Используется двигатель внутреннего сгорания. Принцип работы двигателя внутреннего сгорания

Двигатель внутреннего сгорания – это основной вид автомобильных силовых агрегатов на сегодняшний день. Принцип работы двигателя внутреннего сгорания основывается на эффекте теплового расширения газов, возникающего во время сгорания в цилиндре топливно-воздушной смеси .

Самые распространенные виды двигателей

Существует три разновидности ДВС: поршневой, роторно-поршневой силовой агрегат системы Ванкеля и газотурбинный. За редким исключением на современные авто устанавливаются четырехтактные поршневые моторы. Причина кроется в низкой цене, компактности, малом весе, многотопливности и возможности установки практически на любые транспортные средства.

Сам по себе двигатель автомобиля – это механизм, преобразующий тепловую энергию горящего топлива в механическую, работу которого обеспечивает множество систем, узлов и агрегатов. Поршневые ДВС бывают двух- и четырехтактными. Понять принцип работы двигателя автомобиля проще всего на примере четырехтактного одноцилиндрового силового агрегата.

Четырехтактным мотор называется потому, что один рабочий цикл состоит из четырех движений поршня (тактов) или двух оборотов коленчатого вала:

  • впуск;
  • сжатие;
  • рабочий ход;
  • выпуск.

Общее устройство ДВС

Чтобы понять принцип работы мотора, необходимо в общих чертах представить его устройство. Основными частями являются:

  1. блок цилиндров (в нашем случае цилиндр один);
  2. кривошипно-шатунный механизм, состоящий из коленчатого вала, шатунов и поршней;
  3. головка блока с газораспределительным механизмом (ГРМ).


Кривошипно-шатунный механизм обеспечивает преобразование поступательно-возвратного движения поршней во вращение коленчатого вала. Поршни приходят в движение благодаря энергии сгорающего в цилиндрах топлива.


Работа данного механизма невозможна без работы механизма газораспределения, который обеспечивает своевременное открытие впускных и выпускных клапанов для впуска рабочей смеси и выпуска отработавших газов. Состоит ГРМ из одного или нескольких распределительных валов , имеющих кулачки, толкающие клапаны (не менее двух на каждый цилиндр), клапанов и возвратных пружин.

Двигатель внутреннего сгорания способен работать только при слаженной работе вспомогательных систем, к которым относятся:

  • система зажигания, отвечающая за воспламенение горючей смеси в цилиндрах;
  • впускная система, обеспечивающая подачу воздуха для образования рабочей смеси;
  • топливная система, обеспечивающая непрерывную подачу топлива и получение смеси горючего с воздухом;
  • система смазки, предназначенная для смазывания трущихся деталей и удаления продуктов износа;
  • выхлопная система , которая обеспечивает удаление отработавших газов из цилиндров ДВС и снижение их токсичности;
  • система охлаждения, необходимая для поддержания оптимальной температуры для работы силового агрегата.

Рабочий цикл мотора

Как было сказано выше, цикл состоит из четырех тактов. Во время первого такта кулачок распредвала толкает впускной клапан, открывая его, поршень начинает двигаться из крайнего верхнего положения вниз. При этом в цилиндре создается разрежение, благодаря которому в цилиндр поступает готовая рабочая смесь, либо воздух, если двигатель внутреннего сгорания оснащен системой непосредственного впрыска топлива (в таком случае горючее смешивается с воздухом непосредственно в камере сгорания).

Поршень через шатун сообщает движение коленчатому валу, поворачивая его на 180 градусов к моменту достижения крайнего нижнего положения.

Во время второго такта – сжатия – впускной клапан (или клапаны) закрывается, поршень меняет направление движения на противоположное, сжимая и нагревая рабочую смесь или воздух. По окончанию такта, системой зажигания на свечу подается электрический разряд, и образуется искра, поджигающая сжатую топливно-воздушную смесь.

Принцип воспламенения горючего у дизельного ДВС иной: в завершении такта сжатия, через форсунку, в камеру сгорания впрыскивается мелкораспыленное дизтопливо, где оно смешивается с нагретым воздухом, и происходит самовоспламенение получившейся смеси. Необходимо отметить, что по этой причине степень сжатия дизеля намного выше.

Коленвал тем временем повернулся еще на 180 градусов, сделав один полный оборот.

Третий такт именуется рабочим ходом. Образующиеся во время сгорания топлива газы, расширяясь, толкают поршень в крайнее нижнее положение. Поршень передает энергию коленвалу через шатун и поворачивает его еще на пол-оборота.

По достижении нижней мертвой точки начинается заключительный такт – выпуск. В начале данного такта кулачок распределительного вала толкает и открывает выпускной клапан, поршень движется вверх и выгоняет отработавшие газы из цилиндра.

ДВС, устанавливаемые на современные автомобили, имеют не один цилиндр, а несколько. Для равномерной работы мотора в один и тот же момент времени в разных цилиндрах выполняются разные такты, и каждые пол-оборота коленвала как минимум в одном цилиндре происходит рабочий ход (исключение составляют 2- и 3-цилиндровые моторы). Благодаря этому удается избавиться от лишних вибраций, уравновешивая силы, действующие на коленвал и обеспечить ровную работу ДВС. Шатунные шейки расположены на валу под равными углами относительно друг друга.

Из соображений компактности многоцилиндровые моторы делают не рядными, а V-образными или оппозитными (визитная карточка фирмы Subaru). Это позволяет сэкономить немало пространства под капотом.

