Система управления тяговым электроприводом автомобиля. Электроприводы агрегатов автомобиля Технические данные основных типов электродвигателей с возбуждением от постоянных магнитов

Система управления тяговым электроприводом автомобиля

Введение

автомобиль электропривод тяговой датчик

Актуальность разработки тягового электропривода гибридного автомобиля заключается в более правильном использовании энергии, в повышении экологичности автомобиля и в более экономичном обслуживании автомобиля, за счет уменьшения расхода топлива. Он обеспечивает необходимую мощность, тяговую силу, необходимую скорость движения автомобиля при различных условиях движения.

Научная новизна.

Научная новизна заключается в отсутствии необходимости устанавливать двигатель из расчёта пиковых нагрузок эксплуатации. В момент, когда необходимо резкое усиление тяговой нагрузки, в работу включаются одновременно как электродвигатель, так и обычный двигатель (а в некоторых моделях и дополнительный электродвигатель). Это позволяет сэкономить на установке менее мощного двигателя внутреннего сгорания, работающего основное время в наиболее благоприятном для себя режиме. Такое равномерное перераспределение и накопление мощности, с последующим быстрым использованием, позволяет использовать гибридные установки в автомобилях спортивного класса и внедорожниках.

Практическая значимость.

Практическая значимость заключается в том, что экономится минеральное топливо (не восполняемый ресурс), уменьшается загрязнение окружающей среды, экономится очень ценный ресурс для человека, такой как время (исключение половины заездов на заправочные станции).

1. Исходные данные и постановка задачи

Основной задачей системы управления силовой установкой гибридного автомобиля является обеспечение наиболее экономичного и экологически безопасного режима работы ДВС за счет перераспределения нагрузки между ДВС, вспомогательным двигателем и контуром рекуперации энергии.

Дополнительными задачами системы являются:

) Обеспечение рекуперации энергии торможения автомобиля.

) Обеспечение необходимой разгонной динамики автомобиля за счет использования вспомогательной силовой установки и накопителя энергии.

) Обеспечение режима старт - стоп с минимальным периодом холостого хода ДВС в случае кратковременной остановки автомобиля.

Исходные данные.

Взят автомобиль Volkswagen Touareg

Ниже на рисунках (рис. 1 и рис. 2) приведены его технические характеристики, которые будут являться исходными данными к моей работе и его внешний вид.

Рис. 1 Исходные данные

Рис. 2 Внешний вид Volkswagen Touareg

1.1 Классификация существующих систем

Для того чтобы изучить тяговый электропривод гибридного автомобиля, нужно определиться, какую из трех существующих схем выбрать. Это классификация по способу взаимодействия ДВС и электромотора.

Последовательная схема.

Это - самая простая гибридная конфигурация. ДВС используется только для привода генератора, а вырабатываемая последним электроэнергия заряжает аккумуляторную батарею и питает электродвигатель, который и вращает ведущие колеса.

Это избавляет от необходимости в коробке передач и сцеплении. Для подзарядки аккумулятора также используется рекуперативное торможение. Свое название схема получила потому, что поток мощности поступает на ведущие колеса, проходя ряд последовательных преобразований. От механической энергии, вырабатываемой ДВС в электрическую, вырабатываемую генератором, и опять в механическую. При этом часть энергии неизбежно теряется. Последовательный гибрид позволяет использовать ДВС малой мощности, причем он постоянно работает в диапазоне максимального КПД, или же его можно совсем отключить. При отключении ДВС электродвигатель и батарея в состоянии обеспечить необходимую мощность для движения. Поэтому они, в отличие от ДВС, должны быть более мощными, а, значит, они имеют и большую стоимость. Наиболее эффективна последовательная схема при движении в режиме частых остановок, торможений и ускорений, движении на низкой скорости, т.е. в городе. Поэтому используют ее в городских автобусах и других видах городского транспорта. По такому принципу работают также большие карьерные самосвалы, где необходимо передать большой крутящий момент на колеса, и не требуются высокие скорости движения.

Параллельная схема

Здесь ведущие колеса приводятся в движение и ДВС, и электродвигателем (который должен быть обратимым, т.е. может работать в качестве генератора). Для их согласованной параллельной работы используется компьютерное управление. При этом сохраняется необходимость в обычной трансмиссии, и двигателю приходится работать в неэффективных переходных режимах.

Момент, поступающий от двух источников, распределяется в зависимости от условий движения: в переходных режимах (старт, ускорение) в помощь ДВС подключается электродвигатель, а в устоявшихся режимах и при торможении он работает как генератор, заряжая аккумулятор. Таким образом, в параллельных гибридах большую часть времени работает ДВС, а электродвигатель используется для помощи ему. Поэтому параллельные гибриды могут использовать меньшую аккумуляторную батарею, по сравнению с последовательными. Так как ДВС непосредственно связан с колесами, то и потери мощности значительно меньше, чем в последовательном гибриде. Подобная конструкция достаточно проста, но ее недостатком является то, что обратимая машина параллельного гибрида не может одновременно приводить в движение колеса и заряжать батарею. Параллельные гибриды эффективны на шоссе, но малоэффективны в городе. Несмотря на простоту реализации этой схемы, она не позволяет значительно улучшить как экологические параметры, так и эффективность использования ДВС.

Приверженцем такой схемы гибридов является компания «Хонда». Их гибридная система получила название Integrated Motor Assist (Интегрированный помощник двигателя). Она предусматривает, прежде всего, создание бензинового двигателя с увеличенным к.п.д. И только тогда, когда двигателю становится трудно, на помощь ему должен приходить электрический мотор. В этом случае система не требует сложного и дорогостоящего силового блока управления, и, следовательно, себестоимость такого автомобиля оказывается ниже. Система IMA состоит из бензинового двигателя (который предоставляет основной ресурс мощности), электромотора, который предоставляет дополнительную мощность и дополнительной батареи для электромотора. Когда автомобиль с обычным бензиновым двигателем замедляется, его кинетическая энергия гасится сопротивлением мотора (торможение двигателем) или рассеивается в виде тепла при нагреве тормозных дисков и барабанов. Автомобиль с системой IMA начинает тормозить электромотором. Таким образом, электромотор работает как генератор, вырабатывая электричество. Сохранённая при торможении энергия запасается в батарее. И когда автомобиль вновь начнёт ускоряться, батарея отдаст всю накопленную энергию на раскрутку электромотора, который снова перейдёт на свои тяговые функции. А расход бензина уменьшится ровно настолько, сколько энергии было запасено при предыдущих торможениях. В общем, в компании Honda считают, что гибридная система должна быть максимально простой, электрический мотор выполняет лишь одну функцию - помогает двигателю внутреннего сгорания сэкономить как можно больше горючего. Honda выпускает две гибридные модели: Insight и Civic.

Последовательно - параллельная схема

Компания «Тойота» при создании гибридов пошла своим путем. Разработанная японскими инженерами система Hybrid Synergy Drive (HSD) объединяет в себе особенности двух предыдущих типов. В схему параллельного гибрида добавляется отдельный генератор и делитель мощности (планетарный механизм). В результате гибрид приобретает черты последовательного гибрида: автомобиль трогается и движется на малых скоростях только на электротяге. На высоких скоростях и при движении с постоянной скоростью подключается ДВС. При высоких нагрузках (ускорение, движение в гору и т.п.) электродвигатель дополнительно подпитывается от аккумулятора - т.е. гибрид работает как параллельный.

