно.

Формула изобретения

1. Паровой двигатель, содержащий рабочий цилиндр, разделенный поршнем со штоком на две части, соединенные с частями цилиндра, соответственно две испарительные камеры с клапанами для впуска пара в части цилиндра и расположенные на двух частях цилиндра клапаны для выпуска отработанного пара, отличающийся тем, что каждая часть цилиндра соединена с отдельной испарительной камерой длинными (2 - 5 м) патрубками, и камеры вынесены в отдельное помещение или размещены на другой части агрегата, приводимого в движение двигателем.

2. Устройство по п.1, отличающееся тем, что испарительные камеры нагревают горячими газами-отходами высокотемпературных установок или горячими геотермальными водами.

3. Устройство по пп.1 и 2, отличающееся тем, что при реализации замкнутого кругооборота испаряемой рабочей жидкости патрубки для отвода отработанного пара соединены с конденсатором, соединенным с емкостью, из которой испаряемая жидкость поступает в испарительные камеры.

4. Устройство по пп.1 - 3, отличающееся тем, что при работе с замкнутым кругооборотом испаряемой жидкости в качестве рабочей жидкости кроме воды используют фреоны, метиловый или этиловый спирты и другие легкоиспаряемые жидкости или легкоожижаемые газы (углекислый газ и др.).

Имя изобретателя:
Имя патентообладателя: Цивинский Станислав Викторович
Дата начала отсчета действия патента: 09.12.1993



Поделиться