Двухтактные моторы

Помимо четырехтактных поршневых ДВС существуют двухтактные. Принцип их работы несколько отличается от описанного выше. Устройство такого мотора проще. В цилиндре имеется для окна – впускное и выпускное, расположенное выше. Поршень, находясь в НМТ, перекрывает впускное окно, затем, двигаясь вверх, перекрывает выпускное и сжимает рабочую смесь. По достижении им ВМТ на свече образуется искра и поджигает смесь. В это время впускное окно оказывается открытым, и через него в кривошипную камеру попадает очередная доза топливно-воздушной смеси.

Во время второго такта, двигаясь вниз под воздействием газов, поршень открывает выпускное окно, через которое отработавшие газы выдуваются из цилиндра новой порцией рабочей смеси, которая попадает в цилиндр через продувочный канал. Частично рабочая смесь при этом также уходит в выпускное окно, что объясняет прожорливость двухтактного ДВС.

Подобный принцип работы позволяет достичь большей мощности двигателя при меньшем рабочем объеме, однако за это приходится расплачиваться большим расходом топлива. К преимуществам таких моторов можно отнести более равномерную работу, простую конструкцию, малый вес и высокую удельную мощность. Из недостатков следует упомянуть более грязный выхлоп, отсутствие систем смазки и охлаждения, что грозит перегревом и выходом агрегата из строя.

Двигатель состоит из цилиндра 5 и картера 6, который снизу закрыт поддоном 9 (рис. а). Внутри цилиндра перемещается поршень 4 с компрессионными (уплотнительными) кольцами 2, имеющий форму стакана с днищем в верхней части. Поршень через поршневой палец 3 и шатун 14 связан с коленчатым валом 8, который вращается в коренных подшипниках, расположенных в картере. Коленчатый вал состоит из коренных шеек 13, щек 10 и шатунной шейки 11. Цилиндр, поршень, шатун и коленчатый вал составляют так называемый кривошипно-шатунный механизм, преобразующий возвратно-поступательное движение поршня во вращательное движение коленчатого вала (см. рис. 6).

Сверху цилиндр 5 накрыт головкой 1 с клапанами 15 и 17, открытие и закрытие которых строго согласовано с вращением коленчатого вала, а следовательно, и с перемещением поршня.


а - продольный вид, б - поперечный вид; 1 - головка цилиндра, 2 - кольцо,
3 - палец, 4 - поршень, 5 - цилиндр, 6 - картер, 7 - маховик, 8 - коленчатый вал,
9 - поддон, 10 - щека, 11 - шатунная шейка, 12 - коренной подшипник, 13 - коренная шейка,
14 - шатун, 15, 17- клапаны, 16 - форсунка

Перемещение поршня ограничивается двумя крайними положениями, при которых его скорость равна нулю: верхней мертвой точкой (ВМТ), соответствующей наибольшему удалению поршня от вала (см. рис. 6), и нижней мертвой точкой (НМТ), соответствующей наименьшему удалению его от вала.

Безостановочное движение поршня через мертвые точки обеспечивается маховиком 7, имеющим форму диска с массивным ободом.

Расстояние, проходимое поршнем, между мертвыми точками называется ходом поршня S , а расстояние между осями коренных и шатунных шеек - радиусом кривошипа R (рис. б). Ход поршня равен двум радиусам кривошипа: S = 2R . Объем, который описывает поршень за один ход, называется рабочим объемом цилиндра (литражом) V h :

V h = (¶ / 4)D 2 S .

Объем над поршнем V c в положении ВМТ (см. рис. а) и называется объемом камеры сгорания (сжатия). Сумма рабочего объема цилиндра и объема камеры сгорания составляет полный объем цилиндра V a :

V a =V h + V c .

Отношение полного объема цилиндра к объему камеры сгорания называется степенью сжатия е:

е = V a / V c .

Степень сжатия является важным параметром двигателей внутреннего сгорания, так как сильно влияет на его экономичность и мощность.

Принцип работы.

Действие поршневого двигателя внутреннего сгорания основано на использовании работы расширения нагретых газов во время движения поршня от ВМТ к НМТ.

Нагревание газов в положении ВМТ достигается в результате сгорания в цилиндре топлива, перемешанного с воздухом. При этом повышается температура газов и их давление. Так как давление под поршнем равно атмосферному, а в цилиндре оно намного больше, то под действием разницы давлений поршень будет перемещаться вниз, при этом газы расширятся, совершая полезную работу. Работа, производимая расширяющимися газами, посредством кривошипно-шатунного механизма передается коленчатому валу, а от него на трансмиссию и колеса автомобиля.

Чтобы двигатель постоянно вырабатывал механическую энергию, цилиндр необходимо периодически заполнять новыми порциями воздуха через впускной клапан 15 и топлива через форсунку 16 или подавать через впускной клапан смесь воздуха с топливом. Продукты сгорания топлива после их расширения удаляются из цилиндра через выпускной клапан 17. Эти задачи выполняют механизм газораспределения, управляющий открытием и закрытием клапанов, и система подачи топлива.