Благодаря наличию отдельного генератора, заряжающего батарею, электродвигатель используется только для привода колес и при рекуперативном торможении. Планетарный механизм передает часть мощности ДВС на колеса, а остальную часть на генератор, который либо питает электродвигатель, либо заряжает батарею. Компьютерная система постоянно регулирует подачу мощности от обоих источников энергии для оптимальной эксплуатации при любых условиях движения. В этом типе гибрида большую часть времени работает электродвигатель, а ДВС используется только в наиболее эффективных режимах. Поэтому его мощность может быть ниже, чем в параллельном гибриде.

Важной особенностью ДВС также является то, что он работает по циклу Аткинсона, а не по циклу Отто, как обычные двигатели. Если работа двигателя организована по циклу Отто, то на такте впуска поршень, двигаясь вниз, создает в цилиндре разрежение, благодаря которому происходит всасывание в него воздуха и топлива. При этом в режиме малых оборотов, когда дроссельная заслонка почти закрыта, появляются так наз. насосные потери. (Чтобы лучше понять, что это такое, попробуйте, например, втянуть воздух через зажатые ноздри). Кроме того, при этом ухудшается наполнение цилиндров свежим зарядом и соответственно повышается расход топлива и выбросы вредных веществ в атмосферу. Когда поршень достигает нижней мертвой точки (НМТ), впускной клапан закрывается. В ходе такта выпуска, когда открывается выпускной клапан, отработанные газы еще находятся под давлением, и их энергия безвозвратно теряется - это так наз. потери выпуска.

В двигателе Аткинсона на такте впуска впускной клапан закрывается не вблизи НМТ, а значительно позже. Это дает целый ряд преимуществ. Во-первых, снижаются насосные потери, т.к. часть смеси, когда поршень прошел НМТ и начал движение вверх, выталкивается назад во впускной коллектор (и используется затем в другом цилиндре), что снижает в нем разрежение. Горючая смесь, выталкиваемая из цилиндра, также уносит с собой часть тепла с его стенок. Так как длительность такта сжатия по отношению к такту рабочего хода уменьшается, то двигатель работает по так наз. циклу с увеличенной степенью расширения, при котором энергия отработанных газов используется более длительное время, т.е., с уменьшением потерь выпуска. Таким образом, получаем лучшие экологические показатели, экономичность и больший КПД, но меньшую мощность. Но в том-то и суть, что мотор тойотовского гибрида функционирует в малонагруженных режимах, при которых этот недостаток цикла Аткинсона не играет большой роли.

К недостаткам последовательно - параллельного гибрида следует отнести более высокую стоимость, в виду того, что он нуждается в отдельном генераторе, большем блоке батарей, и более производительной и сложной компьютерной системе управления.

Система HSD установливается на хэтчбеке Toyota Prius, седане бизнес-класса Camry, вседорожниках Lexus RX400h, Toyota Highlander Hybrid, Harrier Hybrid, спортивном седане Lexus GS 450h и автомобиле люкс-класса - Lexus LS 600h. Ноу-хау компании Тойота куплено компаниями Форд и Ниссан и использовано при создании Ford Escape Hybrid и Nissan Altima Hybrid. Toyota Prius лидирует по продажам среди всех гибридов. Расход бензина в городе составляет 4 л на 100 км пробега. Это первый автомобиль, у которого потребление топлива при движении в городе меньше, чем на шоссе. На Парижском автосалоне 2008 была представлена модель Приус plug-in hybrid.

1.2 Схемы системы управления тяговым электроприводом автомобиля

Легенда входных и выходных сигналоввкл/выкл. электродвигателягенераторасигнал нажатия педали тормозасигнал нажатия электронной педали акселераторачастота вращения двигателятемпература двигателяприведение в действие разделительного сцепления

ДВС/электродвигателягенераторачастота вращения электродвигателягенераторатемпература электродвигателягенераторачастота вращения АКПраспознавание включенной передачитемпература гидравлической системы АКПгидравлический насос сцепления, давление

в гидравлической системеАКП, переключение передачтемпература силового электронного модуляконтроль кабелей высоковольтной системытемпература высоковольтной батареиконтроль напряжениядавление в гидравлическом приводе тормозной

системы, тормозное давлениерегистрация частоты вращения колесараспознавание пристёгивания ремня безопасности

Легенда к электрическим компонентамВысоковольтная батареяБлок управления двигателяБлок управления АКПСиловой модуль и блок упра вления электрического приводаКоммутационный блок (EBox)Блок управления ABSБлок управления комбинации приборовДиагностический интерфейс шин данныхБлок управления подушек безопасности

Радионавигационная система RNS 850

Описание работы:

Начало движения. Движение с малой нагрузкой, небольшой скоростью ли под небольшой уклон. Поскольку ДВС имеет низкий КПД при малых нагрузках, движение обеспечивается за счет вспомогательного двигателя, если запас энергии в накопителе достаточный. В противном случае движение осуществляется с использованием ДВС.

Равномерно движение. Система обеспечивает наиболее эфективный режим работы ДВС. В случае если вращающий момент ДВС меньше момента сопротивления, недостающая мощность обеспечивается за счет подключения вспомогательного двигателя. Если оптимальный вращающий момент больше момента сопротивления, избыток мощности отводится контуром рекуперации энергии.

Разгон. Необходимая разгонная динамика обеспечивается в основном за счет вспомогательного двигателя при поддержании наиболее экономичного режима основного ДВС. При недостаточном запасе энергии в накопителе или недостатке мощности вспомогательного двигателя дополнительная мощность обеспечивается основным ДВС.

Торможение. Излишек кинетической энергии транспортного средства утилизируется в контуре рекуперации. При недостаточной эффективности рекуперативного торможения подключается система гидравлического торможения.

При остановке и наличия энергии в накопителе, достаточной для трогания, ДВС отключается. Если запасенной энергии недостаточно. ДВС продолжает работать до ее необходимого пополнения.Высоковольтная батареяСиловой модуль и блок управления

электрического приводаБлок управления высоковольтной батареиКоммутационный блок (EBox)Предохранительное устройство 1Сервисный разъём высоковольтной системыВентилятор 1 АКБ гибридного приводаВентилятор 2 АКБ гибридного привода

Электродвигатель-генератор.

Ключевым элементом гибридного привода является электродвигатель-генератор.

В системе гибридного привода он берет на себя выполнение трёх важнейших задач:

Стартер для двигателя внутреннего сгорания,

Генератор для зарядки высоковольтной батареи,

Тяговый электродвигатель для движения автомобиля.

Ротор вращается внутри статора бесконтактно. В режиме генератора мощность электродвигателя генератора составляет 38 кВт. В режиме тягового электродвигателя электродвигатель-генератор развивает мощность 34 кВт. Разница приходится на мощность потерь, которая конструктивно присуща каждой электромашине. Движение только на электрической тяге по ровной поверхности для Touareg с гибридным двигателем возможно до скорости примерно 50 км/ч. Максимальная скорость движения зависит от сопротивления движению и степен и зарядки высоковольтной батареи. Специальное сцепление K0 располагается в корпусе электродвигателя-генератора.

Электродвигатель-генератор размещён между двигателем внутреннего сгорания и АКП.

Он представляет собой синхронный двигатель трехфазного тока. С помощью силового электронного модуля постоянное напряжение 288 В преобразуется в трёхфазное переменное напряжение. Три фазы напряжение создают в электродвигателе-генераторе трёхфазное электромагнитное поле.

В сервисной документации электродвигательгенератор обозначается как «тяговый электродвигатель для электрического привода V141».

1.3 Датчики, входящие в систему

Датчик положения ротора.

Поскольку двигатель внутреннего сгорания, с его датчиками частоты вращения, в режиме электрического привода механически отсоединён от электродвигателя-генератора, то последнему требуются собственные датчики для определения положения и частоты вращения ротора. Для этих целей в электродвигатель-генератор интегрировано три датчика частоты вращения.