  1. Такт впуска - Впускается топливо-воздушная смесь
  2. Такт сжатия - Смесь сжимается и поджигается
  3. Такт расширения - Смесь сгорает и толкает поршень вниз
  4. Такт выпуска - Продукты горения выпускаются

Принцип действия. Сгорание топлива происходит в камере сгорания, которая расположена внутри цилиндра двигателя, куда жидкое топливо вводится в смеси с воздухом или раздельно. Тепловая энергия, полученная при сгорании топлива, преобразуется в механическую работу. Продукты сгорания удаляются из цилиндра, а на их место всасывается новая порция топлива. Совокупность процессов, происходящих в цилиндре от впуска заряда (рабочей смеси или воздуха) до выпуска отработанных газов, составляет действительный или рабочий цикл двигателя.

Системы и механизмы двигателя, и их назначение.

Более сотни лет в качестве силовых установок большинства машин и механизмов используются двигатели внутреннего сгорания. В начале 20-го века они заменили собой паровой мотор внешнего сгорания. ДВС сейчас является самым экономичным и эффективным среди прочих моторов. Давайте рассмотрим устройство

История создания

История этих агрегатов началась примерно 300 лет назад. Именно тогда Леонардо Да Винчи разработал первый чертеж примитивного двигателя. Разработка этого агрегата дала толчок к сборке, испытаниям и постоянному совершенствованию ДВС.

В 1861 году по чертежам, которые оставил миру Да Винчи, создали первый двухтактный мотор. Тогда еще никто и не думал, что подобными установками будут комплектоваться все автомобили и другая техника, хотя тогда использовались паровые агрегаты на железнодорожной технике.

Первым, кто стал использовать ДВС на автомобилях, стал Генри Форд. Он первым написал книгу об устройстве и работе ДВС. Форд стал первым, кто вычислял КПД этих двигателей.

Классификация ДВС

В процессе развития усложнялось и устройство двигателя внутреннего сгорания. Назначение его при этом оставалось прежним. Можно выделить несколько основных видов ДВС, которые являются наиболее эффективными сегодня.

Первые по эффективности и экономичности - поршневые установки. В этих агрегатах энергия, образовавшаяся от сгорания топливной смеси, превращается в движение через систему из шатунов и коленчатого вала.

Общее устройство двигателя внутреннего сгорания карбюраторного ничем не отличается от других моторов. Но горючая смесь приготавливается непосредственно в карбюраторе. Впрыск осуществляется в общий коллектор, откуда под воздействием разряжения смесь попадает в цилиндры, где затем загорается от электрического разряда на свече.

Инжекторный двигатель отличается от карбюраторного тем, что топливо подается в каждый цилиндр непосредственно через отдельные форсунки. Затем после того, как бензин смешается с воздухом, топливо поджигается от искры свечи.

Дизельный мотор отличается от бензиновых. Рассмотрим кратко устройство внутреннего сгорания. Здесь для воспламенения не используются свечи. Данное топливо загорается под воздействием высокого давления. В результате дизель нагревается. Температура превышает температуру горения. Впрыск осуществляется посредством форсунок.

К ДВС относят и роторно-поршневые двигатели. В этих агрегатах тепловая энергия от сгорания топлива воздействует на ротор. Он имеет особенную форму и специальный профиль. Траектория движения ротора - планетарная (элемент находится внутри специальной камеры). Ротор одновременно выполняет огромное количество функций - это газораспределение, функция коленчатого вала и поршня.

Существуют и газотурбинные ДВС. В этих агрегатах тепловая энергия преобразуется через ротор с клиновидными лопатками. Затем эти механизмы заставляют турбину вращаться.

Самыми надежными, не требующими частого обслуживания и экономичными считаются поршневые моторы. Роторные практически не используют в массовой автомобильной технике. Сейчас модели автомобилей, оснащенных роторно-поршневыми двигателями, выпускает только японская “Мазда”. Опытные авто с газотурбинными моторами в 60-х годах выпускал “Крайслер”, и после этого больше к этим установкам не возвращался ни один автопроизводитель. В Советском Союзе газотурбированными моторами недолго оснащали некоторые модели танков и десантных кораблей. Но затем было решено отказаться от таких силовых агрегатов. Именно поэтому мы рассматриваем устройство двигателя внутреннего сгорания - они наиболее популярны и эффективны.

Устройство ДВС

В корпусе мотора объединено несколько систем. Это блок цилиндров, в котором и находятся те самые камеры сгорания. В последних сгорает топливная смесь. Также двигатель состоит из кривошипно-шатунного механизма, призванного превращать энергию движения поршней во вращение коленчатого вала. В корпусе силового агрегата имеется и Его задача - обеспечивать своевременное открытие и закрытие впускных и выпускных клапанов. Двигатель не сможет работать без системы впрыска, зажигания, а также без выхлопной системы.

При запуске силового агрегата в цилиндры через открытые впускные клапаны подается смесь топлива и воздуха. Затем она воспламеняется от электрического разряда на свече зажигания. Когда смесь воспламенится и газы начнут расширятся, увеличится давление на поршень. Последний приведется в движение и заставит вращаться коленчатый вал.

Устройство и работа таковы, что мотор работает определенными циклами. Эти циклы постоянно повторяются с высокой частотой. За счет этого обеспечивается непрерывное вращение коленчатого вала.

Принцип действия двухтактных ДВС

Когда мотор запускается, поршень, который приводится в движение посредством вращения коленвала, начинает двигаться. Когда он достигнет самой нижней своей точки и начнет двигаться вверх, в цилиндр подается топливо.

При движении вверх поршень сжимает смесь. Когда он достигнет верхней мертвой точки, то свеча за счет электрического разряда воспламеняет смесь. Газы моментально расширяются и толкают поршень вниз.

Затем открывается выпускной клапан цилиндра, и продукты сгорания выходят из цилиндров в выхлопную систему. Затем, снова дойдя до нижней точки, поршень начнет двигаться вверх. Коленчатый вал сделает один оборот.

Когда начнется новое движение поршня, впускные клапаны снова откроются, и будет подана топливная смесь. Она займет весь объем, который занимали продукты сгорания, и цикл повторится снова. За счет того, что поршни в таких двигателях работают только в двух тактах, совершается меньше движений, в отличие от четырехтактного ДВС. Снижаются потери на трение деталей. Но эти моторы сильнее нагреваются.

В двухтактных силовых агрегатах поршень также играет роль газораспределительного механизма. В процессе движения открываются и закрываются отверстия для впуска топливной смеси и выпуска отработанных газов. Худший газообмен в сравнении с четырехтактными моторами - это основной недостаток таких двигателей. В момент выпуска отработанных газов значительно теряется мощность.

На данный момент двухтактные двигатели применяются в мопедах, скутерах, лодках, бензиновых пилах и на другой маломощной технике.

Четырехтактный

Устройство двигателя внутреннего сгорания такого типа немного отличается от двухтактного. Принцип работы тоже немного другой. На одно вращение приходится четыре такта.

Первым тактом является подача горючей смеси в цилиндр двигателя. Мотор под воздействием разряжения всасывает смесь в цилиндр. Поршень в цилиндре в этот момент направляется вниз. Впускной клапан открыт, и распыленный бензин вместе с воздухом попадет в камеру сгорания.

Далее идет такт сжатия. Впускной клапан закрывается, а поршень двигается по направлению вверх. При этом смесь, находящаяся в цилиндре, значительно сжимается. По причине давления смесь нагревается. Давлением повышается концентрация.

Далее следует третий рабочий такт. Когда поршень почти доходит до своего верхнего положения, срабатывает система зажигания. На свече проскакивает искра, и смесь воспламеняется. Из-за мгновенного расширения газов и распространения энергии взрыва, поршень под давлением движется вниз. Данный такт в работе четырехтактного мотора основной. Прочие три такта не влияют на создание работы и являются вспомогательными.

На четвертом такте начинается фаза выпуска. Когда поршень достигает низа камеры сгорания, открывается выпускной клапан и отработанные газы выходят сначала в выхлопную систему, а затем в атмосферу.

Вот такое устройство и принцип работы двигателя внутреннего сгорания четырехтактного, который установлен под капотами большинства автомобилей.

Вспомогательные системы

Мы рассмотрели устройство двигателя внутреннего сгорания. Но любой мотор не смог бы работать, если бы не был оснащен дополнительными системами. О них мы расскажем ниже.

Зажигание

Эта система - часть электрического оборудования. Она предназначена для формирования искр, которые поджигают топливную смесь.

Система включает в себя АКБ и генератор, замок зажигания, катушку, а также специальное устройство - распределитель зажигания.

Впускная система

Она необходима для того, чтобы в мотор без каких-либо перебоев поступал воздух. Кислород необходим для образования смеси. Сам по себе бензин гореть не будет. Нужно отметить, что в карбюраторах впуск представляет собой только фильтр и воздуховоды. Впускная система современных авто более сложная. Она включает в себя воздухозаборник в виде патрубков, фильтр, дроссельную заслонку, а также впускной коллектор.

Система питания

Из принципа устройства двигателя внутреннего сгорания мы знаем, что мотору нужно что-то сжигать. Это бензин или дизельное топливо. Система питания обеспечивает подачу горючего в процессе работы мотора.

В самом примитивном случае данная система состоит из бака, а также топливной магистрали, фильтра и насоса, которые обеспечивает подачу горючего в карбюратор. В инжекторных автомобилях система питания контролируется ЭБУ.

Смазочная система

В смазочную систему входит масляный насос, поддон, фильтр для очистки масла. В дизельных и мощных бензиновых силовых агрегатах также имеется радиатор для очистки смазки. Насос приводится в действие от коленчатого вала.

Заключение

Вот что представляет собой двигатель внутреннего сгорания. Устройство и принцип действия его мы рассмотрели, и теперь понятно, как работает автомобиль, бензопила или дизельный генератор.

Прежде, чем рассматривать вопрос, как работает двигатель автомобиля , необходимо хотя бы в общих чертах разбираться в его устройстве. В любом автомобиле установлен двигатель внутреннего сгорания, работа которого основана на преобразовании тепловой энергии в механическую. Заглянем глубже в этот механизм.

Как устроен двигатель автомобиля – изучаем схему устройства

Классическое устройство двигателя включает в себя цилиндр и картер, закрытый в нижней части поддоном. Внутри цилиндра находится с различными кольцами, который перемещается в определенной последовательности. Он имеет форму стакана, в его верхней части располагается днище. Чтобы окончательно понять, как устроен двигатель автомобиля, необходимо знать, что поршень с помощью поршневого пальца и шатуна связывается с коленчатым валом.

Для плавного и мягкого вращения используются коренные и шатунные вкладыши, играющие роль подшипников. В состав коленчатого вала входят щеки, а также коренные и шатунные шейки. Все эти детали, собранные вместе, называются кривошипно-шатунным механизмом, который преобразует возвратно-поступательное перемещение поршня в круговое вращение .