К ним относятся:

датчик 1 положения ротора тягового

электродвигателя G713

датчик 2 положения ротора тягового

электродвигателя G714

датчик 3 положения ротора тягового

Датчик положения ротора (ДПР) - деталь электродвигателя.

В коллекторных электродвигателях датчиком положения ротора является щёточно-коллекторный узел, он же является и коммутатором тока.

В бесколлекторных электродвигателях датчик положения ротора может быть разных видов:

Магнитоиндукционный (т.е. в качестве датчика используются собственно силовые катушки, но иногда используются дополнительные обмотки)

Магнитоэлектрический (датчики на эффекте Холла)

Оптоэлектрический (на различных оптопарах: светодиод-фотодиод, светодиод-фототранзистор, светодиод-фототиристор).

Датчик температуры тягового электродвигателя G712

Этот датчик интегрирован в корпус электродвигателягенератора и залит полимером.

Датчик регистрирует температуру электродвигателя генератора. Контуры циркуляции охлаждающей жидкости являются составной частью инновационной системы регулирования температуры. Сигнал датчика температуры тягового электродвигателя используется для управления производительностью охлаждения высокотемпературного контура циркуляции охлаждающей жидкости. С помощью электрического насоса системы охлаждения и управляемого насоса системы охлаждения двигателя внутреннего сгорания можно управлять всеми режимами работы системы охлаждения, начиная с режима отсутствия циркуляции ОЖ в контурах охлаждения, и заканчивая режимом максимальной производительности системы охлаждения.

В зависимости от материалов используемых для производства терморезистивных датчиков различают:

1.Резистивные детекторы температуры(РДТ). Эти датчики состоят из металла, чаще всего платины. В принципе, любой мета изменяет свое сопротивление при воздействии температуры, но используют платину так как она обладает долговременной стабильностью, прочностью и воспроизводимостью характеристик. Для измерений температур более 600°С может использоваться также вольфрам. Минусом этих датчиков является высокая стоимость и нелинейность характеристик.

2.Кремневые резистивные датчики. Преимущества этих датчиков - хорошая линейность и высокая долговременная стабильностью. Также эти датчики могут встраиваться прямо в микроструктуры.

.Термисторы. Эти датчики изготавливаются из металл-оксидных соединений. Датчики измеряет только абсолютную температуру. Существенным недостатком термисторов является необходимость их калибровки и большой нелинейностью, а также старение, однако при проведении всех необходимых настроек могут использоваться для прецизионных измерений.

2. Диагностика

.1 Тестер диагностический

DASH CAN 5.17 стоимость 16500 рублей.

Функциональные возможности:

Калибровка и корректировка одометра;

Добавление ключей к автомобилю, даже если у вас нет всех существующий ключей

Производит адаптацию ключа

Чтение login / секретные коды (SKC)

Запись иденфикационного номера и номера иммобилайзера

Загружает и сохраняет расшифрованный блок иммобилайзера

Сохраняет (клонирует) панель приборов с помощью записи блока иммобилайзера от файла

Считывает и удаляет коды ошибок CAN-ECU

Использование:

Кнопки:/ SEAT / SKODA - нажмите данную кнопку чтобы прочитать VDO последнего поколения. (Для примера подойдет для GOLF V c 2003 по 06.2006. Некоторые версии автомобилей SEAT и Skoda оснащены комбинациями данного типа на моделях до 2009 года)- нажмите данную кнопку, чтобы прочитать Passat B6. (В этих автомобилях Вы не можете получить информацию иммобилайзера из комбинации приборов, так как блок иммобилайзера является частью модуля)A3 - нажмите данную кнопку, чтобы прочитать AUDI A3 VDO комбинацию.A4 - нажмите данную кнопку, чтобы прочитать AUDI A4 BOSCHRB4./TOUAREG - нажмите данную кнопку, чтобы прочитать Phaeton и Touareg BOSCHRB4.EDC15 - дизельные автомобили с 1999. Поддерживает большинство автомобилей ВАГ группыи SKODA - оборудовали свои автомобили ECU.EDC16 - используется на автомобилях с дизелем с 2002 года. Используется на автомобилях последних поколений.* /MED9.5 - Двигатель типа BOSCHME7.* используется на автомобилях таких как GolfI V или Audi TT. Вы можете прочитать следующие двигатели: ME7.5, ME7.1, ME7.5.1, ME7.1.1..1.1 Golf пока не поддерживаетсяCHANNELS - Нажав данную кнопку Вы адаптируете EEprom блока управления двигателем BOSCHME7.BOXES - Нажав данную кнопку Вы можете считывать регистрационный код из иммобилайзера. Подходит для Audi A4 с 12 pin разъемом и коробки LT. Так же Вы можете считывать коробки с 1994 по 1998 год, но только тогда когда адаптированный ключ вставлен в зажигание.

2.2 Диагностическая информация

Самодиагностика системы.

При возникновении неисправности в высоковольтной системе загорается контрольная лампа. Символ контрольной лампы может быть оранжевого, красного или чёрного цвета. В зависимости от вида неисправности в высоковольтной системе отображается символ соответствующего цвета и предупреждающее сообщение.

Заключение

В моей работе рассмотрена система управления тяговым электроприводом гибридного автомобиля. Так же рассмотрены все существующие системы, все схемные решения, рассмотрены датчики входящие в систему. Рассмотрена самодиагностика системы и диагностирование при помощи внешнего прибора (тестера). Работа выполнена в полном объеме.

Список литературы

1. Ютт В.Е. Электрооборудование автомобилей: Учебник для студентов вузов. - М.: Транспорт, 1995. - 304 c.

Краткий автомобильный справочник. - М.: Трансконсалтинг, НИИАТ, 1994 - 779 с. 25 экз.

Акимов С.В., Чижков Ю.П. Электрооборудование автомобилей - М.: ЗАО КЖИ «За рулем», 2001. - 384 с. 25 экз.

Акимов С.В., Боровских Ю.И., Чижков Ю.П. Электрическое и электронное оборудование автомобилей - М.: Машиностроение, 1988. - 280 с.

Резник А.М., Орлов В.М. Электрооборудование автомобилей. - М.: Транспорт, 1983. - 248 с.

Service Training Программа самообучения 450 Touareg с гибридным силовым агрегатом.

Электродвигатели гибридных и на самом деле помимо экономии топлива имеет громадный потенциал в будущем для повышения мощности и безопасности. Уже в наши дни некоторые гибридные полноприводные автомашины имеют преимущество перед бензиновыми транспортными средствами .

Как работает традиционная All-Wheel Drive система?


Есть несколько разновидностей систем . Наибольшее распространение получила система, передающая постоянно на все четыре колеса крутящий момент не зависимо от уровня тяги, угла поворота и других факторов. Главный недостаток постоянного полного привода это неэффективность расхода топлива. В некоторых же моделях оснащенные AWD приводом электроника может изменять уровень крутящего момента, распределяя мощность между осями, в зависимости от необходимости. В этом случае значительно меньше, но не намного.

Для борьбы с лишним расходом топлива некоторые производители предлагают автомобили с непостоянным полным приводом. В основное время машина работает без полного привода. Но как только электроника автомобиля определяет, что какие то колеса теряют сцепление с дорогой, начинает передаваться на другую ось. Это позволяет существенно снизить потребления топлива (особенно при поездках в городском режиме). Но и эта система имеет также свои недостатки. К примеру, машины с подобным подключаемым полным приводом не достаточно мощные. К тому же страдает безопасность автомобиля, поскольку позднее подключение привода во время пробуксовки или скольжения на дороге может не помочь в случае заноса, что может привести к аварии.