Верхняя часть цилиндра закрывается головкой, где расположены впускной и выпускной клапаны. Они открываются и закрываются в соответствии с перемещением поршня и движением коленчатого вала. Чтобы точно представить, как работает двигатель автомобиля, видео в нашей библиотеке следует изучить также подробно, как и статью. А пока мы попытаемся выразить его действие на словах.

Как работает двигатель автомобиля – кратко о сложных процессах

Итак, граница перемещения поршня имеет два крайних положения – верхнюю и нижнюю мертвые точки. В первом случае поршень находится на максимальном удалении от коленчатого вала, а второй вариант представляет собой наименьшее расстояние между поршнем и коленчатым валом. Для того чтобы обеспечить прохождение поршня через мертвые точки без остановок используется маховик, изготовленный в форме диска.

Важным параметром у двигателей внутреннего сгорания является степень сжатия, напрямую влияющая на его мощность и экономичность.

Чтобы правильно понять принцип работы двигателя автомобиля, необходимо знать, что в его основе лежит использование работы газов, расширенных в процессе нагревания, в результате чего и обеспечивается перемещение поршня между верхней и нижней мертвыми точками. При верхнем положении поршня происходит сгорание топлива, поступившего в цилиндр и смешанного с воздухом. В результате температура газов и их давление значительно возрастает.

Газы совершают полезную работу, благодаря которой поршень перемещается вниз. Далее через кривошипно-шатунный механизм действие передается на трансмиссию, а затем на автомобильные колеса. Отработанные продукты удаляются из цилиндра через систему выхлопа, а на их место поступает новая порция топлива. Весь процесс, от подачи топлива до вывода отработанных газов, называется рабочим циклом двигателя.

Принцип работы двигателя автомобиля – различия в моделях

Существует несколько основных видов двигателей внутреннего сгорания. Наиболее простым является двигатель с рядным расположением цилиндров. Расположенные в один ряд, они составляют в целом определенный рабочий объем. Но постепенно некоторые производители отошли от такой технологии изготовления к более компактному варианту.

Много моделей используют конструкцию V-образного двигателя. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Во многих конструкциях количество цилиндров составляет от 6 до 12 и более. Это позволяет значительно сократить линейный размер двигателя и уменьшить его длину.

Таким образом, разнообразие двигателей позволяет успешно их использовать в автомобилях самого разного назначения. Это могут быть стандартные легковые и грузовые машины, а также спортивные авто и внедорожники. В зависимости от типа двигателя вытекают и определенные технические характеристики всей машины.

Двигатель внутреннего сгорания на жидком топливе, разработанный и впервые применённый на практике во второй половине 19-го века, являлся вторым в истории, после парового двигателя, примером создания агрегата, преобразующего энергию в полезную работу. Без этого изобретения невозможно себе представить современную цивилизацию, ведь транспортные средства с ДВС различного типа широко задействованы в любой отрасли, обеспечивающей существование человека.

Транспорт, приводимый в действие двигателем внутреннего сгорания, играет решающую роль в приобретающей все большее и большее значение на фоне глобализационных процессов всемирной логистической системе.

Все современные транспортные средства можно разделить на три больших группы, в зависимости от типа используемого двигателя. Первая группа ТС использует электродвигатели. Сюда входят и привычный городской общественный транспорт – троллейбусы и трамваи, и электропоезда с электромобилями, и огромные суда и корабли, использующие атомную энергию – ведь и современные ледоколы, и атомные субмарины, и авианосцы стран НАТО используют электродвигатели. Вторая группа – это техника, оснащенная реактивными двигателями.

Разумеется, такой тип двигателей используется преимущественно в авиации. Наиболее многочисленной, привычной и значимой является третья группа транспортных средств, которая использует двигатели внутреннего сгорания. Это – наибольшая и по количеству, и по разнообразию, и по влиянию на хозяйственную жизнь человека группа. Принцип работы ДВС одинаков для любых транспортных средств, оснащённых таким двигателем. В чем он заключается?

Как известно, энергия не берется ниоткуда и не уходит в никуда. Принцип работы двигателя автомобиля в полной мере основывается на этом постулате закона сохранения энергии.

Максимально обобщенно можно сказать, что для выполнения полезной работы используется энергия молекулярных связей жидкого топлива, сжигаемого в процессе работы двигателя.

Распространению ДВС на жидком топливе способствовали несколько уникальных свойств самого топлива. Это:

  • высокая потенциальная энергия молекулярных связей используемых в качестве топлива смеси легких углеводородов «например, бензина»
  • достаточно простой и безопасный, в сравнении, например, с атомной энергией, способ ее высвобождения
  • относительная распространенность легких углеводородов на нашей планете
  • природное агрегатное состояние такого топлива, позволяющее удобно хранить и транспортировать его.

Еще одним важнейшим фактором является то, что в качестве окислителя, необходимого для процесса высвобождения энергии, выступает кислород, их которого более чем на 20 процентов состоит атмосфера. Это избавляет от необходимости возить не только запас топлива, но и запас катализатора.

В идеальном случае вступить в реакцию должны все молекулы определённого объёма топлива и все молекулы определённого объёма кислорода. Для бензина эти показатели соотносятся как 1 к 14,7, т.е., для сгорания килограмма топлива необходимо почти 15 кг кислорода. Однако такой процесс, называемый стехиометрическим, на практике нереализуем. В действительности всегда остаётся какая-то часть топлива, не соединившаяся с кислородом во время протекания реакции.

Более того, для определённых режимов работы ДВС стехиометрия даже вредна.

Теперь, когда химические процесс в общих чертах понятны, стоит рассмотреть механику процесса превращения энергии топлива в полезную работу, на примере четырёхтактного ДВС, работающего по так называемому циклу Отто.

Наиболее известным и, что называется, классическим циклом работу является запатентованный еще в 1876 году Николаусом Отто процесс работы двигателя, состоящий из четырех частей. «тактов, отсюда и четрыехтактные ДВС». Первый такт – создание поршнем разрежения в цилиндре собственным перемещением под воздействием веса. В результате цилиндр заполняется смесью кислорода и паров бензина «природа не терпит пустоты». Продолжающий движение поршень сдавливает смесь – получаем второй такт. На третьем такте смесь воспламеняется «Отто применял обычную горелку, сейчас за это ответственна свеча зажигания».

Воспламенение смеси создаёт выделение большого количества газа, который давит на поршень и заставляет его подниматься – выполнять полезную работу. Четвёртый такт – открытие выпускного клапана и вытеснение продуктов сгорания возвращающимся поршнем.

Таким образом, только запуск двигателя требует воздействия извне – прокручивания коленвала, соединённого с поршнем. Сейчас это делается с помощью силы электричества, а на первых автомобилях коленвал приходилось проворачивать вручную «этот же принцип используется и в автомобилях, в которых предусмотрен принудительный ручной пуск двигателя».

Со времени выпуска первых автомобилей немало инженеров пытались изобрести новый цикл работы ДВС. Вначале это было связано с действием патента, которое многим хотелось обойти.

В результате уже в начале прошлого века был создан цикл Аткинсона, который изменил конструкцию двигателя таким образом, чтобы все движения поршня совершались за один оборот коленвала. Это позволило повысить КПД двигателя, но уменьшило его мощность. Кроме того, двигатель, работающий по такому циклу, не нуждается в отдельном распределительном вале и редукторе. Однако этот двигатель не получил распространения из-за снижения мощности агрегата и достаточно сложной конструкции.

Вместо него на современных атвомобилях зачастую используется цикл Миллера.

Если Аткинсон уменьшил такт сжатия, увеличив КПД, но изрядно усложнив работу двигателя, то Миллер предложил уменьшить такт впуска. Это позволило снизить фактическое время сжатия смеси без уменьшения ее геометрического сжатия. Таким образом, КПД каждого цикла работы ДВС увеличивается, за счет чего снижается расход топлива, сжигаемого «впустую».

Однако большинство двигателей работают по циклу Отто, так что более подробно необходимо рассмотреть именно его.

Даже наиболее простой вариант ДВС включает четырнадцать важнейших элементов, необходимых для его работы. Каждый элемент имеет определённые функции.

Так, цилиндр выполняет двоякую роль — в нем происходит активация воздушной смеси и двигается поршень. В части, называемой камерой сгорания, установлена свеча, и два клапана, один из которых перекрывает поступление топлива, другой – выпуск отработанных газов.

Свеча – устройство, обеспечивающее поджиг смеси с необходимой цикличностью. По сути, представляет собой устройство для получения достаточно мощной электрической дуги на короткий промежуток времени.

Поршень перемещается в цилиндре под действием расширяющихся газов или от воздействия коленвала, переданного через кривошипно-шатунный механизм. В первом случае поршень превращает энергию сгорания топлива в механическую работу, во втором – сжимает смесь для лучшего возгорания либо создает давление для удаления отработанных остатков смеси из цилиндра.

Кривошипно-шатунный механизм передаёт момент от поршня к валу и наоборот. Коленчатый вал благодаря своей конструкции преображает поступательное «вверх-вниз» движение поршня во вращательное.

Впускной канал, в котором располагается впускной клапан, обеспечивает попадание смеси в цилиндр. Клапан обеспечивает цикличность поступления смеси.

Выпускной клапан, соответственно, удаляет накопившиеся продукты сгорания смеси. Для обеспечения нормальной работы двигателя в момент нагнетания давления и поджога смеси он закрыт.

Работа бензинового ДВС. Подробный разбор

При такте всасывания поршень опускается вниз. Одновременно открывается впускной клапан, и в цилиндр подаётся топливо. Таким образом, в цилиндре оказывается топливовоздушная смесь. В определённых типах бензиновых двигателей эта смесь приготавливается в специальном устройстве – карбюраторе, в других смешение происходит непосредственно в цилиндре.

Далее поршень начинает подниматься. Одновременно впускной клапан закрывается, что обеспечивает создание достаточно большого давления внутри цилиндра. При достижении поршнем крайней верхней точки вся топливно-воздушная смесь оказывается сжатой в части цилиндра, называемой камерой сгорания. В этот момент свеча дает электрическую искру, и смесь воспламеняется.

В результате сгорания смеси выделяется большое количество газов, которые, стремясь заполнить собой весь предоставленный объем, давят на поршень, заставляя его опускаться. Эта работа поршня передается посредством кривошипно-шатунного механизма на вал, который начинает вращаться и вращать привод колес автомобиля.

Как только поршень завершает свое движение вниз, открывается клапан выпускного коллектора.

Оставшиеся газы устремляются туда, так как на них давит поршень, идущий вверх под воздействием вала. Цикл закончен, далее поршень снова опускается вниз, начиная новый цикл.