Как работает Hybrid All-Wheel Drive система?


С помощью электродвигателей гибридные более безопасные на дороге (имеют низкий риск заноса, в результате потери сцепления), и имеют низкий расход топлива. К примеру, в RX 450h электродвигатели (их в этой модели два) помогают бензиновому двигателю, за счет увеличения крутящего момента и мощности, а также снижают традиционным мотором.

В RX450h AWD электродвигатели работает с каждой осью автомобиля. Когда автомобиль движется в городском потоке по сухому асфальту, крутящий момент от бензинового мотора передается только на одну ось. В этот момент электроника может подключить в работу электрические силовые агрегаты, которые разгружают традиционный мотор, и снижают потребление топлива.

Так во время резкого разгона с места, задний электромотор добавляет крутящий момент задним колесам. Если при прохождения поворота на скорости передние колеса теряют сцепление с дорогой (к примеру, на мокром асфальте), то электроника подключает передний электродвигатель, который начинает передавать крутящий момент на переднюю ось.

Эта электронная система передачи крутящего момента мгновенна. Но в отличие от традиционных автомобилей, электромоторы позволяют обеспечить автомобилю мгновенный крутящий момент.


Даже если машина не полноприводная электрические позволили существенно увеличить максимальный крутящий момент автомобилям. Так в компактной модели крутящий момент составляет 542 Нм. Та же картина и с Tesla Model S P85, у которого практически с самого начала доступно 600 Нм максимального крутящего момента. Напомним, что в следующем году в серийное производство поступит полноприводная версия модели S, сразу после выхода электрического кроссовера X.

Гибридные машины с AWD приводом набирают популярность


Помимо автомобилей и другие автопроизводители также готовы предложить свои гибридные модели. К примеру предлагает модель RLX Sport-Hybrid с тремя электромоторами, которые помогают работе 3,7-литровому мотору V6. Так один электро двигатель передает крутящий момент на передние колеса. Два других на заднюю ось. Задние электрические силовые установки могут работать независимо друг от друга.

Еще один автомобиль, который готовится к выпуску это , которая будет оснащена двумя электрическими двигателями, передающие мощность на передние колеса, когда как двигатель V6 располагается посередине автомобиля и будет передавать крутящий момент на заднюю ось.

Так , благодаря бензиновому мотору V8 и электрических двигателей удалось проехать круг на знаменитой трассе в Нюрнберге всего за 6:55.


Еще один пример. , благодаря чему машина может разгоняться с 0-100 км/час всего за 4,4 секунды. Этот впечатляющий результат достигается за счет 1,5 литрового трехцилиндрового мотора и электроустановки. Помимо мощности, электромотор позволяет существенно . Так модель i8 потребляет всего 3,2л/100км. Это делает i8 самым экономичным в мире гибридным спорткаром.

Стоит отметить, что 918 и i8 могут работать полностью в электрическом режиме без участия бензиновых моторов, что позволяет ограниченное расстояние проехать без потребления топлива.

В настоящий момент потенциал развития полноприводных электрических и гибридных автомобилей огромен. Достаточно вспомнить участие в гонках ЛеМан-24 таких моделей, как Audi R18 e-quattro и Toyota TS040, чтобы понять, что производители ведут активные разработки для массового производства гибридных полноприводных машин в ближайшем будущем.

Минусы и плюсы гибридных и электрических автомобилей


С полным приводом, к сожалению пока не совершенны. Все дело в их стоимости. Производство гибридных транспортных средств обходится значительно дороже бензиновых автомобилей. Также гибридные машины намного тяжелее своих традиционных версий. Все дело в весе аккумуляторов и электромоторов.

Но эти недостатки могут быть компенсированы за счет существенной экономии топлива в процессе эксплуатации машины. Например, модель Lexus RX450h с приводом AWD расходует топлива на несколько литров меньше, чем традиционная 350 AWD. Но пока, что не все гибридные машины могут похвастаться быстрой окупаемостью. Ведь переплачивая за новый гибридный автомобиль, каждый покупатель рассчитывает как можно быстрее окупить затраты на покупку. Но к сожалению многие , что приводим к долгой окупаемости затрат на покупку.

Гибридные полноприводные машины AWD гораздо безопаснее и эффективнее. Так электромоторы помогают увеличить динамику и способствуют большей устойчивости на дороге. Благодаря этому многие модели гибридных автомобилей приобрели спортивный характер в отличие от своих бензиновых версий.

Вспомогательным электрооборудованием называют группу вспо­могательных приборов и аппаратов, обеспечивающих отопление и вентиляцию кабины и кузова, очистку стекол кабины и фар, звуковую сигнализацию, радиоприем и другие вспомогательные функции.

Тенденции развития различных систем автомобиля, связанные с повышением экономичности, надежности, комфорта и безопасно­сти движения, приводят к тому, что роль электрооборудования, в частности электропривода вспомогательных систем, неуклонно возрастает. Если 25...30 лет назад на серийных автомобилях прак­тически не встречалось механизмов с электроприводом, то в на­стоящее время даже на грузовых автомобилях устанавливается минимум 3...4 электродвигателя, а на легковых - 5...8 и более, в зависимости от класса.

Электроприводом называется электромеханическая система, состоящая из электродвигателя (или нескольких электродвигате­лей), передаточного механизма к рабочей машине и всей аппарату­ры для управления электродвигателем. Основными устройствами автомобиля, где находит применение электропривод, являются отопители и вентиляторы салона, предпусковые подогреватели, стекло- и фароочистители, механизмы подъема стекал, антенн, пе­ремещения сидений и др.

Длительность работы и ее характер определяют рабочий режим привода. Для электропривода принято различать три основных ре­жима работы: продолжительный, кратковременный и повторно-кратковременный.

Продолжительный режим характеризуется такой длительно­стью, при которой за время работы электродвигателя его темпера­тура достигает установившегося значения. В качестве примера ме­ханизмов с длительным режимом работы можно назвать отопители и вентиляторы салона автомобиля.

Кратковременный режим имеет относительно краткий рабочий период и температура двигателя не успевает достигнуть устано­вившегося значения. Перерыв же в работе исполнительного меха­низма достаточен для того, чтобы двигатель успевал охладиться до температуры окружающей среды. Такой режим работы характерен на самых различных устройств кратковременного действия: подъ­ема стекол, привода антенн, перемещения сидений и др.



Повторно-кратковременный режим характеризуется рабочим периодом, который чередуется с паузами (остановка или холостой ход), причем ни в один из периодов работы температура двигателя не достигает установившегося значения, а во время снятия нагруз­ки двигатель не успевает охладиться до температуры окружающей среды. Примером устройств автомобиля, работающих в таком ре­жиме, могут служить стеклоочистители (на соответствующих режи­мах), стеклоомыватели и др.

Характерной чертой для повторно-кратковременного режима яв­ляется отношение рабочей части периода Т" к всему периоду Т. Этот показатель именуется относительной продолжительностью работы ПР или относительной продолжительностью включения ПВ, измеряемыми в процентах.

Требования, предъявляемые к электродвигателям, устанавли­ваемым в том или ином узле автомобиля, отличаются особой спе­цификой и обусловлены режимами работы этого узла. При выборе типа двигателя необходимо сопоставить условия работы привода с особенностями механических характеристик различных видов электродвигателей. Принято различать естественную и искусствен­ную механические характеристики двигателя. Первая соответствует номинальным условиям его включения, нормальной схеме соеди­нений и отсутствию каких-либо добавочных элементов в цепях дви­гателя. Искусственные характеристики получаются при изменении напряжения на двигателе, включении добавочных элементов в це­пи двигателя и соединении этих цепей по специальным схемам.