Как видно, полезную работу выполняет лишь одна фаза цикла. Остальные фазы — это работа двигателя «на самого себя». Даже такой положение вещей делает двигатель внутреннего сгорания одной из наиболее удачных по КПД систем, внедренных в производство. В то же время, возможность уменьшения «холостых» в смысле КПД циклов приводит к появлению новых, более экономичных систем. Кроме того, разрабатываются и ограниченно внедряются двигатели, которые вообще лишены поршневой системы. Например, некоторые японские автомобили оснащены роторными двигателями, имеющими более высокий коэффициент полезного действия.

В то же время, такие двигатели имеют ряд недостатков, связанных, в основном, с дороговизной производства и сложностью обслуживания таких моторов.

Система питания

Для того чтобы поступающая в камеру сгорания горючая смесь правильно сжигалась и обеспечивала бесперебойную работу двигателя, она должна вводится четко отмеренными порциями и быть соответствующим образом подготовлена. Для этой цели служит топливная система, важнейшими частями которой являются бензобак, топливопровод, топливные насосы, устройство для смешивания топлива и воздуха, коллектор, различные фильтры и датчики.

Понятно, что назначение бензобака – хранить необходимое количество топлива. Топливо воды используются в качестве магистралей для перекачки с помощью бензинового насоса, фильтры бензина и воздуха нужны, чтобы не допустить засорения тонких коллекторов, клапанов и топливоводов.

Подробнее стоит остановиться на работе карбюратора. Несмотря на то, что автомобили с такими устройствами больше не выпускаются, немало машин с карбюраторным типом двигателя до сих пор эксплуатируется во многих странах мира. Карбюратор смешивает топливо с воздухом следующим образом.

В поплавковой камере поддерживается постоянный уровень топлива и давления благодаря балансировочному отверстию, стравливающему лишний воздух,и поплавку, открывающему клапан топливовода, как только уровень топлива в камере карбюратора снижается. Карбюратор через жиклер и диффузор связан с цилиндром. Когда давление в цилиндре снижается, точно отмеренное благодаря жиклеру количество топлива устремляется в диффузор воздушной камеры.

Тут, за счет очень маленького диаметра отверстия, оно под большим давлением проходит в цилиндр, бензин смешивается с атмосферным воздухом, прошедшим через фильтр, и образованная смесь попадает в камеру сгорания.

Проблема карбюраторных систем – в невозможности максимально точно отмерить количество топлива и количество воздуха, попадающие в цилиндр. Поэтому все современные автомобили оснащены системой впрыска, называемой также инжекторной.

В инжекторном двигателе вместо карбюратора впрыск осуществляется форсункой или форсунками – специальным механическим распылителем, важнейшей частью которого является электромагнитный клапан. Эти устройства, особенно работая в паре со специальными вычислительными микрочипами, позволяют впрыскивать точно отмеренное количество топлива в необходимый момент. В результате двигатель работает ровнее, запускается легче, потребляет меньше топлива.

Механизм газораспределения

Понятно, каким образом карбюратор подготавливает горючую смесь из бензина и воздуха. Но как работают клапаны, обеспечивающие своевременную подачу этой смеси в цилиндр? За это ответственен механизм газораспределения. Именно он выполняет своевременное открытие и закрытие клапанов, а также обеспечивает необходимую длительность и высоту их подъема.

Именно эти три параметра и являются в совокупности фазами газораспределения.

Современные двигатели имеют специальное устройство для изменения этих фаз, называемое фазовращатель двс принцип работы которого основан на повороте в случае необходимости распредвала. Эта муфта при увеличении количества впрыскиваемого топлива поворачивает распределительный вал на определённый угол по ходу вращения. Такой изменение его положения приводит к тому, что впускные клапаны открываются раньше, и камеры сгорания наполняются смесью лучше, компенсируя постоянно возрастающую потребность в мощности. На наиболее технически передовых моделях стоит несколько таких муфт, они управляются достаточно сложной электроникой и могут регулировать не только частоту открытия клапана, но и его ход, что отлично сказывается на работе двигателя при максимальных оборотах.

Принцип работы системы охлаждения двигателя

Разумеется, далеко не вся выделяемая энергия связей молекул топлива превращается в полезную работу. Основная ее часть теряется, превращаясь в тепло, да и трение деталей ДВС также создает тепловую энергию. Лишнее тепло необходимо отводить. Именно этой цели служит система охлаждения.

Разделяют воздушную систему, жидкостную и комбинированную. Наиболее распространена жидкостная система охлаждения, хотя встречаются автомобили и с воздушной – ее использовали для упрощения конструкции и удешевления бюджетных машин, либо для уменьшения веса, если речь шла о спорткарах.

Основные элементы системы представлены теплообменником, радиатором, центробежным насосом, расширительным бачком и термостатом. Кроме того, в систему охлаждения входят масляный радиатор, вентилятор радиатора, датчик температуры охлаждающей жидкости.

Жидкость циркулирует через теплообменник под воздействием насоса, снимая температуру с двигателя. Пока двигатель не нагреется, специальный клапан закрывает радиатор – это называется «малый круг» движения. Такая работа системы позволяет быстро прогреть двигатель.

Как только температура поднимается до рабочей, термодатчик дает команду на открытие клапана, и охлаждающая жидкость начинает двигаться через радиатор. Тонки трубки этого агрегата обдуваются стильным потоком встречного ветра, охлаждая таким образом жидкость, которая опять поступает в коллектор, начиная круг охлаждения заново.