Одним из наиболее перспективных направлений в развитии элек­тропривода вспомогательных систем автомобиля является создание электродвигателей мощностью до 100 Вт с возбуждением от посто­янных магнитов.

Применение постоянных магнитов позволяет в значительной мере повысить технико-экономические показатели электродвигате­лей: уменьшить массу, габаритные размеры, повысить КПД. К пре­имуществам следует отнести отсутствие обмоток возбуждения, что упрощает внутренние соединения, повышает надежность электро­двигателей. Кроме того, благодаря независимому возбуждению все электродвигатели с постоянными магнитами могут быть реверсив­ными.

Типичная конструкция электродвигателя с постоянными магни­тами, применяемого в отопителях, показана на рис.7.1.

Постоянные магниты 4 закреплены в корпусе 3 с помощью двух стальных пло­ских пружин 6 , прикрепленных к корпусу. Якорь 7 электродвигателя вращается в двух самоустанавливающихся подшипниках скольже­ния 5 . Графитные щетки 2 прижимаются пружинами к коллектору 1, выполненному из полосы меди и профрезерованному на отдельные ламели.

Принцип действия электрических машин с постоянными магни­тами аналогичен общеизвестному принципу действия машин с электромагнитным возбуждением - в электродвигателе взаимодей­ствие полей якоря и статора создает вращающий момент. Источник магнитного потока в таких электродвигателях - постоянный магнит. Характеристикой магнита является кривая его размагничивания (часть петли гистерезиса, лежащая во II квадранте), представлен­ная на рис. 7.2. Свойства материала определяются значениями ос­таточной индукции В r и коэрцитивной силы H с. Полезный поток, от­даваемый магнитом во внешнюю цепь, не является постоянным, а зависит от суммарного воздействия внешних размагничивающих факторов.

Как видно из рис. 7.2, рабочая точка магнита вне системы элек­тродвигателя N , рабочая точка в сборе с корпусом М и рабочая точка магнита в электродвигателе в сборе К различны. Причем для большинства магнитных материалов процесс размагничивания магнита необратим, так как возврат из точки с меньшей индукцией в точку с большей индукцией (например, при разборке и сборке элек­тродвигателя) происходит по кривым возврата, не совпадающим с кривой размагничивания.

В связи с этим важным преимуществом используемых в автотракторной промышленности оксидно-бариевых магнитов является не только их относительная дешевизна, но и совпадение в определенных пределах (до точки перегиба) кривых возврата и размагничивания. Если воздействие внешних размагничивающих факторов таково, что рабочая точка магнита перемещается за колено, то возврат в точку К уже невозможен и рабочей точкой в собранной системе будет уже точка К 1 с меньшей индукцией. Поэтому при расчете электродвигателей с постоянными магнитами очень важен правильный выбор объема магнита, обеспечивающий не только рабочий режим работы электродвигателя, но и стабильность рабочей точки при воздействии максимально возможных размагничивающих факторов.

Электродвигатели предпусковых подогревателей. Предпусковые нагреватели используются для обеспечения надежного пуска ДВС при низких температурах. Назначение электродвигателей этого типа - подача воздуха для поддержания горения в бензиновых подогревателях, подача воздуха, топлива и обеспечение циркуляции жидкости в дизелях.

Особенностью режима работы является то, что при таких температурах необходимо развивать большой пусковой момент и функционировать непродолжительное время. Для обеспечения этих требований электродвигатели предпусковых подогревателей выполняются с последовательной обмоткой и работают в кратковременном и повторно-кратковременном режимах. В зависимости от температурных условий электродвигатели имеют различную продолжительность включения: -5...-10 0 С не более 20 мин; -10...-25 0 С не более 30 мин; -25...-50 0 С не более 50 мин.

Нашедшие широкое применение в предпусковых подогревателях электродвигатели МЭ252 (24В) и 32.3730 (12В) имеют номинальную мощность 180 Вт и частоту вращения 6500 мин -1 .

Электродвигатели для привода вентиляционных и отопительных установок. Венти­ляционные и отопительные ус­тановки предназначены для обогрева и вентиляции салонов легковых автомобилей, автобу­сов, кабин грузовых автомобилей и тракторов. Действие их осно­вано на использовании тепла двигателя внутреннего сгорания, а производительность в значи­тельной степени зависит от ха­рактеристик электропривода. Все электродвигатели такого назна­чения представляют собой двигатели длительного режима работы, эксплуатируемые при температуре окружающей среды -40...+70°С. В зависимости от компоновки на автомобиле отопительной и вен­тиляционной установки электродвигатели имеют разное направле­ние вращения. Эти электродвигатели одно- или двухскоростные в основном с возбуждением от постоянных магнитов. Двухскорост­ные электродвигатели обеспечивают два режима работы отопи­тельной установки. Частичный режим работы (режим низшей ско­рости, а следовательно, и низшей производительности) обеспечивается за счет дополнительной обмотки возбуждения.

На рис. 7.3 показано устройство электродвигателя с возбужде­нием от постоянных магнитов для отопителей. Он состоит: 1 и 5 – подшипник скольжения; 2 – постоянный магнит; 3 – щеткодержатель; 4 – щетка; 6 – коллектор; 7 – траверса; 8 – крышка; 9 – крепежная пластина; 10 – пружина; 11 – якорь; 12 – корпус. Постоянные магни­ты 2 закреплены на корпусе 12 пружинами 10. Крышка 8 прикре­плена к корпусу винтами, которые вворачиваются в крепежные пластины 9, расположенные в пазах корпуса. В корпусе и крыш­ке установлены подшипники 7 и 5 в которых вращается вал якоря 11. Все щеткодержатели 3 находятся на траверсе 7 из изоля­ционного материала.

Траверса закреплена на крышке 8. Щетки 4, по которым ток подводится к коллектору6, размещены в щеткодержателях 3 коробчатого типа. Коллекторы, так же, как и в электродвигателях с электромагнитным возбуждением штампуются из медной ленты с последующей опрессовкой пластмассой или из трубы с про­дольными пазами на внутренней поверхности.

Крышки и корпус изготовлены из листовой стали. У электро­двигателей стеклоомывателей крышка и корпус могут быть выпол­нены из пластмассы.

Кроме отопительных установок, использующих тепло ДВС, на­ходят применение отопительные установки независимого действия. В этих установках электродвигатель, имеющий два выхода вала, приводит во вращение два вентилятора, один направляет холод­ный воздух в теплообменник, а затем в отапливаемое помещение, другой подает воздух в камеру горения.

Применяемые на целом ряде моделей легковых и грузовых авто­мобилей электродвигатели отопителей имеют номинальную мощ­ность 25...35 Вт и номинальную частоту вращения 2500...3000 мин -1 .

Электродвигатели для привода стеклоочистительных устано­вок. К электродвигателям, используемым для привода стеклоочи­стителей, предъявляются требования обеспечения жесткой меха­нической характеристики, возможности регулирования частоты вращения при различных нагрузках, повышенного пускового момен­та. Это связано со спецификой работы стеклоочистителей - надеж­ной и качественной очистки поверхности ветрового стекла в раз­личных климатических условиях.

Для обеспечения необходимой жесткости механической харак­теристики используются двигатели с возбуждением от постоянных магнитов, с параллельным и смешанным возбуждением, а для уве­личения момента и снижения частоты вращения используется спе­циальный редуктор. В некоторых электродвигателях редуктор вы­полнен как составная часть электродвигателя. В этом случае элек­тродвигатель называют моторедуктором. Изменение скорости элек­тродвигателей с электромагнитным возбуждением достигается из­менением тока возбуждения в параллельной обмотке. В электро­двигателях с возбуждением от постоянных магнитов изменение частоты вращения якоря достигается установкой дополнительной щетки и организацией прерывистого режима работы.

На рис. 7.4 приведена принципиальная схема электропривода стеклоочистителя СЛ136 с электродвигателем на постоянных маг­нитах. Режим прерывистой работы стеклоочистителя осуществляет­ся включением переключателя 1 в положение III . В этом случае в цепь якоря 4 электродвигателя включается реле 7. Реле имеет нагревательную спираль 8, которая нагревает биметаллическую пла­стину 9. По мере нагрева биметаллическая пластина изгибается и контакты 10 размыкаются, отключая питание реле 11, контакты 12 которого прерывают питание якорной цепи электродвигателя. По­сле того, как пластина 9 остынет и замкнутся контакты 10, реле 11 сработает и на электродвигатель вновь будет подаваться питание. Цикл работы стеклоочистителя повторяется 7-19 раз в минуту.

Режим малой скорости осуществляется путем включения пере­ключателя 1 в положение II . При этом питание на якорь 4 электро­двигателя подается через дополнительную щетку 3, установленную под углом к основным щеткам. В этом режиме ток проходит только по части обмотки якоря 4, что является причиной уменьшения час­тоты вращения якоря и вращающего момента. Режим большой ско­рости стеклоочистителя происходит при установке переключателя 1 в положение I . При этом питание электродвигателя осуществляется через основные щетки и ток проходит по всей обмотке якоря. При установке переключателя 1 в положение IV питание подается на якоря 4 и 2 электродвигателей стеклоочистителя и омывателя вет­рового стекла и происходит их одновременная работа. После вы­ключения стеклоочистителя (положение переключателя 0) электро­двигатель остается включенным под напряжение до момента под­хода кулачка б к подвижному контакту 5. В этот момент кулачок ра­зомкнет цепь и двигатель остановится. Выключение электродвигателя в строго определенный момент необходимо для укладки щеток стеклоочистителя в первоначальное положение. В цепь якоря 4 электродвигателя включен термобиметаллический предохранитель 13, который предназначен для ограничения силы тока в цепи при перегрузке.

Работа стеклоочистителя при моросящем дожде или слабом снеге осложняется тем, что на ветровое стекло попадает мало вла­ги. По этой причине увеличиваются трение и износ щеток, а также расход энергии на очистку стекла, что может вызвать перегрев при­водного двигателя. Периодичность включения на один-два такта и выключение, осуществляемое водителем вручную, неудобно, да и небезопасно, так как внимание водителя на короткое время отвле­кается от управления автомобилем.

Для организации кратковременного включения стеклоочистителя система управления электродвигателем может дополняться элек­тронным регулятором тактов, который через определенные проме­жутки времени автоматически выключает электродвигатель стекло­очистителя на один-два такта. Интервал между остановками стек­лоочистителя может изменяться в пределах 2...30 с. Большинство моделей электродвигателей стеклоочистителей имеют номиналь­ную мощность 12...15 Вт и номинальную частоту вращения 2000...3000 мин -1 .

В современных автомобилях получили распространение стекло-омыватели переднего стекла и фароочистители с электрическим приводом. Электродвигатели смывателей и фароочистителей ра­ботают в повторно-кратковременном режиме и выполняются с воз­буждением от постоянных магнитов, имеют небольшую номиналь­ную мощность (2,5...10 Вт).

Помимо перечисленных назначений, электродвигатели исполь­зуются для привода различных механизмов: подъема стекол две­рей и перегородок, перемещения сидений, привода антенн и др. Для обеспечения большого пускового момента эти электродвигате­ли имеют последовательное возбуждение, используются в кратко­временном и повторно-кратковременном режимах работы.

В процессе работы электродвигатели должны обеспечивать из­менение направления вращения, т. е. быть реверсивными. Для это­го в них имеются две обмотки возбуждения, попеременное включе­ние которых обеспечивает разные направления вращения. Конст­руктивно электродвигатели этого назначения выполнены в одной геометрической базе и по магнитной системе унифицированы с электродвигателями отопителей мощностью 25 Вт.

Электропривод с каждым годом находит все большее примене­ние на автомобилях. Требования к электродвигателям постоянно возрастают, и это связано с повышением качества различных сис­тем автомобиля, безопасности движения, снижением уровня ра­диопомех, токсичности, повышением технологичности изготовле­ния. Выполнение этих требований обусловило переход от электро­двигателей с электромагнитным возбуждением к электродвигате­лям с возбуждением от постоянных магнитов. При этом масса элек­тродвигателей снизилась, а КПД увеличился примерно в 1,5 раза. Их срок службы достигает 250...300 тыс. км пробега.

Электродвигатели отопительных, вентиляционных и стеклоочистительных устройств разрабатываются на базе четырех типораз­меров анизотропных магнитов. Это позволяет сократить число вы­пускаемых типов электродвигателей и провести их унификацию.

Другим направлением является применение в конструкциях электродвигателей эффективных фильтров радиопомех. Для элек­тродвигателей мощностью до 100 Вт фильтры будут унифициро­ваться применительно к каждой базе электродвигателя и выпол­няться встроенными. Для перспективных электродвигателей мощ­ностью 100...300 Вт разрабатываются фильтры с применением конденсаторов - проходных или блокировочных больших емкостей. В случае невозможности обеспечения требований по уровню ра­диопомех за счет встроенных фильтров намечаются применение выносных фильтров и экранирование электродвигателей.

В более отдаленной перспективе предполагается использовать бесконтактные двигатели постоянного тока. Эти двигатели снабжа­ются статическими полупроводниковыми коммутаторами, заме­щающими механический коммутатор-коллектор, и встроенными датчиками положения ротора. Отсутствие щеточно-коллекторного узла позволяет увеличить ресурс электродвигателя до 5 тыс. ч и более, значительно повысить его надежность и снизить уровень радиопомех.

Проводятся работы по созданию электродвигателей с ограни­ченными осевыми размерами, что необходимо, например, для при­вода вентилятора охлаждения ДВС. В этом направлении поиск ве­дется по пути создания двигателей с торцовым коллектором, кото­рый располагают совместно со щетками внутри полого якоря, или с дисковыми якорями, выполненными со штампованной или печатной обмоткой.

Имеют свое продолжение разработки специальных электродви­гателей, в частности герметизированных электродвигателей предпусковых подогревателей, что необходимо для повышения надеж­ности и применения на специальных автомобилях.

На современном автомобиле установлено большое число агрегатов, требующих для приведения в действие затрат механической энергии. Эту энергию они получают в большинстве случаев от электродвигателей.

Электродвигатель с механизмом передачи механической энергии и схемой управления электродвигателем образуют систему электропривода автомобиля . Для передачи энергии в автомобильном электроприводе используются зубчатые и червячные передачи, кривошипно-шатунные механизмы. Часто электродвигатель и механизм передачи механической энергий объединяют в моторедуктор или электродвигатель совмещают с исполнительным элементом.

Электроприводы автомобиля приводят в действие вентиляторы отопителей и системы охлаждения двигателя, стеклоподъемники, устройства выдвижения антенн, стеклоочистители, насосы омывателей, фароочистители , подогреватели, топливные насосы и т.п. Расмотрим требования предъявляемые к электродвигателям и типы электрических двигателей используемых в системах электропривода агрегатов автомобиля.