Если воздействия набегающего воздуха недостаточно для нормального охлаждения – автомобиль работает со значительной нагрузкой, движется с малой скоростью или стоит очень жаркая погода, включается вентилятор охлаждения. Он обдувает радиатор, принудительно охлаждая рабочую жидкость.

Машины, оборудованные турбонаддувом, имеют два контура охлаждения. Один – для охлаждения непосредственно ДВС, второй – для снятия лишнего тепла с турбины.

Электрика

Первые автомобили обходились минимумом электрики. В современных машинах появляется все больше и больше электрических цепей. Электроэнергию потребляют система подачи топлива, зажигание, система охлаждения и отопления, освещение. При наличии немало энергии потребляет система кондиционирования, управления двигателем, электронные системы обеспечения безопасности. Такие агрегаты, как система запуска и свечи накаливания потребляют энергию кратковременно, но в больших количествах.

Для обеспечения всех этих элементов необходимой электроэнергией используются источники тока, электрическая проводка, элементы управления и блоки предохранителей.

Источники тока автомобиля – аккумуляторная батарея, работающая в паре с генератором. Когда двигатель работает, привод от вала крутит генератор, вырабатывающий необходимую энергию

Генератор работает, преобразовывая энергию вращения вала в электрическую энергию, используя принципы электромагнитной индукции. Для того, чтобы осуществить пуск ДВС, используется энергия аккумулятора.

Во время запуска основным потребителем энергии является стартер. Это устройство является двигателем постоянного тока, предназначенным для прокрутки коленчатого вала, обеспечивающей начало цикла работы ДВС. Принцип работы двигателя постоянного тока основывается на взаимодействии, возникающем между магнитным полем, образующимся в статоре, и токе, протекающем в роторе. Эта сила влияет на ротор, который начинает вращаться, причем его вращение совпадает с вращением магнитного поля, характерного для статора. Таким образом электрическая энергия преобразовывается в механическую, а стартер начинает раскручивать вал двигателя. Как только двигатель запускается и начинает работать генератор, аккумулятор перестает отдавать энергию и начинает ее накапливать. Если генератор не работает или по какой-то причине его мощности недостаточно, аккумулятор продолжает отдавать энергию и разряжаться.

Такой тип двигателя тоже является ДВС, но имеет отличительные особенности, позволяющие резко отделять двигатели, работающие по принципу, изобретенному Рудольфом Дизелем, от прочих ДВС, работающих на «легком» топливе вроде бензина «в автомобилистике» или керосина «в авиации».

Различие в используемом топливе предопределяют различия конструкции. Дело в том, что «солярку» относительно сложно поджечь и добиться ее мгновенного сгорания в обычных условиях, поэтому способ воспламенения от свечи для этого топлива не подходит. Воспламенения дизеля осуществляется за счет его контакта с разогретым до очень большой температуры воздухом. С этой целью используется свойство газов нагреваться при сжатии. Поэтому поршень, работающий на дизельном ДВС, сжимает не топливо, а воздух. Когда степень сжатия доходит до максимума, а сам поршень – до крайней верхней точки, стоящая вместо свечи форсунка «электромагнитный насос» впрыскивает дисперсно распыленное топливо. Оно взаимодействует с горячим кислородом и воспламеняется. Далее происходит работа, характерная и для бензинового ДВС.

При этом мощность ДВС меняется не пропорцией смеси воздуха и топлива, как в бензиновых моторах, а исключительно количеством впрыскиваемого дизеля, в то время как количество воздуха постоянно и не меняется. При этом принцип действия современного бензинового агрегата, оснащенного форсункой, абсолютно не схож с принципом работы дизельного ДВС.

Работающие с бензином электромеханические распылительные насосы предназначены, прежде всего, для более точного отмеривания впрыскиваемого топлива, и взаимодействуют со свечей зажигания. В чем эти два типа ДВС схожи — так это в повышенной требовательности к качеству топлива.

Так как давление воздуха, создаваемое работой поршня дизельного мотора, значительно выше давления, оказываемого сжатой воздушно-бензиновой смесью, такой двигатель более требователен к зазорам между поршнем и стенками цилиндра. К тому же, дизельный двигатель труднее запустить зимой, так как «солярка» под воздействием низких температурных показателей густеет, и форсунка не может достаточно качественно распылить ее.

И современный бензиновый мотор, и его дизельный «родственник» крайне неохотно работают на бензине «ДТ» несоответствующего качества, и даже кратковременное его применение чревато серьезными проблемами с топливной системой.

Современные двигатели внутреннего сгорания – наиболее эффективные устройства перехода тепловой энергии в механическую. Несмотря на то, что большая часть энергии тратится не на непосредственно полезную работу, а на поддержание цикла самого двигателя, человечество пока не научилось массово производить устройства, которые были бы практичнее, мощнее, экономичнее и удобнее, чем ДВС. Вместе с тем, удорожание углеводородных энергоносителей и забота об окружающей среде заставляют искать новые варианты двигателей для легковых автомобилей и общественного транспорта. Наиболее перспективными на данный момент выглядит использование автономных, оснащенных батареями большой емкости, электрических двигателей, КПД которых намного выше, и гибридов таких двигателей с бензиновыми вариантами. Ведь обязательно настанет время, когда использовать углеводороды для приведения в движение личного автотранспорта станет абсолютно невыгодно, и ДВС займут место на музейных полках, как паровозные двигатели – полвека назад.



Поделиться