Электродвигатели приводов агрегатов автомобиля

Требования, предъявляемые к электродвигателям, весьма разнообразны. Электродвигатели отопителей и вентиляторов автомобиля имеют продолжительный режим работы и малый пусковой момент; электродвигатели стеклоподъемника обладают большим пусковым моментом, но работают кратковременно; электродвигатели стеклоочистителей воспринимают переменные нагрузки и, следовательно, должны обладать жесткой выходной характеристикой, частота вращения вала не должна существенно меняться при перемене нагрузки; электродвигатели предпусковых подогревателей должны нормально работать при очень низких температурах окружающего воздуха.

В приводах агрегатов автомобиля применяют электродвигатели только постоянного тока . Их номинальные мощности должны соответствовать ряду 6, 10, 16, 25, 40, 60, 90, 120, 150, 180, 250, 370 Вт, а номинальные частоты вращения валов ряду 2000, 3000, 4000, 5000, 6000, 8000, 9000 и 10 000 об/мин.

Электродвигатели с электромагнитным возбуждением в системе электропривода агрегатов автомобиля имеют последовательное, параллельное или смешанное возбуждение. Реверсивные электродвигатели снабжены двумя обмотками возбуждения. Однако применение электродвигателей с электромагнитным возбуждением в настоящее время сокращается. Более широко распространены электродвигатели с возбуждением от постоянных магнитов.

Конструкции электродвигателей чрезвычайно разнообразны.


Рис. 2. Электродвигатель отопителя

На рис. 2 показано устройство электродвигателя отопителя. Постоянные магниты 2 закреплены на корпусе 12 электродвигателя пружинами 10. Вал якоря 11 установлен в металлокерамических подшипниках 1 и 5, расположенных в корпусе и в крышке 8. Крышка крепится к корпусу винтами, ввернутыми в пластины 9. Ток к коллектору 6 подводится через щетки 4, помещенные в щеткодержатель 3. Траверса 7 из изоляционного материала, объединяющая все щеткодержатели в общий узел, прикреплена к крышке 8.

На электродвигателях мощностью до 100 Вт общим является применение подшипников скольжения с металлокерамическими вкладышами, щеткодержателей коробчатого типа и коллекторов, штампованных из медной ленты с опрессовкой пластмассой. Применяют и коллекторы, изготовленные из трубы, имеющей на внутренней поверхности продольные пазы.

Крышки и корпус изготовляют цельнотянутыми из листовой стали. В электродвигателях стеклоомывателей крышки и корпус - пластмассовые. Статор электродвигателей электромагнитного возбуждения набирают из пластин; причем оба полюса и ярмо штампуют как одно целое из листовой стали.

Постоянные магниты типов 1 и 2 (см. табл. ниже) устанавливают в магнитопровод, залитый в пластмассовый корпус. Магниты типов 3, 4 и 5 прикрепляют к корпусу плоскими стальными пружинами или приклеивают. Магнит типа 6 устанавливают и приклеивают в магнитопровод, который размещается в крышке электродвигателя. Якорь набирают из пластин электротехнической стали толщиной 1-1,5 мм.

Технические данные основных типов электродвигателей с возбуждением от постоянных магнитов

таблица 1. Основные типы электродвигателей в электроприводах отечественных автомобилей.

Электродвигатель Тип магнита Назначение Напряжение, В Полезная мощность, Вт Масса, кг
МЭ268 1 Привод омывателей 12 10 9000 0,14
МЭ268Б 1 То же 24 10 9000 0,15
45.3730 4 Привод отопителей 12 90 4100 1
МЭИ 3 То же 12 5 2500 0,5
МЭ237 4 » 24 25 3000 0,9
МЭ236 4 » 12 25 3000 1
МЭ255 4 » 12 20 3000 0,8
19.3730 5 » 12 40 2500 1,3
МЭ250 5 » 24 40 3000 1,3
МЭ237Б 4 Привод стекло-
очистителей
12 12 2000 0,9
МЭ237Е 4 То же 24 12 2000 0,9
МЭ251 2 Привод вентиляра 24 5 2500 0,5
МЭ272 6 То же 12 100 2600 2,25

Технические данные основных типов электродвигателей с электромагнитным возбуждением

таблица 2. Основные типы электродвигателей в электроприводах отечественных автомобилей.

Электродвигатель Назначение Напряжение, В Полезная мощность, Вт Частота вращения вала, об/мин Масса, кг
МЭ201 Привод отопителей 12 11 5500 0,5
МЭ208 То же 24 11 5500 0,5
МЭНА Привод стеклоочисти-телей
12 15 1500 1,3
МЭ202 Привод предпускового
12 11 4500 0,5
МЭ202Б То же 24 11 4500 0,5
МЭ252 » 24 180 6500 4,7
32.3730 » 12 180 6500 4,7
МЭ228А Привод антенны 12 12 4000 0,8

Электродвигатели мощностью более 100 Вт близки по конструкции к генераторам постоянного тока . Они имеют корпус, изготовленный из полосовой малоуглеродистой стали или из трубы, на котором винтами закреплены полюса с обмоткой возбуждения. Крышки стянуты между собой болтами. В крышках расположены шариковые подшипники. Реактивные щеткодержатели обеспечивают стабильную работу щеток на коллекторе.

Двухскоростные двигатели с электромагнитным возбуждением имеют выводы каждой катушки возбуждения, электродвигатели с постоянными магнитами оборудованы третьей дополнительной щеткой, при подаче питания на которую частота вращения вала увеличивается.

Технические данные основных типов электродвигателей с возбуждением от постоянных магнитов представлены в табл. 1, а с электромагнитным возбуждением в табл. 2.

Изобретение относится к области электротехники и может быть использовано при создании гибридных автомобилей и электромобилей. Устройство содержит источник электроэнергии, подключенный к накопительному конденсатору. Приводной двигатель переменного тока состоит из ротора с постоянными магнитами и статора с трехфазными обмотками. Последовательно с каждой из обмоток статора включена дополнительная обмотка, а точки соединения указанных обмоток подключены соответственно к выводам выпрямителя, который совместно с инвертором входит в состав управляемого преобразователя. При включении источника питания начинают коммутироваться силовые ключи инвертора в соответствии с выходными сигналами блока управления. Автомобиль осуществляет поступательное движение с регулируемой скоростью, задаваемой блоком управления инвертором. При подаче команды «торможение» контроллер обеспечивает поступление управляющих сигналов на выпрямитель. В накопительный конденсатор поступает ток рекуперации. При протекании тока по обмоткам развивается тормозящий момент, а энергия торможения передается в накопительный конденсатор, который заряжается до напряжения большего, чем напряжение источника электропитания. По окончании торможения накопленная энергия конденсатора используется для поступательного движения автомобиля. Технический результат заключается в повышении энергетической эффективности электромобиля и обеспечении его простой и технологичной конструкции с оптимальными массогабаритными показателями. 1 ил.

Изобретение относится к области электротехники и может быть использовано при проектировании гибридных автомобилей и электромобилей.

Известны гибридные автомобили на топливных элементах, содержащие аккумуляторную батарею, присоединенную через управляемый преобразователь к приводному двигателю колес (1). В устройстве предусмотрена организация цепей для использования энергии торможения колес. Однако установка имеет низкую энергетическую эффективность. Это объясняется тем, что при рекуперационном торможении генерируемое напряжение падает, а накопленный заряд в батарее растет, в результате чего по мере выравнивания потенциалов батареи и генератора темп зарядки батареи замедляется, а затем и вовсе прекращается.

Наиболее близким к изобретению устройством является электропривод колес автомобиля (2), содержащий аккумуляторную батарею, которая подключена к приводному двигателю через управляемый преобразователь напряжения. Для повышения эффективности силовой установки и улучшения ее энергетических характеристик управляемый преобразователь выполнен с возможностью передачи электроэнергии на приводной двигатель с понижающим коэффициентом преобразования напряжения, а рекуперацию электроэнергии с приводного двигателя при его торможении - с повышающим коэффициентом преобразования напряжения. В известном устройстве роль накопительного элемента, «принимающего» энергию рекуперации, выполняет аккумуляторная батарея, однако ее функцию может выполнять и другой энергонакопительный блок, например блок молекулярных конденсаторов. В известной схеме может быть задействован как двигатель постоянного тока, так и переменного тока. При использовании в качестве приводного двигателя электрической машины переменного тока необходимо введение в известную схему (2) преобразователя постоянного напряжения в переменное (следуя традиционной методике преобразования сигналов). Однако это ведет к усложнению конструкции преобразовательного блока и, следовательно, усложнению конструкции всего устройства, увеличению его стоимости и габаритов.

Техническим результатом, которого можно достичь при использовании изобретения, является упрощение конструкции, снижение стоимости и улучшение массогабаритных показателей.

Технический результат достигается за счет того, что в электроприводе колес автомобиля, содержащем источник электропитания, трехфазный электродвигатель переменного тока с ротором на постоянных магнитах и управляемый преобразователь, регулирующий режим работы электродвигателя (2), управляемый преобразователь состоит из мостовых трехфазных инвертора и выпрямителя, выводы постоянного тока которых подключены к накопительному конденсатору, присоединенному к источнику электропитания, а фазные выводы обмоток статора электродвигателя переменного тока подсоединены к входным выводам переменного тока инвертора, при этом согласно - последовательно с каждой из обмоток статора включена дополнительная обмотка, причем точки соединения указанных обмоток подключены соответственно к выводам переменного тока выпрямителя, полярность выводов постоянного тока которого встречная по отношению к полярности подсоединенного к ним источника электропитания, при этом управляющие входы блоков управления инвертора и выпрямителя соединены соответственно с выходами управляемого контроллера, выполненного обеспечивающим при подаче на его управляющий вход команды «скорость» либо «торможение» разрешение поступления управляющих сигналов на инвертор либо выпрямитель с одновременным блокированием поступления управляющих импульсов на выпрямитель либо инвертор соответственно.

На чертеже представлена конструктивная схема устройства.

Устройство содержит источник электроэнергии 1, например аккумуляторную батарею, которая подключена к накопительному конденсатору 2, подсоединенному к выводам питания управляемого преобразователя напряжения, регулирующего режимом работы приводного двигателя переменного тока 3. В схеме электропривода реализована возможность передачи электроэнергии на приводной двигатель 3 с пониженным напряжением и рекуперации электроэнергии с приводного двигателя 3 при его торможении с повышенным напряжением. Приводной двигатель 3 переменного тока состоит из ротора 4 с постоянными магнитами и статора с трехфазными обмотками 5. Согласно - последовательно с каждой из трехфазных обмоток W 1 статора включена дополнительная обмотка W 2 , а точки соединения указанных обмоток подключены соответственно к выводам переменного тока выпрямителя 6, который совместно с инвертором 7 входит в состав управляемого преобразователя. Управляющие входы инвертора 7 и выпрямителя 6 присоединены соответственно к выходам блоков управления 8 и 9, управляющие входы которых соединены с выходами управляемого контроллера 10, выполненного обеспечивающим разрешение поступления управляющих сигналов на схему инвертора либо выпрямителя с одновременным блокированием поступления управляющих импульсов на схему выпрямителя либо инвертора при подаче команды «скорость» либо «торможение» соответственно.

Устройство работает следующим образом.

При включении источника питания и подаче команды «Скорость» контроллер 10 формирует выходной сигнал, который разрешает поступление управляющих сигналов с блока управления 8 на инвертор 7 и одновременно блокирует работу блока управления 9, в результате чего силовые ключи инвертора 7 начинают коммутироваться в соответствии с выходными сигналами блока управления 8. За счет протекания токов в обмотках W 1 статора 5 электродвигателя возникает вращающееся магнитное поле, под действием которого начинает вращаться ротор 4 на постоянных магнитах. Блок управления 8 осуществляет высокочастотную модуляцию основной гармоники и регулирует величину напряжения и его частоту, используя, например, управление по вектору поля. Вращение ротора 4 непосредственно или через редуктор передается на колеса. Автомобиль осуществляет поступательное движение с регулируемой скоростью, задаваемой блоком управления 8, при этом идет прямая передача энергии на приводной двигатель.

По приходу сигнала «Торможение» контроллер 10 блокирует работу блока управления 8 и включает блок 9. При торможении под действием сил инерции колеса продолжают свое движение, вращая ротор 4 электрической машины 3, которая переходит в режим генерирования энергии. На вход выпрямителя 6 поступает суммарное напряжение обмоток W 1 , W 2 статора, а в накопительный конденсатор 2 поступает ток рекуперации. Напряжение на конденсаторе 2 возрастает до величины приведенного суммарного напряжения на обмотках W 1 , W 2 . При протекании тока по обмоткам W 1 , W 2 развивается тормозящий момент, а энергия торможения форсированно передается в накопительный конденсатор 2, который заряжается до напряжения большего, чем напряжение источника электропитания 1. При этом доля рекуперируемой энергии значительно увеличивается, т.к. величина энергии, накопленной в конденсаторе 2, находится в квадратичной зависимости от его напряжения.

По окончании торможения накопленная энергия конденсатора 2 используется для поступательного движения автомобиля.

Таким образом, управляемый преобразователь совместно с трехфазными обмотками W 1 , W 1 обеспечивает передачу электроэнергии на приводной двигатель 3 с пониженным напряжением и рекуперацию электроэнергии с приводного двигателя 3 при его торможении с повышенным напряжением. Устройство имеет высокий кпд, т.к. позволяет рекуперировать не менее 70% энергии торможения.

Высокие энергетические показатели устройства достигнуты при одновременном упрощении конструкции, снижении ее себестоимости и улучшении массогабаритных показателей.

Высокий кпд, простота конструкции и хорошие массогабаритные показатели данного устройства позволяют ему быть наиболее предпочтительным при проектировании гибридных автомобилей и электромобилей.

Источники информации, принятые во внимание

1. Ж. «АвтоМир» №1, 2007 г., с.9.

2. Ж. «АвтоМир» №48, 2007 г., с.8.

Электропривод колес автомобиля, содержащий источник электропитания, трехфазный электродвигатель переменного тока с ротором на постоянных магнитах и управляемый преобразователь, регулирующий режим работы электродвигателя, отличающийся тем, что управляемый преобразователь состоит из мостовых трехфазных инвертора и выпрямителя, выводы постоянного тока которых подключены к накопительному конденсатору, присоединенному к источнику электропитания, а фазные выводы обмоток статора электродвигателя переменного тока подсоединены к входным выводам переменного тока инвертора, при этом согласно-последовательно с каждой из обмоток статора включена дополнительная обмотка, причем точки соединения указанных обмоток подключены соответственно к выводам переменного тока выпрямителя, полярность выводов постоянного тока которого встречная по отношению к полярности подсоединенного к ним источника электропитания, при этом управляющие входы блоков управления инвертора и выпрямителя соединены соответственно с выходами управляемого контроллера, выполненного обеспечивающим при подаче на его управляющий вход команды «скорость» либо «торможение» разрешение поступления управляющих сигналов на инвертор либо выпрямитель с одновременным блокированием поступления управляющих импульсов на выпрямитель либо инвертор соответственно.



Поделиться